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1 Wolf Soluzioni, Rome, Italy, 2 Istituto Superiore di Sanità, Rome, Italy, 3 INFN, Sezione Roma 1, Rome, Italy, 4 University of Magdeburg, Magdeburg, Germany

Abstract

We propose a novel explanation for bistable perception, namely, the collective dynamics of multiple neural populations that
are individually meta-stable. Distributed representations of sensory input and of perceptual state build gradually through
noise-driven transitions in these populations, until the competition between alternative representations is resolved by a
threshold mechanism. The perpetual repetition of this collective race to threshold renders perception bistable. This
collective dynamics – which is largely uncoupled from the time-scales that govern individual populations or neurons –
explains many hitherto puzzling observations about bistable perception: the wide range of mean alternation rates exhibited
by bistable phenomena, the consistent variability of successive dominance periods, and the stabilizing effect of past
perceptual states. It also predicts a number of previously unsuspected relationships between observable quantities
characterizing bistable perception. We conclude that bistable perception reflects the collective nature of neural decision
making rather than properties of individual populations or neurons.
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Introduction

Certain visual displays are not perceived in a stable way but,

from time to time and seemingly spontaneously, their phenomenal

appearance wavers and settles in a distinctly different form. This

phenomenon is called bistable perception and occurs with a

variety of ambiguous visual displays (e.g., [1]), as well as with

ambiguous stimuli in the auditory (e.g., [2]) and tactile domains [3].

The most extensively studied instance is binocular rivalry [4–7],

where the phenomenal experience of an observer alternates

between two images that are continuously presented to the left and

right eye, respectively. In spite of the somewhat ‘unnatural’

method of stimulus delivery, there is good evidence that binocular

rivalry shares the typical properties of other instances of bistable

perception [8–11].

One typical property of bistable perception is that phenomenal

appearance shifts irregularly, so that a particular appearance lasts

for varying lengths of time. The average such ‘‘dominance time’’

varies by one or two orders of magnitude (typically seconds to tens

of seconds) between individual observers [12,13] and between

different bistable displays [10,11,14,15]. Even for the same

observer and same display, dominance times vary substantially

with stimulus intensity [16,17], with attention [18–21], and when a

display is periodically interrupted [22–24]. In some cases, the

average dominance time experienced by a given observer on a

given display under different stimulus regimes may differ by two

orders of magnitude [21].

Another typical property is that the statistical distribution of

dominance times is well approximated by a Gamma function

[14,25,26]. In general, the shape parameter r of the Gamma

function falls into a surprisingly narrow range with values from 3

to 6 [25–30], although values from 2 to 20 have also been reported

(e.g., [31]).

Whereas bistable perception was long considered a ‘‘memory-

less’’ process [25,27,28,31], it has become clear that phenomenal

appearance can be influenced by past perceptual states. For

example, when the presentation of an ambiguous display is

interrupted and later resumed, the dominant appearance often

remains the same [22–24]. This persistence of the dominant

appearance stabilizes perception considerably, slowing or even

arresting perceptual reversals for intermittently presented displays.

The ‘memory’ in question reflects a longer history of dominance

periods, not merely the last dominance period before the stimulus

interruption [32,33].

It is not known what mechanisms allow a ‘memory’ of

perceptual appearance to persist and to influence the appearance

of subsequent stimulation. One possibility are adaptation states at

the level of perceptual representations, as such states are known to

persist over short stimulation gaps and to influence subsequent

appearance [32,34,35]. Another possible mechanism would be

some kind of short-term or working memory at post-perceptual

levels of processing [24,36]. Qualitatively, the effect of ‘memory’

can be summarized as follows: the longer an appearance has

dominated perception in the recent past, the more likely it is to

dominate perception again. The effect of ‘memory’ is evident for

continuous and, more markedly, intermittent stimulation, and

appears to be comparatively long-lasting (i.e., minutes rather than

seconds [33,37]).

We propose a model for the dynamics of bistable perception

with two novel elements: (i) stochastic integration over multiple

meta-stable populations and (ii) two separate levels of represen-
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tation (sensory information and phenomenal experience). Our

central intuition is that perceptual bistability reflects the collective

properties of many meta-stable populations rather than specific

biophysical properties of single neurons (see also [38]). Together,

these two elements account for several hitherto puzzling aspects of

bistable perception, including the wide range of time-scales of

perceptual alternations, the existence and characteristics of

memory effects, the highly conserved shape of dominance

distributions, and others. Our model predicts the perceptual

dynamics of bistable displays for a variety of stimulation regimes,

including continuous and intermittent presentation. Although

formulated at the level of abstract populations, our model could

readily be extended to a biophysically detailed description of

spiking neurons. As our model aims to account for comparatively

slow processes (O(10 s)), it neglects phenomena such as fast

adaptation.

Several computational accounts for binocular rivalry have been

proposed previously. All postulate some form of reciprocal

inhibition between two rivaling representations [39–43]. Some

recent models are biophysically more realistic and are formulated

in terms of spiking neurons. In addition to mutual inhibition, these

models postulate some form of fast adaptation for the currently

dominant population (in the firing rate, the synaptic efficacy, or

both), which curtails dominance times and enforces perceptual

reversals [44–46]. In yet other models, the effect of adaptation is

complemented by noise-driven transitions [17,47–49]. Some

recent models have introduced an additional form of slow

adaptation in order to account for memory effects [32,34,35].

Finally, to accommodate experimental evidence that several

neural levels contribute to binocular rivalry, two recent models

[45,50] postulate a feedforward hierarchy of competing levels.

Models

Our model is stochastic and follows the activity of many

independent neural populations. Each population is assumed to

possess two stable states - an ‘inactive’ state of low activity and an

‘active’ state of high activity - and to transition back and forth

between these states under the influence of input and noise.

Transitions are assumed to occur with certain rates (probabilities

per unit time), which in turn will be seen to depend on visual input

and on the phenomenal percept.

The model postulates two representational levels, one level of

‘evidence populations’ (EPs), which integrate visual inputs over

short time-scales, and another level of ‘memory populations’

(MPs), which integrate phenomenal states over longer time-scales.

To model the dynamics of binocular rivalry, where there are two

possible phenomenal states, we assume two pools of EPs (each with

NEP populations) and two pools of MPs (each with NMP

populations), associating each pool with a different phenomenal

state. The four pools and their interactions are shown schemat-

ically in Figure 1.

For a pool X (X~EP, MP) with NX populations, PX (n,t)
denotes the probability that n populations are ‘active’ at time t,
while the NX {n remaining populations are ‘inactive’. Further, nX

z

denotes the rate of the inactiveRactive transition and nX
{ that of

the activeRinactive transition. We assume that, in the time

interval dt, at most one transition can occur, independently of any

previous transitions (Poisson process).

Several transition events contribute to the total change dPX (n,t)
over dt. Negative contributions are occasioned by one of n active

populations becoming inactive nn{ dtP(n,t)½ �, or by one of NX {n
inactive populations becoming active (NX {n)nz dtP(n,t)½ �.
Positive contributions arise from one of nz1 active populations

becoming inactive (nz1)n{ dtP(nz1,t)½ �, or from one of

NX {nz1 inactive populations becoming active (NX {nz1)nz½
dtP(n{1,t)�

All four contributions enter into the dynamic equation of pool

X :

d

dt
PX (n,t)~(NX{nz1)nX ,c

z PX (n{1,t)z(nz1)nX ,c
{ PX (nz1,t)

{½(NX {n)nX ,c
z znnX ,c

{ �PX (n,t)

ð1Þ

Here, the superscript X denotes the four pools (evidence and

memory populations for two percepts) and the superscript c indicates

different transition rates (see below). As long as transition rates remain

unchanged, the average number of active populations in a generic pool

approaches the asymptotic value n?~NX nz=(nzzn{) with a

characteristic time t~1=(nzzn{). The asymptotic number of active

populations is a binomially distributed random variable:

PX
?(n)~

NX

n

� �
nz

nzzn{

� �n
n{

nzzn{

� �NX {n

ð2Þ

The phenomenal state ( i.e., the currently dominant percept) is

not represented explicitly in the model. Instead, the EPs and MP s

associated with each percept are combined and their total number

is compared with a threshold h. Whenever this number comes to

exceed the threshold and the stimulus is on, the associated percept

is deemed to gain dominance (even when the other percept’s total

activity also exceeds h at this moment of time). Once gained,

dominance is lost only when a percept’s total activity drops below

threshold, or when the total activity of the other percept crosses

the threshold, too.

An essential aspect of the model is the choice of transition rates.

We use transition rates to compactly represent the combined

Author Summary

The instability of perception is one of the oldest puzzles in
neuroscience. When visual stimulation is even slightly
ambiguous, perceptual experience fails to stabilize and
alternates perpetually between distinct states. The details
of this ‘bistable perception’ have been studied extensively
for decades. Here we propose that bistable perception
reflects the stochastic integration over many meta-stable
populations at two levels of neural representation. While
previous accounts of bistable perception rely on an
oscillatory dynamic, our model is inherently stochastic.
We argue that a fluctuation-driven process accounts
naturally for key characteristics of bistable perception that
have remained puzzling for decades. For example, our
model is the first to explain why the statistical variability of
successive dominance periods remains essentially the
same, while the mean alternation rates of bistable
phenomena range over two orders of magnitude. By
postulating two levels of representation that are driven by
stimulation and by perceptual state, respectively, our
model further accounts for the stabilizing influence of past
perceptual states, which are particularly evident in
intermittent displays. In general, a fluctuation-driven
process decouples the collective dynamics of bistable
perception from single-neuron properties and predicts a
number of hitherto unsuspected relations between
behaviorally observable measures.

Two Levels Bistable Perception Model
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influence of feedforward input (i.e., visual stimulation), of recurrent

input, and of the phenomenal percept. In developing the model,

we realized that a handful of conditions, each with different

transition rates, suffices to generate the rich dynamical behavior of

bistable perception. Specifically, we assume an ‘excitation’ of EPs

by the stimulus, an additional, ‘selective excitation’ of EPs and

MPs associated with the active percept, and a ‘selective inhibition’

of EPs associated with the other percept.

Figure 2 illustrates the typical evolution of activity in the

different pools, and the resulting perceptual alternations, when a

bistable stimulus is periodically interrupted by blank periods.

The dynamic evolution distinguishes 4 conditions, depending on

the presence or absence of a stimulus and a dominant perceptual

state:

Condition 1: After stimulus onset, but before a dominant

percept has emerged. When a stimulus is present, but no dominant

percept has yet emerged, the activity of EPs grows rapidly,

mimicking ‘excitation’ by the visual stimulus (n?~15, t~50ms).

Any activity of MP s decays (t~5s).

Condition 2: The first 200 ms after one percept (e.g., the

‘butterfly’) has gained dominance. When one percept becomes

dominant (because the combined activity of its associated

populations exceeds threshold), the now dominant EPs continue

to charge, but with longer characteristic times (n?~25, t~1:5s),

whereas the now suppressed EPs discharge (t~50ms). This short-

lasting condition stabilizes the newly dominant percept and

mimics a ‘transient suppression’ of the EPs associated with the

other percept. In effect, this cross-inhibition implements a

transient interaction between the active percept and the EPs

associated with the other percept. Note that dominance is gained

always by the most recent percept to cross h. The rapid sequence

corresponding to Condition 1 and Condition 2 explains the

‘spikes’ that are sometimes observed (in Figure 2) when stimulation

resumes at the end of a blank period.

Condition 3: Continued dominance of the same percept. After

the brief transition period, the EPs of the dominant percept

continue to charge as before, but the EPs of the suppressed percept

are now charging as well, albeit more slowly (n?~22, t~4s).

This condition mimics the combined effects of a ‘sustained

inhibition’ by the phenomenal percept and an ‘excitation’ by the

visual stimulus (see (1) above).

In addition to inhibiting EPs, the phenomenal state also excites

MPs. Specifically, we assume that the MP s associated with the

dominant percept charge slowly, (n?~13, t~5s), whereas the

MP s associated with the suppressed percept discharge at the same

rate. This ensures that the phenomenally dominant percept

charges its associated memory while discharging the memory of

the alternative percept.

Condition 29: The first 200 ms after a reversal, in which the

other percept (e.g., the ‘tree’) has gained dominance. This

condition is symmetric to Condition 2.

Condition 39: Continued dominance of the ‘tree’ percept

(symmetric to Condition 3).

Condition 4: Blank display. In the absence of a stimulus, any

residual activity dissipates and both EPs and MPs become inactive

(t~1s and t~300s, respectively). The rates for MP s are

characteristic times for the spontaneous decay of a percept-specific

working-memory.

Figure 1. Model architecture for binocular rivalry between two images (‘tree’ and ‘butterfly’). Two types of meta-stable populations –
evidence populations (EPs) and memory populations (MPs) – transition independently between ‘inactive’ and ‘active’ states. The evolution of activity
in each pool is governed by transition rates. Each percept is associated with one pool of EPs and another pool of MPs. Perceptual dominance
depends on the combined activity of the associated EPs and MPs. The colored arrows represent ‘effective’ interactions (excitatory, red; inhibitory,
blue) that modulate transition rates. The interdependence of transition rates and combined activity produces periodic reversals of phenomenal
experience.
doi:10.1371/journal.pcbi.1000430.g001

Two Levels Bistable Perception Model
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These assumptions (7 integration parameters for EPs, 3

integration parameters for MPs, pool sizes NEP and NMP) suffice

to emulate a large body of empirical observations on the

perceptual dynamics of continuous and intermittent displays.

Moreover, the predicted behavior is robust over a considerable

range of parameter values.

The interaction between total activity in EPs plus MPs and

transition rates in EPs and MP s, combined with the stochastic

activity dynamics in the four pools, produces an irregular sequence

of phenomenal reversals that may be compared directly to

experimental observations.

Results

Mean dominance times
The main evidence for a memory in bistable perception is the

tendency of a percept to persist when stimulation is interrupted:

before and after an interruption of stimulation, the subjective

appearances are often the same. This persistence slows and

perhaps even arrests perceptual reversals in intermittently

presented displays [22–24,51]. In our model, the persistence of

appearance arises from the existence of memory populations that

influence perceptual dominance.

We define the dominance time Tdom of a percept as the total

stimulated time between two reversals. In the case of continuous

stimulation, this is simply the time between reversals. In the case of

intermittent stimulation, it is the total time minus any blank

periods.

Our model predicts a complex dependence of the mean

dominance time STdomT on the stimulation period Ton and the

blank period Toff (Figure 3A). Starting from Ton~? (continuous

display), STdomT rises slowly from the baseline STcontinuous
dom T~4:5 s

(dashed black lines), the increase becoming dramatic in the

proximity of Ton~STcontinuous
dom T. At this point, MP s are maximally

active and stabilize phenomenal experience. If perceptual reversals

occur at all, they happen at the beginning of, rather than during

Ton. For even smaller Ton, phenomenal experience remains stable

for a certain number of display cycles (see Perceptual
persistence), and STdomT decreases trivially with Ton. The

height and position of the peak in STdomT depends also on Toff ,

for the average activity of MP s (and, thus, their stabilizing effect)

depends on the balance between Ton and Toff .

These predictions account qualitatively for the observation that

intermittent stimulation slows perceptual reversals [22–24].

Especially for short Ton, it is known that dominance times grow

very long and that perceptual reversals essentially cease [23].

Unsurprisingly, our model fails to predict the behaviour observed

for short Toff (,1 s) [52], which is thought to reflect fast

adaptation.

Raising stimulus intensity (i.e., luminance and/or color contrast)

can be assumed to monotonically increase the parameter n?.

When left- and right-eye images present different intensities, the

evidence populations associated with the left- and right-image EPs

will exhibit different parameter values, nLeft
? and nRight

? , respec-

tively.

It is interesting to explore how different choices of nLeft
? and

nRight
? affect the perception of a continuous display. When

(say) nRight
? is increased while nLeft

? is held constant, dominance

times increase slightly for the right image but decrease dramatically

for the left image (Figure 3B). When nLeft
? is decreased, the

intersection in Figure 3B shifts to the left (not shown), as reported by

[17]. This confirms that n? is a plausible substitute for stimulus

intensity.

The qualitative behavior in Figure 3B is empirically well

established and is known as ‘‘Levelt’s second proposition’’ [5,17].

The reason for this behavior is that, in our model, reversals are

triggered by the charging of the suppressed percept. As charging

rate increases with stimulus intensity (n?), greater stimulation of

the suppressed percept shortens STdomT for the dominant percept.

Distribution of dominance times
Dominance times of both human and non-human observers in

binocular rivalry and other types of bistable displays exhibit a

Gamma-like distribution G(t)~tr{1 lr e{l t=C(r), where l is a rate

Figure 2. Activity dynamics during the intermittent presentation of a rivalrous display. The three graphs represent the evolution of EP
activity (upper), MP activity (middle), and combined activity (lower). In each graph, the activities associated with the two percepts are shown as
magenta and cyan curves, respectively. When the combined activity of one percept crosses a threshold (black line in the bottom graph), that percept
dominates phenomenal experience (as indicated at the top of each graph by magenta or cyan stripes). Stimulation periods of 4.4 s (grey stripes)
alternate with blank periods of 5.7 s. See text for a detailed description of the model dynamics.
doi:10.1371/journal.pcbi.1000430.g002

Two Levels Bistable Perception Model
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constant and r is a shape parameter. The mean dominance time is

STdomT~r=l and the coefficient of variation of dominance times

is CV~r{1=2. Empirically, rate l and mean time STdomT range

over almost two OM, whereas the shape parameter r is largely

preserved and varies only by half an OM [30,31]. One important

aim of our model is to account for this uncoupling of the shape

parameter r from the mean time STdomT.

In our model, perceptual reversals reflect the rapid accumulation

of stimulus evidence below the perceptual threshold by evidence

populations (EPs). Only three parameters matter for the distribution

of dominance times, namely, the total number of evidence

populations, NEP, the number of active evidence populations at

equilibrium, n?, relative to the perceptual threshold h, and the

relaxation time t. Of these three, the parameter n?, which

represents stimulus intensity, proves the most consequential.

For continuous displays, our model replicates a Gamma-like

distribution of dominance times for a wide range of parameter

choices (see inset in Figure 4). Intuitively, this may be understood

as follows: if n?&h, EP+MP crosses the threshold almost

deterministically, resulting in a Gaussian distribution of domi-

nance times (r&1). On the other hand, if n?%h, EP+MP will

cross the threshold only in the event of rare fluctuations, producing

an exponential distribution of dominance times (r^1). Interme-

diate situations with n?^h, lead to Gamma-like distributions with

r ranging from 3 to 6.

For example, in Figure 3B, the shape parameter r varies in a

comparatively narrow range (see inset), whilst the ratio of STdomT
s varies over almost two orders of magnitude. Note that the ‘left’

values of r and STdomT exhibit strongly opposing trends. This

marked anti-correlation is a sign of the stochastic mechanism for

threshold crossing: with lower stimulus intensity n?, threshold

crossings become rarer and the interval distribution becomes more

Poisson-like.

Note also the (slight) positive correlation between the ‘right’

values of r and STdomT in the inset of Figure 3B (red curve). This

constitutes a prediction that depends strictly on memory effects

and that goes beyond ‘‘Levelt’s second proposition’’ [5]. To

understand this positive correlation, consider a situation where

integration is driven by fluctuations and times-to-threshold are

comparatively long and exhibit Poisson-like statistics (r*1). In this

situation, the shape parameter r reflects the number of Poisson-like

‘jumps’ that are required to reach threshold h. The primary

consequences of an increase in nRight
? {h are that ‘left’ dominance

times decrease sharply while ‘right’ dominance times increase

slightly. As a secondary consequence, the ‘left’ memory activity

also decreases, which raises the number of ‘jumps’ required by the

‘left’ integration and thus also the ‘right’ value of r. This accounts

for the parallel trends in the ‘right’ values of r and STdomT.

In general, when the stimulus intensity n? is varied either in one

eye or in both, our model makes a qualitative prediction for the

average dominance distribution (comprising dominance times of

both percepts): the average values of r and STdomT should be anti-

Figure 3. Mean dominance times under interrupted and
continuous stimulation. A: Mean dominance times STdomT as a
function of stimulus period Ton, for different blank periods Toff . B:
Effect of differential stimulus intensity. Dominance times ST

Right
dom T and

STLeft
domT as a function of nRight

? , when nLeft
? is held constant. The inset

shows the corresponding shape parameters rLeft and rRight as a function
of nRight

? .
doi:10.1371/journal.pcbi.1000430.g003

Figure 4. Distribution of Tdom for intermittent display with
Ton~5 s, Toff~5 s, and STdomT~12:9 s. Darker bins in the background:
integral probability of a perceptual switch between the n th and the
(nz1) th Ton; for nw2, the histogram is well approximated by an
exponential (continuous line: best exponential fit for nw2). Inset:
distribution of Tdom for continuous display. Blue bars: histogram of
Tdom from simulations (STdomT~4:8 s), red line: fitted Gamma-
distribution, with STdomT~4:7 s and r~3:1.
doi:10.1371/journal.pcbi.1000430.g004

Two Levels Bistable Perception Model
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correlated. Interestingly, there seems to be some evidence for such

a trend [31].

For intermittent displays (Figure 4, Ton~5s, Toff~5s), our

model predicts a multi-peaked distribution: the integral probability

of a perceptual switch between the n th and the (nz1) th Ton

(darker bins in the background), for nw2, is well approximated by

an exponential (continuous line: best exponential fit for nw2). The

spikes in the distribution reflect the periodicity of the stimulation

and are separated roughly by Ton. They comprise the probability

of a perceptual switch at the onset and during continued

presentation. Assuming that the MPs of the current winning

percept have reached a stationary state, both these probabilities do

not vary statistically from one Ton to the next, leading to an

exponential decay for large enough Tdom (nw2, or twice the

characteristic time of MPs). During the first two Ton, the MP s are

still charging after the last perceptual switch and a perceptual

reversal is more likely than for nw2. The first anomalous peak in

the distribution is attributable to the very brief dominance

intervals that usually occur during periods of ‘uncertainty’, when

the level of the MP s is roughly equal for both percepts (see the

central part of Figure 2 for an illustration).

There are few empirical reports of dominance distributions for

intermittent displays. Both Gamma-shaped [37] and monotonically

decreasing [51] distributions have been reported. However, further

experiments are needed to establish the generality of these results

Sequential correlations
Successive dominance intervals in bistable perception are

thought to be statistically almost independent [25,26]. This is

why bistable perception was long considered a ‘‘memoryless’’

process [25,27,28,31].

However, the existence of memory representations predicts

small but significant departures from sequential independence.

Figure 5A shows the predicted correlation between a given

dominance period and its n-th successor. Interestingly, the

predictions differ for continuous and intermittent presentation.

Figure 5B shows the correlation (c1) between successive

dominance periods of percept ‘Left’ (blue) and percept ‘Right’

(red), for continuous presentations, as functions of nRight
? (same

simulations as in Figure 3B).

The non–monotonic behaviour observed is another conse-

quence of MP dynamics. When one of the STdomT is much larger

than the characteristic times of MP s (left part of the plot), the

activity level of MP s is essentially constant (either low or high) and

cannot provide correlation effects; if the average STdomT is much

smaller than the characteristic times of MP s, memory effects do

not have time to build up and again cannot sustain correlations

(right part of the plot). Finally, whenever the distribution of

dominance times becomes narrow (high r values), so that the

variance is inherently small, sequential correlations will be

negligible.

Taken together, Figure 3B and Figure 5B suggest that an

experimental verification of Levelt’s second proposition should

reveal specific links between r, c1 and STdomT that result, at

bottom, from memory effects.

For continuous displays, correlations are largest for intermediate

values of stimulus intensity, when MP s charge partially and the

degree of charging varies from time to time (Figure 5B).

The peak position reflects the characteristic times of the MP s

(about 5 s). For other values of STdomT, the charging is either to

little or too complete to produce large correlations.

Memory-induced correlations should be somewhat larger in

intermittent displays, as the normal alternation of dominant

percepts is suspended and the same percept dominates for several

successive display intervals. In this situation, the differential

activity between the MP s of dominant and suppressed percepts

grows larger and stochastic fluctuations in this difference induce

more noticeable correlations (Figure 5A).

Perceptual persistence
In intermitted displays, the persistence of a percept across the

stimulation gap is often measured in terms of a ‘survival

probability’ Ps [23], viz. the probability of the same percept

dominating before and after the gap. Our model predicts an

interesting and complex dependence of Ps on stimulus duration

Ton and blank duration Toff , which is illustrated in Figure 6A.

For short Ton, the MP s do not charge and the survival

probability Ps is influenced only by differential activity in the EPs,

which decays rapidly after stimulus termination. For this reason,

Ps decreases rapidly with increasing Toff (Figure 6A, red curve).

When Ton is long enough to charge MP s, but too short to permit

spontaneous reversals, Ps is governed by memory and remains

close to unity as long as the memory persists (Figure 6A, purple

and blue curves). Finally, when Ton is long enough to permit

spontaneous reversals, the memory activity of both percepts is

Figure 5. Sequential correlations for continuous and intermit-
tent displays. A: Correlation coefficient cn between dominance
periods i and izn, as a function of n and normalized to c0 . B: Effect
of differential stimulus intensity of continuous display. Correlation
coefficient c1 and STdomT of both percepts, computed for different
values of nRight

? . Data are from the same simulations as in Figure 3B.
doi:10.1371/journal.pcbi.1000430.g005

Two Levels Bistable Perception Model
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comparable and Ps reflects differential activity in the EPs

(Figure 6A, green curve).

Some of these predictions are borne out by published evidence.

For example, Leopold and colleagues reported uniformly high Ps

for intermediate values of Ton (400 ms; [23]). For longer Ton that

permitted spontaneous reversals, survival probability Ps progres-

sively decreased.

When Ton permits two dominance periods, survival probability

Ps reflects the relative durations [23,32,33]: Psw0:5 when the most

recent period lasted longer than the less recent period and Psv0:5
when the situation was reversed. Our model readily accounts for

these observations (Figure 6B), provided Toff is sufficiently large.

The regime of Toffv1s [34,52,53], where fast adaptation could

become important, is again out of the scope of our model.

Discussion

We propose that binocular rivalry, and other instances of

bistable perception, reflect the stochastic integration of many

meta-stable populations at two levels of neural representation, viz.

sensory input and perceptual experience. While previous accounts

of bistable perception rely on an oscillatory dynamic, our model is

inherently stochastic. We argue that a fluctuation-driven process

accounts naturally for key characteristics of bistable perception

that have remained puzzling for decades.

One of these puzzling characteristics is the wide range of

average times between perceptual reversals, which for different

observers, display types, and stimulus properties can extend over

two orders of magnitude [30,31]. Another unexplained finding is

the preserved stochasticy of reversals, that is, the fact that the

statistical distribution of times between reversals is Gamma-like

and exhibits a shape parameter r with typical values from 3 to 6.

Taken together, these observations strongly suggest a fluctua-

tion-driven escape process. In such a process, the system state

fluctuates until it reaches an escape threshold, at which point it is

reset some distance away from threshold. Depending on the

asymptotic value of the integration process, the average frequency

of threshold crossings can vary over more than one order of

magnitude, while the distribution of times between threshold

crossings will retain its Gamma-like shape. This uncoupling of

mean dominance time and shape parameter is an important

advance over previous models and is illustrated in Figure 3B.

Following this general insight, we model bistable perception as a

‘race’ between two independent processes of stochastic integration,

each concerning multiple neuronal pools that are individually

meta-stable between inactive and active states. We further assume

an escape threshold and a competitive reset mechanism that resets

each process whenever the other process reaches threshold.

Previous models of bistable perception postulate a deterministic

process at the level of individual neurons (i.e., spike-frequency

adaptation [32,34,35,54] or synaptic depression [44–46]) which

drives the system towards a reversal threshold. The resulting

oscillatory dynamic is typically perturbed by a suitable level of

neural noise [17,35,47–49]. In such an ‘oscillator model’, the

average time between reversals is set by thedeterministic process

while the statistical distribution of these times directly reflects the

level of noise. For a given set of parameters, oscillator models such

as [32,35] produce either a realistic, Gamma-like distribution of

dominance times or a realistic dependence of mean dominance

times on stimulus properties (e.g., intensity or timing), but not both.

For example, an oscillator model such as [35] accounts for the

dependence of dominance times on stimulus times only in the

absence of noise. When the model is imbued with realistic levels of

noise (so that r~6), the dependence on stimulus intensity all but

disappears.

Yet another puzzling characteristic of bistable perception is the

hysteresis or memory effects that become evident when visual

presentation is interrupted [23,24]. To summarize the available

evidence, the history of percepts prior to an interruption biases

perception once stimulation resumes. Memory effects are long-

lasting and are characterized by time-scales an order of magnitude

larger than those of perceptual reversals [23,33]. Memory effects

are stabilizing in that they favor the recurrence of percepts that

have dominated already in the past. Not only the most recent

percept, but also less recent percepts that have dominated longer,

leave a measurable bias [23,32,33]. Finally, the stabilizing

influence of perceptual history is evident not only in the percept

that dominates a renewed stimulus onset but also in the duration

of dominance phases following that onset [55].

To account for memory effects, several oscillator models have

been extended to include an additional interaction or state

variable [32,34,35]. However, none of these models captures the

entire range of experimental findings. The model of Noest and

Figure 6. Survival probability Ps and perceptual history. A: Joint
dependence on Ton and Toff , see text for details. B: When Ton contains
two dominance phases of durations T1 and T2 , Ps decreases with T1

(less recent phase) and increases with T2~Ton{T1 (more recent
phase).
doi:10.1371/journal.pcbi.1000430.g006
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colleagues [34] lacks a second, longer time-scale and does not

account for observations with long interruptions of stimulation.

The models of Wilson [35] and of Brascamp and colleagues [32]

include multiple time-scales and do capture long-lasting memory

effects. However, the Wilson model [35] does not account for the

influence of the duration of dominance phases preceding the

stimulus interruption [23,32,33]. Conversely, the model of

Brascamp and colleagues [32] fails to predict the observed effect

on dominance durations following the stimulus interruption [55].

Our stochastic-integration model incorporates two time-scales

in the form of ‘evidence populations’ (EPs with higher transition

rates) and ‘memory populations’ ( MP s with lower rates). A

material difference to other models [32,35] is that EPs are driven

by sensory evidence and perceptual state, while MP s are driven

only by perceptual state. This ensures that the memory of a

perceptual state builds up while this state persists and correctly

predicts all effects of and on dominance duration that have been

reported so far [23,32,33,55]. The recurrent influence of

perceptual state on both MP s and EPs distinguishes our model

from other two-level models [45,50], which employ a strictly

feedforward architecture.

With one major exception (see below), our model comprehen-

sively predicts the dynamics of bistable perception for continuous

and intermittent displays. For example, it predicts dominance

times, dominance distribution shape, sequential correlations

between dominance times, and perceptual persistence across

blank periods, including, in the case of intermittent displays, the

dependence of these quantities on Ton and Toff . Some of the

predictions bear out past experimental observations: the degree to

which phenomenal experience is stabilized with different values of

Ton and Toff in an intermittent display [22–24], or the

dependence of phenomenal experience on a history comprising

several preceding dominance periods [23,32,33]. Several other

predictions of interest are yet to be tested, however. For example,

our model predicts how the shape of the dominance distribution

(Figure 4) and the size of sequential correlations (Figure 5) should

vary with Ton and Toff under conditions of intermittent

presentation.

An important test for models of bistable perception are the

opposite and unequal changes in dominance time that results from

an asymmetric changes in stimulus intensity (‘‘Levelt’s second

proposition’’) [5]. Our model correctly predicts the unequal

dependence of dominance times on the intensity of a weaker

stimulus and partially predicts the reversed dependence of

dominance times on the intensity of a stronger stimulus [17].

In its current form, our model does not account for the well-

known effects of visual adaptation [39,56–60] on bistable

perception. This omission is intentional and is meant to highlight

the dynamic possibilities offered by stochastic integration on the

longer time-scales at which adaptation effects are expected to be

small. The absence of adaptation implies that our model cannot

account for the phenomenon of ‘‘flash suppression’’ [61,62] and,

more generally, for the perceptual effects of brief stimulus

interruptions (,1000 ms) [22,34,52,53].

For the sake of simplicity, our model is formulated in terms of

abstract, meta-stable populations governed by transition proba-

bilities. The underlying idea is that each population represents a

recurrently connected network of spiking neurons, with two

metastable attractor states [63–67]. In such a ‘working-memory-

type’ network, stochastic transitions between attractor states are

driven by internally generated fluctuations in network activity

[49,65,68–71]. The transition probabilities nz and n{ are the

escape rates from the two attractor states: the lower the attraction

force, the higher the escape rate. Importantly, the transition rates

depend less on the time-constants of individual neurons than on

the average activity level and the amplitude of activity fluctuations

in relation to the transition threshold. This is why small differences

in recurrent connectivity can shift transition rates by some orders

of magnitude [68–70].

Our model postulates that perceptual dominance reflects a

collective decision on the basis of two distributed representations

(viz., two pools of meta-stable populations). The stochastic

integration of those representations provides the accumulated

information for the perceptual decision; such a mechanism has

been also proposed as a substrate for the perception of time

[71,72]. In a detailed (spiking network) model, such a collective

decision would require convergent synaptic projections to a

readout stage, where competitive interactions could ensure that

any decision is categorical [73,74]. In other words, our model

predicts the existence of a competitive stage receiving projections

from all evidence and memory populations. This hypothetical

stage would somewhat resemble the ‘‘saliency map’’ that has been

postulated by some authors [75,76].

Finally, excitatory and inhibitory projections between represen-

tational (evidence and memory populations) and readout levels

could generate the facilitatory and suppressive interactions that are

needed to start the stochastic integration process over and over

again. Such competitive- cooperative interactions in a multi-level

network have been studied in the context of visual attention

modeling [77].

In conclusion, we suggest that bistable perception is a

fluctuation-driven process and is best understood in terms of a

progressive integration of, and a collective competition between,

‘working-memory-type’ populations at multiple neural levels.
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