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Abstract

Attribution of biological robustness to the specific structural properties of a regulatory network is an important yet
unsolved problem in systems biology. It is widely believed that the topological characteristics of a biological control
network largely determine its dynamic behavior, yet the actual mechanism is still poorly understood. Here, we define a
novel structural feature of biological networks, termed ‘regulation entropy’, to quantitatively assess the influence of network
topology on the robustness of the systems. Using the cell-cycle control networks of the budding yeast (Saccharomyces
cerevisiae) and the fission yeast (Schizosaccharomyces pombe) as examples, we first demonstrate the correlation of this
quantity with the dynamic stability of biological control networks, and then we establish a significant association between
this quantity and the structural stability of the networks. And we further substantiate the generality of this approach with a
broad spectrum of biological and random networks. We conclude that the regulation entropy is an effective order
parameter in evaluating the robustness of biological control networks. Our work suggests a novel connection between the
topological feature and the dynamic property of biological regulatory networks.

Citation: Wu Y, Zhang X, Yu J, Ouyang Q (2009) Identification of a Topological Characteristic Responsible for the Biological Robustness of Regulatory
Networks. PLoS Comput Biol 5(7): e1000442. doi:10.1371/journal.pcbi.1000442

Editor: Weixiong Zhang, Washington University in Saint Louis, United States of America

Received October 20, 2008; Accepted June 19, 2009; Published July 24, 2009

Copyright: � 2009 Wu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is partially funded by NSFC (No. 10721403) and MOST of China (No. 2003CB715900). YW and JY acknowledges support from the National
Foundation for Fostering Talents of Basic Science (J0630311) and Chun-Tsung Foundation at Peking University. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: qi@pku.edu.cn

Introduction

Biological regulatory networks play an essential role in all living

organisms. The investigation of their general behaviors is an

important subject in the current research of systems biology.

Recently, the reliable functionality of these networks has attracted

much attention [1]; it has been widely recognized that some

important biological networks are globally stable against external

perturbations and can perform their functions without much fine-

tuning of their internal parameters [2–5]. These properties of

biological control systems are well demonstrated by the recent

successful works on the Boolean approximation of regulatory

networks [6–8]. It was shown that a bare Boolean dynamics is

often good enough to describe the essence of biology. Moreover,

biological networks simplified by the Boolean approximation often

still show a significant dynamic stability, characterized by their

global attractors of the biological stationary states and the stability

of the biological pathways [7–9].

It is widely believed that the topological properties of a

biological control network largely determine its dynamic behavior.

Therefore, the robustness of biological systems should have its root

in the special arrangement of the links in the control networks.

Several authors have made various attempts to quantitatively

identify this structural origin of network robustness, yet their

studies were mainly focused on the distribution of connections,

such as the scale-free distribution of degrees [10], or the

modularity [5], while the function of links was totally overlooked.

Although these studies provide important insights into the

emergence of biological robustness, their descriptions miss the

important ingredient of the network systems and thus are

incomplete. In this paper, we try to make a step forward in this

line of researches by including the sign (positive/negative) of links.

To this end we define a new order parameter, named regulation

entropy, to measure the signed topology of a biological network.

Using the cell-cycle control networks of the budding yeast

(Saccharomyces cerevisiae) and the fission yeast (Schizosaccharomyces

pombe) as examples, we first show that this parameter puts a

constraint on the robustness of the two control networks, then we

provide additional evidences showing that it can serve as a good

indicator of the robustness of biological control systems in general.

Results

Definition of the Regulation Entropy
It is well known that the components of a biological system are

often connected by complicated interactions, such as binding,

(de)phosphorylation, transcription, synthesis and degradation. To

model such intricate systems, one needs to employ various

approximations. Guided by the balance between model accuracy

and computational efficiency, one may neglect the details of

biochemical kinetics while preserve the crucial regulatory relations

among key players of the original interaction network. Specifically,

lots of biochemical interactions are realized by a cascade of

reactions, with the fate of the final product almost completely
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determined by the upstream signal. In practice, such an indirect

interaction between the upstream and the downstream of a

cascade is often simplified into a direct link in network modeling,

especially for the Boolean case. Thus it does not make much sense

to take too seriously the difference between direct and indirect

interactions on an interaction map. From this point of view, we

should place direct links and indirect ones in a biological network

on a more or less equal footing. On the other hand, the regulation

coherency of the control network is often an essential property of

the system. Here coherency denotes the situation that commands

from different controllers do not contradict, but to strengthen each

other. Based on these considerations, we introduce an order

parameter to describe the structural or topological property of a

biological control network.

In a simple form, a biological regulatory network can be

expressed in a signed directed graph. The nodes of this graph

represent biomolecules in the system, and the directed edges

denote interactions between these biomolecules, with positive and

negative signs indicating up and down regulations respectively. For

example, a link i1 A
z

i2 may represent the fact that the

transcription factor i1 promotes the synthesis of the protein i2,

or the protein i1 activates the protein i2, etc. Following the

direction of arrows, one may take a ‘walk’ on the graph. And a path

can be conventionally defined as a self-avoiding walk on the graph,

i.e., distinct nodes sequentially connected by arrows present in the

graph. To handle self-interactions, this definition can be extended

to allow the starting and the ending nodes to be the same, while

still require intermediate nodes to be distinct from each other and

from the starting node. Each path from node i to node j represents

a regulation pathway from node i to node j. The overall regulation

effect of a path may be either positive (up) or negative (down),

depending on the sign of each link and the total number of links in

the path. For example, a chain composed of an even number of

negative regulations behaves like a positive regulation. We thus

can associate each path with a sign, which is determined by the

product of the signs of all the links in the path. By this definition, a

path becomes a concrete representation of regulation in general,

both direct and indirect.

Next step we define P(i?j) as the set of all paths from node i to

node j. Obviously, elements in the set P(i?j) may carry different

signs, which means that the regulations of node j by node i may be

self-contradictory, with some components activating and others

inhibiting node j. In this case, the overall effect of regulation would

delicately depend on the coupling of all these components, and

thus more sensitive to the details of interactions and the status of

intermediate nodes, especially when they are on the overlap with

other sub-circuits. However, if most of the paths in P(i?j) have

the same sign, there would be less potential conflicts among the

instructions sent from node i through different routes to node j. As

a result, we can expect a reliable regulation that is insensitive to

biochemical details and leads to a relatively ordered dynamic

behavior of the network. To quantify this ambiguity of

interactions, we define the regulation entropy Sij for each pair

of node (i, j) that is connected by at least one path from node i to

node j:

Sij:{pij log2 pij{(1{pij) log2 (1{pij),

in which pij is the ratio of positive paths in P(i?j). If pij tends to

zero or one, Sij will tend to zero, which is the minimum of this

function; whereas Sij reaches its maximum value of 1 at pij~1=2,

which corresponds to the cases of most probable conflicts among

the instructions sent from node i through different routes to node j.
It is natural to introduce the entropy Sj of node j by averaging Sij

over regulators of node j. Then, we can use the averaged entropy

S of the nodes in a network as a measure of the entropy of the

whole network; we name it the regulation entropy of the network.

We should point out that the nodes that have only one incoming

link and one outgoing link should be excluded during these

averaging processes. In this way, the value of the regulation

entropy will be invariant under trivial transformations like

inserting a node into the middle of an existing link, i.e. changing

A?B into A?C?B, and vice versa. Figure 1 provides a concrete

example. Evidently, from the definition we have:
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1
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Thus the regulation entropy of the network in Fig. 1A is:

S~
1

3
SAzSBzSCð Þ&0:315

Admittedly, different regulations may have diverse timescales,

which makes the coupling of different chains of interactions non-

trivial, as shown in the analysis of the function of various feed-

Author Summary

Living organisms exert very complicated control on the
functionality of their components. Such control systems
can often operate in a surprisingly robust manner, in spite
of constant perturbations from fluctuating internal condi-
tions and a volatile external environment. What feature
makes such control mechanisms robust? Is there a general
way to achieve robustness? Here, we address these
questions by investigating the wiring of interaction
networks, which contains the most condensed information
about the control mechanisms of biological systems. We
suggest that one of the most important factors in the
realization of biological robustness rests in the global
coherency of the control strategy, i.e., the consistency of
commands flowing through different routes in the
network to the same destination. To implement this idea,
we propose an order parameter termed ‘regulation
entropy’ to quantitatively describe this control consistency
of networks. We find that this order parameter correlates
with the resistance of the system to external perturbations
as well as internal fluctuations. Our results suggest that the
self-consistency of the control strategy is important for the
vitality and robustness of living organisms.

Topological Characteristic of Robustness
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forward loops [11]. But to construct an order parameter describing

the overall coupling coherency of networks, it is justifiable to take a

coarse-graining approach, assuming that the difference of

interaction details can be neglected in a first approximation. In

the following, we will demonstrate the relevance of this crudely

constructed quantity S to the functional and dynamic properties of

some real biological control systems.

The Regulation Entropy Characteristic of Biological
Networks

We use two specific examples, the cell-cycle regulatory networks

of the budding yeast and the fission yeast, to investigate the

relation between the regulation entropy and the functional and

dynamic properties of biological networks. As pointed out by

Davidich et al [8], these two simplified cell-cycle control networks

(see Fig. 2) are diverse in nature, providing an ideal test-bench for

the investigation of general properties of network dynamics.

Extensive literature has been devoted to the construction of

Ordinary Differential Equation (ODE) models [12,13] as well as

Boolean network models [7,8] to reveal the dynamic properties of

the underlying control systems. To avoid getting lost in the details

of the parameter-setting of the ODE models, we use the Boolean

approach to gain a first impression of the effect of the regulation

entropy on network dynamics. For a brief introduction to Boolean

network dynamics and a recapitulation of the two model networks,

see Materials and Methods.

The behavior of these two biological networks is compared with

randomly generated networks. Following Lau et al [9], we refer to

the combined structural and functional ensemble for this

comparison, i.e., the ensemble of networks that have the same

number of connections as the corresponding cell-cycle network

and can produce the same Boolean sequence of the corresponding

cell cycle. For succinct reference, we shall denote this kind of

ensemble by S&F in subscript. Specifically, we employ the basic

procedure described in Ref. [9] to generate 106 samples from each

of the BS&F and FS&F ensembles of candidate networks, where B
and F denote the budding yeast and the fission yeast, respectively.

First, we check the regulation entropy distribution of the

random networks and the position of the corresponding cell-cycle

network in the distribution. Figure 3 summarizes the results. One

observes that most random networks have high regulation entropy

values, while those of the two biological control networks are

ranked among the lowest 1% or so. Considering that these two

biological networks are fundamentally different in the control

mechanism (strongly damped vs. auto-excited, transcriptional vs.

translational) [8] and are diverse in their average connectivity and

their ratio of negative links, the departure of the biological

networks from the majority of random networks may be quite

general. And the regulation entropy may reveal an important

topological characteristic of biological control networks in general.

All of the networks in the BS&F and FS&F ensembles can

produce the right cell-cycle trajectory. However, they are diverse

in their ways to fulfill the function. The high regulation entropy

values indicate that most of these random networks are sending

self-contradictory commands, and it is probably the crude Boolean

approximation that covers up these inconsistencies by totally

suppressing interactions from the nodes that are not ‘active’

enough, and therefore produces the trajectory as it happens. In

contrast, biological networks have delicate wiring, with most of

their components well tuned, as suggested by its distinctively low

regulation entropy. This makes it more likely that a subset of

interactions can represent the overall effect of regulation. This

redundancy enables the cell-cycle networks to reliably produce the

target trajectory.

Correlation with Dynamic Stability
In this and next sections, we discuss in detail the correlation of

the regulation entropy with the robustness of the yeast networks.

Figure 1. An illustrative example of the calculation of the regulation entropy. The network is shown in A, and the sets P(i?j) are listed in
B. Note that the node ‘D’ is trivially connected, and thus is ignored in the calculation from the very beginning. Green arrows and red blunt-end ones
are activating and inhibiting interactions, respectively. For self-pointed arrows in A, orange blunt-end indicates self-degradation, whereas cyan
indicates self-activation.
doi:10.1371/journal.pcbi.1000442.g001

Topological Characteristic of Robustness
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From the point of view of nonlinear dynamics, the robustness of a

system means that it is stable against external perturbations on the

state of the system (state or dynamic stability), and it is stable

against perturbations on its control parameters (structural

stability). Here, we measure the state stability by the basin size

of the biggest attractor of the dynamic system [7] and the network

sensitivity [14] in the Boolean model, and we measure the

structural stability by the Q value of parameter insensitivity in the

ODE model [5].

Previous studies on the Boolean models of the yeast cell-cycle

networks showed that these systems are globally stable in dynamics

[7–9]. Observing that such networks are characterized by their

low regulation entropy, we investigate the relation between the

regulation entropy and the dynamic stability of these networks. To

this end, we calculate the regulation entropy, as well as the basin

size of the biggest attractor (we shall call it ‘basin size’ for

abbreviation) and the network sensitivity [14] for the networks

generated from the BS&F and FS&F ensembles. (For a brief review

of the definition and implication of these dynamic properties, see

Materials and Methods.)

To compensate for the highly unbalanced distribution of the

regulation entropy and to get a well-rounded estimation of the

dependence of the dynamic properties on S, we divided the [0,1]

interval of the regulation entropy into equal segments of length

0.02, and randomly sampled 105 networks from each of the

segments. The correlation of the dynamic stability with the

regulation entropy is shown in Fig. 4. The green and cyan lines

indicate the bottom 5% and the top 5% levels of robustness,

respectively. These skew outlines show that networks with

relatively low regulation entropy tend to have relatively stable

dynamics, i.e. the lower regulation entropy is, the larger basin size

and the lower network sensitivity they are most likely to have. This

positive correlation is evidently expectable, since redundancy

enhances robustness.

Figure 2. The simplified cell-cycle networks. The cell-cycle control networks of the budding yeast [7] and the fission yeast [8] are shown in A
and B, respectively. Green arrows and red blunt-end ones are activating and inhibiting interactions, respectively. For self-pointed arrows, orange
blunt-end indicates self-degradation, whereas cyan indicates self-activation.
doi:10.1371/journal.pcbi.1000442.g002

Figure 3. Distribution of the regulation entropy in the cell-cycle random ensembles. Histograms show the regulation entropy distributions
of the combined structural and functional ensembles of A the budding yeast and B the fission yeast. 106 networks were sampled from each
ensemble. The vertical line denotes the position of the corresponding cell-cycle network.
doi:10.1371/journal.pcbi.1000442.g003

Topological Characteristic of Robustness
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Correlation with Structural Stability
The parameter insensitivity or structural stability of a network is

an important facet of the robustness of the system. The discussions

in the previous section are based on the synchronous Boolean

approximation of chemical kinetics, which already implies the

parameter insensitivity of the systems. To discuss the structural

stability of the two cell-cycle networks, we need to use continuous

models based on Ordinary Differential Equations (ODE). Previous

studies have shown that some biological networks are extremely

insensitive to the variation of parameters. For example, it has been

demonstrated that a large proportion of parameter space can

support the proper functioning of the Drosophila segment polarity

network [2–5].

Here, we should point out that dynamic stability and structural

stability characterize different properties of a network system,

although they may in some cases be correlated, as pointed out by

Ciliberti et al [15]. In general, dynamic stability addresses the

resistance of a biological state or a biological pathway to external

perturbations, while structural stability measures the functional

stability of a system under internal fluctuations of parameters.

In this section, we discuss the relation between the regulation

entropy and the structural stability of biological networks. For this

purpose, we carried out extensive simulation of the ODE models

of the two cell-cycle systems, and compared the results with the

behavior of random networks. For each network, we randomly

selected a set of control parameters, and checked if the system can

perform its biological function (following the biological pathway).

By repeating this process we got an estimation of the Q value of

the network, which is defined as the fraction of the parameter

space that can perform the biological function [2,4,5]. For details

regarding the simulation of the ODE models and the functionality

judgment, see Materials and Methods.

Since only an extremely tiny fraction in the huge network

configuration space can fulfill the cell-cycle function [9], we

limited our simulations to the networks that can produce the cell-

cycle sequence in the Boolean scheme. Moreover, in order to rule

out networks with an unrealistically large number of connections,

we fixed our scope to the networks with the same number of

connections as the corresponding cell-cycle network, i.e., we

focused on networks in the BS&F and FS&F ensembles.

Figure 5 gives the Q value distribution of these random

ensembles, and the position of the corresponding biological

network in the graph. One observes that the two cell-cycle

networks have very high Q values (about top 1%), even among the

networks that can support the cell-cycle function under the

Boolean approximation. This provides further examples of

parameter-insensitive biological networks.

More importantly, our calculation shows a strong negative

correlation between the regulation entropy and the Q value (and

thus structural stability), which is more evident if we check the

ratio of ‘functional networks’, i.e. the fraction of networks with at

least one parameter set that can pass the functionality judgment in

the simulation [5]. In this calculation, we divided the [0,1] interval

of the regulation entropy into equal segments of length 0.02, and

randomly sampled 500 networks from each of the segments to

estimate the Q value and the ratio of functional networks, with 104

Figure 4. Correlation of the regulation entropy with dynamic stability in the cell-cycle random ensembles. The density profiles show
the correlation between the regulation entropy and the dynamic properties of the combined structural and functional ensembles of A the budding
yeast and B the fission yeast. Linear gray-scale with respect to the logarithm of density is adopted to enhance visibility. The red cross denotes the
position of the corresponding cell-cycle network. The green and cyan outlines show how the levels of the least robust 5% and the most robust 5%
vary with the regulation entropy.
doi:10.1371/journal.pcbi.1000442.g004

Topological Characteristic of Robustness

PLoS Computational Biology | www.ploscompbiol.org 5 July 2009 | Volume 5 | Issue 7 | e1000442



parameters tested for each network. Figure 6 shows the calculation

results. We believe that this correlation originates from the essence

of the regulation entropy as a measure of conflict among individual

interactions: networks with lower entropy, i.e. more consistent

coupling of interactions, would have less dependence on the details

of the relative strengths of interactions, and thus enjoy a larger

degree of freedom in their parameters. It is generally accepted that

the structure of a network defines its dynamics; the regulation

entropy we propose captures one of possibly many conditions on

network structure under which the dynamic stability and the

structural stability arise.

Beyond the Cell-Cycle Systems
Up till now, we have exemplified our theory with the two cell-

cycle control networks. The fundamental difference in their control

architectures makes it reasonable to expect that the above results

Figure 5. Distribution of the Q values in the cell-cycle random ensembles. The histograms show the Q value distribution of the combined
structural and functional ensembles of A the budding yeast, and B the fission yeast. 104 networks were sampled from each ensemble, and 104

parameter sets were sampled for the dynamics simulation of each network. The vertical line denotes the position of the corresponding cell-cycle
network.
doi:10.1371/journal.pcbi.1000442.g005

Figure 6. Correlation of the regulation entropy with parameter insensitivity in the cell-cycle random ensembles. The two error bar
plots show the dependence of the Q value on the regulation entropy, with the lower and the upper error bars showing the standard deviation of the
lower and the upper halves from the average value (red dot), and the two stair plots indicate the dependence of the ratio of functional networks on
the regulation entropy, in the combined structural and functional ensemble of A the budding yeast and B the fission yeast, respectively.
doi:10.1371/journal.pcbi.1000442.g006

Topological Characteristic of Robustness

PLoS Computational Biology | www.ploscompbiol.org 6 July 2009 | Volume 5 | Issue 7 | e1000442



may generally hold for other circuits of biological control systems

that demand high functional reliability. For this purpose, we used

additional four well-studied biological networks to test our theory.

The networks include the guard cell abscisic acid signaling network

in plants (ABA) [16,17], the T cell receptor signaling network (TCR)

[18], the survival signaling network in T cell large granular

lymphocyte leukemia (T-LGL) [17,19], and the network of physical

interactions between nuclear proteins in the budding yeast (PI)

[20,21]. For each of the networks, we calculated the value of the

regulation entropy of the system and checked its relative rank in the

corresponding background distributions. (For more details regard-

ing these additional networks, see Materials and Methods and the

supplementary online material Tables S1, S2, S3, S4, S5, S6.)

As these networks have highly non-trivial functions, we did not

introduce any functional constraint in the random ensembles.

Instead, for each biological network, we generated more than 105

random networks with the same number of activation and

inhibition link as in the real network, and we kept constant the

in- and out-degree of each node as well. Table 1 presents the

calculation results of the relative rank of the regulation entropy

values in the corresponding background ensembles for each

biological network. For comparison, we also list the results of the

two cell-cycle networks (abbreviated as B and F ). One can see that

these diverse biological systems, ranging from signal transduction

pathways to the physical interaction network of proteins, also

exhibit relatively low values of the regulation entropy. This

provides further evidences that biological control networks in

general possess relatively low regulation entropy. (For more details

about the randomization algorithm, see Materials and Methods.)

The next step is to check whether the observed correlation

between the regulation entropy and robustness also holds

generally. We could not study this correlation in any of the above

large-scale networks, since all of them are too huge for the

calculation of the global dynamics. Instead, we randomly

generated 100 trajectories in the phase space of a 11-node

network, each of them having 11 steps ending with a fixed point.

We then built the combined structural and functional ensembles

derived from each of them as we did with the budding yeast cell

cycle, and calculated their distributions of the basin size, the

network sensitivity, the Q value and the ratio of functional

network. Figure 7 summarizes the calculation results. It shows that

networks with relatively low regulation entropy tend to have

relatively stable dynamics and low parameter sensitivity, as in the

cell-cycle control networks.

Discussion

In this work, we defined a novel order parameter, the regulation

entropy, to characterize the signed topology of regulatory

networks, and showed that in general biological networks have

very low values of S. We also established a link between network

topology and robustness via this order parameter. First, we

identified the correlation between the regulation entropy and the

dynamic stability of networks; i.e., a coherent regulation structure

of a network will lead to a relatively stable dynamic behavior.

Second, we showed an association between the regulation entropy

and the parameter insensitivity, which is another aspect of

biological robustness concerning the resistance against structural

perturbations, i.e. the structural stability.

In the perspective of system biology, these results can shed

new light on two important but pending questions. First, why

can the yeast cell-cycle control networks be successfully modeled

by Boolean networks [7,8]? Our study suggests it is the

extremely low regulation entropy that guarantees large arbitrar-

iness in the choice of parameter, and thus makes the Boolean

approximation successful. Second, how do the yeast cell-cycle

control networks achieve convergent dynamics and guarantee a

globally attracting stationary state? Our work indicates that these

networks achieve dynamic stability partly by arranging the

coupling of components to guarantee low regulation entropy and

thus relatively convergent dynamics. Actually, Lau et al [9]

already pointed out that the functional constraint of the budding

yeast cell-cycle spurs networks to have larger attractor basin,

which partly shows the origin of the large basin size of the cell-

cycle regulatory network. Our results further illuminate this

scenario by identifying the regulation entropy as another source

of the attractor enhancement.

Several remarks are in order. First, our results emphasize the

significance of the coherent coupling of interactions, while

Mangan et al pointed out that special functions realized by

incoherent feed-forward loop, such as non-monotonic input [22]

and the acceleration of response time [23], are common in

biological control. These apparently conflicting observations,

however, are actually complementary, because they address

different facets of the intricate relationship between structure

and function. For circuits carrying out specific subsidiary

functions, delicate designs such as incoherent feed-forward loops

prove to be convenient and powerful, realizing special functions

with relatively simple construction. But these subtleties may

depend more on the fine-tuning of interaction details, and more

likely to fail if intermediate nodes are subject to external control

when embedded into a larger system. Such strategy of achieving

function at a cost of robustness may be well suited for certain

purposes, but might be improper for core networks that have to

operate with great reliability and stability, against strong internal

as well as external noises. In the latter scenario, networks with

low regulation entropy would probably rule.

Second, previous studies on the relationship between structure

and function mainly focused on the dynamic effects of feedback

loops, from early work of Thomas et al [24] to more recent articles

of Sontag et al [25] and Kwon et al [26], providing mathematical

explanation and detailed estimation of the phase space structure of

the Boolean dynamics. Our work, however, is aimed at elucidating

the emergence of general robustness observed in biological

networks. The correlations identified within and beyond Boolean

models justify our approach of comprehensively checking the

consistency of indirect regulations, rather than limiting our scope

to feedback loops.

Finally, we address a technical issue concerning computational

feasibility. One may note that the calculation of regulation

entropy might be handicapped by computational complexity. It

requires the exhaustive enumeration of paths on a directed

graph, which seems to limit its application to large-scale

Table 1. The regulation entropy characteristics of some
biological systems.

Network # of Nodes S Rank

F 10 0.429 5.261023

B 11 0.676 3.161022

ABA 39 0.384 7.861022

T-LGL 51 0.867 3.461022

PI 80 0.528 861026

TCR 94 0.539 9.261022

doi:10.1371/journal.pcbi.1000442.t001

Topological Characteristic of Robustness
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networks. However, if we are only interested in the relative rank

of a network in an ensemble, we can introduce a cutoff on the

length of paths that we take into consideration, ignoring

contributions from longer paths to the regulation entropy. Our

study shows that the relative rank of the regulation entropy of a

network is not very sensitive to this cutoff on path length (see

Fig. 8).

Materials and Methods

Boolean Networks
We adopt the most simplified model similar to those in Refs.

[7,9]. The activity of a node is discretized into a binary bit: 0

denotes inactivity; 1 denotes activity. In this way, the state of the

whole system can be cast in a Boolean vector, which is evolved

Figure 7. Correlation of the regulation entropy with robustness in the random-function ensembles. The density profiles in A show the
correlation between the regulation entropy and the dynamic stability. Linear gray-scale with respect to the logarithm of density is adopted to
enhance visibility. The green and cyan lines show how the levels of the least robust 5% and the most robust 5% vary with the regulation entropy. In
B, the error bar plot shows the dependence of the Q value on the regulation entropy, with the lower and upper error bars showing the standard
deviation of the lower and upper halves from the average value (red dot), and the stair plot indicates the dependence of the ratio of functional
networks on the regulation entropy.
doi:10.1371/journal.pcbi.1000442.g007

Figure 8. Cutoff insensitivity of the regulation entropy. The red crosses show that the relative rank of the regulation entropy of the biological
network in the combined structural and functional ensemble of A the budding yeast and B the fission yeast converges rapidly as the path-length
cutoff increases.
doi:10.1371/journal.pcbi.1000442.g008
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forward by the network in discrete time steps, according to specific

updating rules. A straightforward setting for such rule is the

synchronous ‘majority vote’ updating: assigning +1/21 weight to

each incoming activation/inhibition link, and updating the state of

all nodes at once by turning them on/off according to the sign of

the simple sum of the inputs from the node active at the previous

time step [7]. This is actually a special case of the threshold

network model [27]. A slightly modified version of this rule

assumes the dominance of incoming negative regulations over

positive ones, since it is widely observed in biological networks that

inhibition is often much stronger than activation. But self-

degradation should still be overruled by incoming activations, if

any. We call this latter model ‘strong inhibition’ for reference.

The Dynamic Properties of Boolean Networks
All the transitions governed by a network of N nodes form a

flow pattern in the phase space constituted by 2N states, with each

trajectory ended in an attractor (either a limit cycle or a fixed

point) [7,25]. The basin size of an attractor is the number of states

flowing into it. A large basin size of the biological steady state is an

indication of the system’s stability against state perturbations [7,8].

Besides, If the Hamming distance over the phase space is

introduced as the number of different digits of two Boolean

vectors, the network sensitivity s can be defined as the average

Hamming distance of the state pairs evolved one step from all of

the N:2N{1 Hamming neighbors, which quantifies the dynamic

order of the system: higher s indicates more chaotic dynamic

behavior of the system, and s~1 is a critical point separating

ordered and chaotic phases [14].

The Biological Networks
In this work, we performed experiments on the following

biological networks. (See the supplementary online material for the

detailed documentation of the signed topology of these networks.)

First, we used the budding yeast cell-cycle network model of Li

et al [7] with 11 nodes, as shown in Fig. 2A and Table S1. We

adopted the ‘majority vote’ updating rule, in accordance with the

original work, which produces a global attracting trajectory

resembling the actual sequence of the budding yeast cell cycle.

(For more details, see Ref. [7].) We should point out that all the

investigations under the ‘strong inhibition’ model give virtually the

same results (but not listed here), which shows the independence of

our results on the details of the Boolean model.

Second, we used the Boolean model of the fission yeast cell-cycle

network with 10 nodes [8], as shown in Fig. 2B and Table S2. The

original work used a similar updating rule as Ref. [7], but

introduced non-zero thresholds for the nodes Cdc2/Cdc13* and

Cdc2/Cdc13, to guarantee the fulfillment of a trajectory similar to

the cell cycle. Here, we adopted an alternative solution,

introducing an additional self-degradation for the former, and a

self-activation link for the latter. Then, the ‘strong inhibition’ rule

produces exactly the same trajectory as Ref. [8]. We made this

choice of updating rule merely for convenience in generating

random networks, avoiding random shift of thresholds.

In addition, we used another four networks without discussing

their dynamics. The first is the guard cell abscisic acid signaling

network in plants (ABA). It was first synthesized in the Figure 2 of

Ref. [16] from experimental literature. Following Ref. [17], we

amputated the nodes without a regulator, but we kept the node

‘ABA’ denoting the upstream signal of abscisic acid in our

simplified 39-node network, as shown in Table S3. The second is

the T cell receptor signaling network (TCR) shown in Table S4. It

was built from the logic model described and validated in Ref. [18]

(see its Fig. 2 and Table S2). The third is the survival signaling

network in T cell large granular lymphocyte leukemia (T-LGL). It

was constructed in Ref. [19] (see its Fig. 1), and simplified in Ref.

[17]. We note that in the original network in Ref. [17], the

ubiquitous outgoing inhibitions from the conceptual node

‘Apoptosis’ constitutes more than half of the total inhibition links.

In order to limit the artifacts that may arise in randomization, we

deleted the links starting from ‘Apoptosis’ in our version of this

network, as shown in Table S5. We note that TCR and T-LGL

only share three nodes, and thus are not redundant but addressing

distinct aspects of the T cell biology. The fourth is the 80-node

network of physical interactions between nuclear proteins in the

budding yeast (PI), shown in Table S6. It was taken from the

Fig. 1a of Ref. [21], which is a simplified version of the 329-node

network in the Fig. 1 of Ref. [20].

The Randomization Algorithm
We adopted a systematic reshuffling algorithm for the

randomization of signed directed networks. First, two connected

pairs of nodes are randomly selected, and then they are randomly

rewired by switching the two ending nodes or the two starting

nodes with equal probability, as long as no multiple edges form

between the same pair of nodes; for example, A A
z

C and B A
{

D
are rewired into either A A

z
D and B A

{
C, or B A

z
C and

A A
{

D. This procedure preserves the total number of inhibitions/

activations, and keeps constant the in- and out-degree of each

node. The repeated application of this reshuffling, starting from

the biological network, enabled us to probe the regulation entropy

characteristics of the background ensembles of biological networks,

and we set the number of reshuffling steps between two adjacent

samplings comparable to the square of the number of nodes, so as

to ensure the whole configuration space of the relevant networks is

well sampled. Yet we did not use this routine for the cell-cycle

networks due to its low efficiency to carry out the functional

constraint; instead, we adopted the efficient algorithm developed

in Ref. [9] for the cell-cycle networks. And we should point out

that for the cell-cycle networks, the ensemble formed by the above

random-walk algorithm and the combined structural and

functional ensemble constructed in Ref. [9] have almost the same

distribution of the regulation entropy.

The Generation of Random Trajectories
The random M-step trajectories in the phase space of an N-node

network were constructed as follows. For each node in the

network, two different moments are randomly selected from the

points of time 1, 2, … M, and the time series of the states of this

node are set in the following manner: either the states between the

two moments are set ‘on’ and the rest moments ‘off’, or the states

in between are set ‘off’ and the rest moments ‘on’, with equal

probability. Repeating this procedure for each node in the network

results in a cascade of activation [9], and we set the ending state of

the system to be a fixed point. We note that this construction

captures the main characteristics of the Boolean trajectories

produced by real biological networks, that the state of each node

does not flip frequently (noise-dominated), but to vary orderly and

slowly (regulation-dominated).

The ODE Model
We modeled each of the N nodes of a regulatory network by an

ODE with a self-degrading term characterized by a variable

timescale, and each regulation between nodes by an independent

Hill function term, with variable strength, threshold and stiffness,

and we modeled multiple regulations as the sum of individual

regulations. Such translation into ODEs looks crude compared

with the delicate cell-cycle models [12,13], but it provides a
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systematic way to model the dynamic behavior of random

networks.

After non-dimensionalization similar to that in Ref. [5], we

arrived at an equation for each node Aj ,

tj

dAj

dt
~aj

XNegative

l

Vlj(1{H½Al , klj , nlj �)

zaj

XPositive

i

VijH½Ai, kij , nij �{Aj ,

ð1Þ

with the Hill function defined as

H½x, T , n�: xn

xnzTn
, ð2Þ

and the normalization constant aj given by

aj
:

XNegative

l

Vljz
XPositive

i

Vij

 !
~1, ð3Þ

in which we summed over negative and positive regulators for

each node j. Additionally, we modeled the absence of self-

degradation as a positive self-regulation term.

In this set of ODEs, we had 3N2zN independent parameters:

Vij , kij , nij , and ti. In the random setting of these parameters, we

used Latin Hypercube sampling [28] to ensure the minimal

correlation between different dimensions of the parameter space.

The ranges of the parameters to sample were set as follows:

k~(0:001{1), n~(2{10), t~(5{100)TU (dimensionless time

unit), V~(0:1{1), with k uniformly sampled on the log scale and

others on the linear scale, in accordance with previous studies [5].

Then, we employed the function rkf45 in the GNU Scientific

Library [29] to solve these ODEs by numerical integration for a

simulation time of 2000TU , from initial states set according to the

Boolean sequence of the cell cycle: specifically, the concentration

of initially active nodes is set to 1 and the rest 0.

Functionality Judgment and the Q Value Estimation
For a dynamic function (trajectory) in the form of activation

cascades like the simplified cell-cycle, we can judge by the

following criteria whether a set of parameter has enabled the ODE

system to fulfill it. For each node, a score Fi~f
(m)

i f
(f )

i was given to

quantify the simulation’s resemblance of the target Boolean

trajectory, with

f
(m)

i ~
1{H½A(min)

i , 0:1, 3� if i is active initially

H½A(max)
i , 0:1, 3� otherwise

(
ð4Þ

and similarly

f
(f )

i ~
H½A(f )

i , 0:1, 3� if i is active finally

1{H½A(f )
i , 0:1, 3� otherwise

(
, ð5Þ

where H denotes the Hill function defined by equation (2), while

the activity of a node refers to that in the Boolean sequence, and

A
(max)
i , A

(min)
i and A

(f )
i are the maximal, minimal and final value of

Ai in the (continuous) time course, respectively. We note that the

credibility of this score function, which places no weight on the

order of extrema but only their amplitudes, is limited to the

trajectories produced by networks that can fulfill the target

sequence in the Boolean approximation.

Then we used the average F of individual scores to represent

the degree of function fulfillment. Calculations showed that 0.4

happened to be a rough cutoff for the top 2% on the tail of the F

distribution for the two yeast cell-cycle networks, so we defined the

fulfillment of function as having a score higher than 0.4, and

finally counted out the Q value as the ratio of the parameter sets

fulfilling the given function. It should be noted that general results

hardly depend on the exact choice of such thresholds or cutoffs,

and the above procedure can be readily applied to our

construction of random trajectories.
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Table S2 The cell-cycle control network of the fission yeast
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Table S3 The guard cell abscisic acid signaling network (ABA)
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Table S4 The T cell receptor signaling network (TCR)

Found at: doi:10.1371/journal.pcbi.1000442.s004 (0.06 MB PDF)

Table S5 The survival signaling network in T cell large granular

lymphocyte leukemia (T-LGL)

Found at: doi:10.1371/journal.pcbi.1000442.s005 (0.06 MB PDF)

Table S6 The network of physical interactions between nuclear

proteins in the budding yeast (PI)

Found at: doi:10.1371/journal.pcbi.1000442.s006 (0.06 MB PDF)
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