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Abstract

Kinases are heavily pursued pharmaceutical targets because of their mechanistic role in many diseases. Small molecule
kinase inhibitors (SMKIs) are a compound class that includes marketed drugs and compounds in various stages of drug
development. While effective, many SMKIs have been associated with toxicity including chromosomal damage. Screening
for kinase-mediated toxicity as early as possible is crucial, as is a better understanding of how off-target kinase inhibition
may give rise to chromosomal damage. To that end, we employed a competitive binding assay and an analytical method to
predict the toxicity of SMKIs. Specifically, we developed a model based on the binding affinity of SMKIs to a panel of kinases
to predict whether a compound tests positive for chromosome damage. As training data, we used the binding affinity of
113 SMKIs against a representative subset of all kinases (290 kinases), yielding a 1136290 data matrix. Additionally, these
113 SMKIs were tested for genotoxicity in an in vitro micronucleus test (MNT). Among a variety of models from our
analytical toolbox, we selected using cross-validation a combination of feature selection and pattern recognition
techniques: Kolmogorov-Smirnov/T-test hybrid as a univariate filter, followed by Random Forests for feature selection and
Support Vector Machines (SVM) for pattern recognition. Feature selection identified 21 kinases predictive of MNT. Using the
corresponding binding affinities, the SVM could accurately predict MNT results with 85% accuracy (68% sensitivity, 91%
specificity). This indicates that kinase inhibition profiles are predictive of SMKI genotoxicity. While in vitro testing is required
for regulatory review, our analysis identified a fast and cost-efficient method for screening out compounds earlier in drug
development. Equally important, by identifying a panel of kinases predictive of genotoxicity, we provide medicinal chemists
a set of kinases to avoid when designing compounds, thereby providing a basis for rational drug design away from
genotoxicity.
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Introduction

Toxicity is a major cause of attrition in drug development.

While identifying liabilities and potential toxicity is difficult and

costly, safety issues can become markedly more complex when

kinases are the pharmaceutical target. Kinases regulate many basic

functions in normal cells. When their activity is altered, kinases can

be the mechanistic reason for a cell to acquire an abnormal

phenotype. In metabolic, oncologic, viral, cardiovascular and

inflammatory diseases, over 150 different kinases, of the over 500

known protein kinase family members, are considered putative

drug targets [1]. Marketed small molecule kinase inhibitors

(SMKIs) have suitably demonstrated the effectiveness of this

therapeutic approach for oncologic indications [2]. SMKIs

intended for non-oncologic diseases, however, are increasingly

represented in various stages of preclinical and clinical develop-

ment [1]. Most SMKIs exert their pharmacologic effect by

interacting with the ATP binding pocket [3], inhibiting the ability

of the kinase to phosphorylate the intended substrate, and blocking

downstream signal transduction. Because of the evolutionarily

conserved nature of the ATP binding pocket, a SMKI intended to

inhibit a particular kinase may potently inhibit dozens of other

kinase members across the human kinome [4]. Off-target kinases

can be a potential safety liability of this therapeutic class and

hinder drug development. The mechanisms by which different

toxicities arise as a result of off-target inhibition are not well

characterized. Sutent, a highly non-selective inhibitor of multiple

tyrosine kinases and Gleevec, a relatively selective Bcr-Abl

inhibitor, both increase the risk of cardiotoxicty [5–7], though

additional, less publicized toxicities, are also common for SMKIs.

Kinases are key regulators of mitosis, as they are intricately

involved with precise signaling and the coordination needed for

proper replication and segregation of chromosomes into daughter

cells [8–10]. While kinases may be targeted for their role in

pathways associated with a disease of interest, inhibition of kinases

may also disrupt normal cellular processes. A frequently observed
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toxicity for SMKIs is a positive result for chromosomal damage in

an assay of DNA integrity, which likely occurs as the result of

inhibiting kinases involved in mitosis or chromosomal segregation.

The micronucleus test (MNT) is widely regarded as a sensitive

assay for genetic toxicity as it is a means to detect either pieces

and/or whole chromosomes that appear as a micronucleus in the

daughter cell following chemical exposure [11,12]. A positive

result in this assay can hamper or halt drug development, as it is a

biomarker of chromosomal damage, which is a hallmark of cancer

[13–15]. Thus, human exposure to aneugens or clastogens should

be attenuated, or avoided altogether, when possible. A small

number of kinases, such as the polo-like and aurora kinases [16–

19], are known to associate with chromosomal damage, however

the genotoxic potential associated with inhibiting the majority of

the kinome is largely unknown.

MNT results can be considered a surrogate, and sometimes

predictive endpoint for carcinogenicity. This study models this

endpoint because of its correlation with genotoxicity and the

availability of a set of training compounds that have been screened

with this assay. Although regulatory agencies require such an in

vitro assay prior to moving forward with preclinical development,

there are advantages to modeling this assay in silico. Namely,

because of the low-throughput nature of the assay, the drug

discovery process would benefit from a cheaper, faster screen that

could assist in reducing the number of leads that typically fail at

later stages, as well as help design compounds with fewer safety

liabilities. Since all promising SMKIs at Roche are tested in kinase

inhibition assays, these data present the opportunity to explore

possible correlations between SMKI kinase selectivity and the

potential to cause chromosomal damage.

The objective of this study was to identify kinases that correlate

with chromosomal damage when inhibited. At Roche, we aimed

to use these findings as a set of kinases that medicinal chemists

should avoid when designing compounds, so as to avoid positive

MNT results, thereby reducing attrition rates. By using machine

learning methods on data that were already available from early

kinase-based high-throughput screens, we were able to identify

such a set of kinases and develop a fast and efficient model for

predicting whether a compound will test positive for genotoxicity.

Besides its novel utility in the drug discovery pipeline, the model

also sheds light on the biological mechanisms of genotoxicity, and

allows us to create hypotheses for further studies.

Results

Dataset
The 113 SMKIs were chosen to represent a diversity of

compound properties and structural moieties. Figure 1 shows a

Principal Components Analysis (PCA) plot of the training

compounds, in color, overlaid on top of a plot of all Roche

compounds that have been screened with Ambit Biosciences (San

Diego, CA) KINOMEscan assay of 317 kinases. The PCA was

based on structural fingerprints, a representation of the molecular

structure of each compound. This method of analysis is a means

for reducing dimensionality to best explain variability in the data.

Figure 1 shows that structures of the 113 compounds are highly

variable and sample the chemical space of the entire Roche SMKI

library well. With a diverse training set, chances of redundancy are

reduced and the model is likely to be more robust to future

predictions.

During dataset preprocessing, 27 mutant kinases were removed

from the initial panel of 317 kinases as their inclusion and potential

selection would be difficult to interpret from biological and

mechanistic standpoints. This yielded a panel of 290 kinases,

identified in Table S1. An additional 5 uninformative kinases were

removed from the panel as their percent inhibition values did not

vary significantly across positive and negative SMKIs. Thus,

preprocessing yielded a data matrix of 1136285 for machine

learning analysis. A heatmap of the full dataset prior to

preprocessing can be found in Figure S1. Of the 113 compounds,

30 and 83 SMKIs were classified as MNT positive and negative,

respectively.

Model methods
In the first phase of the analysis, several models were generated,

each based on 1065-fold cross validation for a particular

combination of feature selection methods and a binary classifier.

In this phase, the best performing feature selection methods were a

Kolmogorov-Smirnov/T-test hybrid algorithm, followed by Ran-

dom Forests. The most informative features were then input into a

non-linear Support Vector Machines (SVM) classifier.

The Kolmogorov-Smirnov/T-test algorithm is a univariate

filter method used to filter features based on their p-value. Briefly,

for each feature, the distribution of percent inhibition values was

assessed. If normal, a t-test was performed to yield a p-value.

Otherwise, a Kolmogorov-Smirnov test was run. Features were

ranked by p-value, and the top 100 features or less that met the

0.05 p-value cutoff were retained for further analysis. The 100 or

less features from the first method were then input into Random

Forests [20], a multivariate feature selection method based on

decision trees. In this phase of the analysis, Random Forests was

used to select 10 features for input into the binary classifier.

SVMs are widely used in bioinformatics and other applications

of supervised learning. SVMs are used to find a hyperplane that

maximizes the margin between the two classes of compounds in n-

dimensional space, where in this analysis, n corresponds to the

number of features selected using Random Forests. Initial

classification was performed using a nonlinear Radial Basis

Function (RBF) kernel, with a cost of 1 and a gamma of 0.

After selecting the model methods, the second phase of the

analysis involved optimizing the model parameters. The 10 splits

of 5-fold cross validation were then used with the model methods

Author Summary

Small molecule kinase inhibitors (SMKIs) are a class of
chemicals that have successfully been used for the
treatment of a number of oncological diseases that are
now being pursued by the pharmaceutical industry for
inflammatory diseases, such as rheumatoid arthritis. SMKIs
are generally designed to specifically inhibit one kinase,
but this is challenging due to the structural similarity of the
ATP binding pocket amongst different members of the
kinase family. The inability to selectively inhibit just one
kinase can be problematic, as kinases play key roles in a
number of cellular processes. Thus the unwanted inhibi-
tion of additional kinases can lead to undesirable toxicities
that may halt drug development. One type of toxicity
often observed with this class of compounds is damage to
chromosomes, which can occur when kinases involved
with cell cycle progression or chromosome dynamics are
inhibited. Here we demonstrate that mathematical mod-
eling can be used to identify kinases that correlate with
chromosome damage, information which can assist
medicinal chemists in avoiding certain kinases when
synthesizing new chemicals. Generation of this type of
information is one of the first steps in beginning to reduce
toxicity-based attrition for this class of compounds.

Predicting Kinase-Mediated Chromosome Damage
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to sweep over the number of features from 2 to 50. Optimal

performance was achieved with 45 features. To avoid overfitting

and make the model generalizable to future compounds, we

selected the minimum number of features whose model yielded an

accuracy within one standard deviation of the performance

obtained when using 45 features. Thus we selected 21 as the

number of features to select for the final model.

Using the full dataset, SVM cost and gamma parameters were

then tuned. Briefly, gamma is a parameter that affects the size of

the hyperplane in an SVM, while cost is a penalizing measure for

having a sample on the wrong side of the hyperplane. Tuning

yielded an optimal cost of 2 and a gamma of 224 using an RBF

kernel.

Model performance
Final model performance was based on a re-split of the data into

50 random splits of 10-fold cross validation. Using the final model

methods and optimized parameters, the 500 iterations yielded a

cross-validated estimate with an overall classification accuracy of

85% (standard deviation 1.8%), sensitivity of 68% (standard

deviation 5.0%), and a specificity of 91% (standard deviation

2.0%). A receiver operating characteristic (ROC) curve of the

cross-validated and overall mean performance is shown in Figure 2.

Model kinases
From the 50 splits of 10-fold cross validation used to assess final

model performance, the frequency that each feature was selected

as significant in Random Forests was tabulated. The features were

then ranked, and the top 21 most frequently-selected kinases were

chosen as the model kinase profile. The 21 model kinases are

CAMK1 (NP_003647.1), CAMK2A (NP_741960.1), CAMK2D

(AAD20442.1), DYRK1B (NP_004705.1), MAPK15

(NP_620590.2), PCTK1 (NP_006192.1), PCTK2 (CAA47004.1),

PCTK3 (NP_002587.2), PFTK1 (NP_036527.1), CDK2

(NP_001789.2), CDK3 (NP_001249.1), CDK5 (NP_004926.1),

GSK3A (NP_063937.2), CLK2 (NP_003984.2), MELK

(NP_055606.1), BRSK2 (NP_003948.2), STK3 (NP_006272.2),

MYLK (NP_444254.3), FLT3 (NP_004110.2), EIF2AK2

(NP_002750.1), and PRKAA2 (NP_006243.2). Table 1 lists the

21 kinases and the frequency that each was selected as significant

in this phase of the analysis. A heatmap of the percent inhibition

values against these 21 kinases is shown in Figure 3 and

Figure 1. Principal component analysis (PCA) assessing the structural diversity of the 113 SMKIs. Positive and negative micronucleus
results are marked in red and green, respectively. Roche SMKIs that have not been tested in the MNT are colored light grey. Compounds selected for
this study cover a broad range of chemical space within the Roche SMKIs and reduce redundancy within the test set.
doi:10.1371/journal.pcbi.1000446.g001

Predicting Kinase-Mediated Chromosome Damage
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demonstrates a clear enrichment of kinase inhibition for SMKIs

with MNT positive results.

Assessment of kinases
To verify the statistical significance of the kinases, a dropout

experiment was run using the preprocessed dataset, minus the 21

model kinases. Using the same methods and 50 splits of 10-fold

cross validation, the performance of the modified dataset (113

compounds6264 kinases) was assessed. The dropout model

yielded an accuracy of 78% (standard deviation 2.4%), sensitivity

of 54% (standard deviation 5.9%), and specificity of 87% (standard

deviation 2.0%). All performance metrics for the dropout model

yielded values at least one standard deviation worse than the

original model, demonstrating the significance of the 21 identified

kinases. Additionally, to address multiple comparisons concerns,

the q-values were calculated for all model kinases. The FDR, or

False Discovery Rate [21], estimates the expected proportion of

false positives in the data, and in this case, was based on the p-

values derived from the Kolmogorov-Smirnov/T-test algorithm

on all 290 kinases across all 113 compounds. Q-values, which

represent the minimum FDR at which each feature may be called

significant, were then calculated using the ‘‘qvalue’’ package in R

[22]. At an FDR of 0.05, 73 kinases of 290 may be called

significant, including all model kinases. At an FDR of 0.01, 21

kinases may be called significant, although this includes only 10 of

the model kinases. Q-values for all model kinases are listed in

Table 1. This result is expected since the kinases were selected

based on both the filtering of feature selection one and the

multivariate criterion of FS2.

Figure 2. Receiver operating characteristic (ROC) curves for
cross-validated assessment of final model performance. Shown
are ROC curves for each of the 50 splits of 10-fold cross validation (grey)
and overall average ROC curve (red), based on SVM predictions. AUC
performance ranged from 0.81 to 0.89 across the 50 splits with an
average AUC of 0.84+/20.021.
doi:10.1371/journal.pcbi.1000446.g002

Table 1. 21 kinases selected by mathematical modeling.

Entrez Gene Symbol Entrez Gene Accession Incidence of Selection % Selected q-value

CAMK2A NP_741960.1 500 100 1.82204

CAMK2D AAD20442.1 500 100 6.44203

DYRK1B NP_004705.1 500 100 4.31205

MAPK15 NP_620590.2 500 100 4.81207

PCTK2 CAA47004.1 499 99.8 2.00205

PFTK1 NP_036527.1 498 99.6 1.27203

PCTK1 NP_006192.1 492 98.4 2.00205

PCTK3 NP_002587.2 492 98.4 4.46203

CDK2 NP_001789.2 482 96.4 9.85205

GSK3A NP_063937.2 447 89.4 6.80206

CDK3 NP_001249.1 438 87.6 8.78203

CLK2 NP_003984.2 431 86.2 2.24205

MELK NP_055606.1 377 75.4 1.02203

BRSK2 NP_003948.2 367 73.4 1.93202

CAMK1 NP_003647.1 300 60.0 1.37202

STK3 NP_006272.2 282 56.4 1.31203

MYLK NP_444254.3 263 52.6 4.20202

CDK5 NP_004926.1 254 50.8 6.59203

FLT3 NP_004110.2 241 48.2 4.31205

EIF2AK2 NP_002750.1 217 43.4 4.84202

PRKAA2 NP_006243.2 214 42.8 3.32203

21 model kinases identified by frequency of selection in final phase of model assessment. Incidence of selection and percent selected values were based on 50 splits of
10-fold cross validation in the final phase of assessing model performance. Q-values were calculated from p-values from the Kolmogorov-Smirnov/T-test algorithm in
the first phase of feature selection, as described in Results – Model methods.
doi:10.1371/journal.pcbi.1000446.t001
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To verify the biological significance of the kinases, a review of

literature was performed to find studies that might prove or

suggest a mechanistic link between the model kinases and mitosis

or genetic toxicological damage. The majority of the kinases

selected by this analysis (12/21) are members of the CMGC kinase

family which is known to be involved with the control of cell

proliferation. The cyclin dependent kinases (CDKs) are a family of

CMGC kinases that have been associated with mitosis and the cell

cycle, and generally speaking, bind with cyclins during the various

phases of mitosis. While the three CDKs (2,3, & 5) in the model all

appear to have inhibition that is specific to the MNT positive

compounds (Figure 3) and are members of a family of kinases

known to have roles in mitosis, only CDK2 has supporting

literature making it biologically relevant to chromosomal damage.

Little is known about the cellular function of the other CMGC

members of the CDK kinase family, such as PFTAIRE (PFTK1)

and PCTAIREs 1–3 (PCTKs). From this family, PFTK1 is the

only kinase with literature supporting its biological relevance.

PFTK1 is a CDK2-related protein kinase which has been reported

to phosphorylate the tumor suppressor Rb and interact with p21,

suggesting that PFTK1 is involved in cell cycle regulation [23].

The activity of PCTK1 is cell-cycle dependent and displays a peak

in the S and G2 phases [24].

Selected kinases in the second largest group (7/21) are members of

the calmodulin mediated kinase (CAMK) family, of which only

MYLK has been reported to interact with chromosomes. The

smooth muscle myosin light chain kinase (smMLCK or MYLK),

which facilitates the movement of anaphase chromosomes through its

Figure 3. Heat map of kinase inhibition of the 21 kinases selected by mathematical modeling. The 113 SMKIs used in the analysis are
classified as micronucleus positive (red, on the bottom) or negative (green) and are located along the y-axis on the right side of the figure. The 21
kinases are located along the x-axis. If inhibited below 50%, the corresponding area is marked black, whereas kinase inhibition between 50–100% is
represented by a gradient of dark to bright red.
doi:10.1371/journal.pcbi.1000446.g003
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involvement with actin and myosin [25], is the sole kinase from this

family with reported association with chromosome kinetics or the cell

cycle, which has also been reported to induce spindle disruptions

leading to metaphase arrest and chromosome defects [26].

Discussion

We applied a statistical modeling framework to identify a panel

of kinases that are predictive of a positive micronucleus test result,

a sign of potential chromosomal damage. To our knowledge, this

approach is the first application of a computational method to

correlate high-throughput kinase screening results with a toxico-

logical endpoint. The described mathematical model is capable of

predicting MNT results correctly 85% of the time based solely on

compound inhibition profiles against 21 kinases. The model

presented herein indicates that chromosomal damage induced by

many of the tested small molecule kinase inhibitors (SMKIs)

correlates to their kinase inhibition profiles and that this

knowledge can be used to design compounds with improved

safety profiles at earlier stages of drug discovery. While the 21

kinases identified in this analysis are statistically significant for our

given dataset, our understanding of their mechanistic roles in

chromosomal segregation and mitosis is still in its early stages. A

heatmap of the inhibition values against these 21 kinases (Figure 3)

displays a general pattern: SMKIs that are MNT negative tend to

inhibit the 21 kinases much less frequently than the SMKIs that

are MNT positive.

While some kinases selected by the model have a known

function in cell cycle or chromosomal segregation, others have an

unrelated or unknown role. The majority of the kinases chosen are

members of the CMGC kinase family, which is known to be

involved with the control of cell proliferation. While the role of

CDK2 is well-documented, the biological relevance of CDK3 and

CDK5 is less clear. CDK3 was identified to complex with cyclin C

and phosphorlyate the retinoblastoma tumor suppressor protein

[27] and mediates the G1-S transition of the cell cycle [28].

However, there are no reports of its involvement with chromo-

somal segregation. CDK5 has been described as an unusual

member of the CDK family because it has little known role in

cellular proliferation and is activated by non-cyclin proteins [29].

The three CDKs (2,3, & 5) chosen all appear to have inhibition

that is specific to the MNT positive compounds (Figure 3), and are

members of a family of kinases known to have roles in mitosis, thus

it is plausible that their inhibition could cause aberrant mitosis and

errors in chromosomal segregation. Other model kinases selected

from the CMGC family are not known to have a clear role in

chromosomal segregation. Collectively, it appears that inhibition

of the PCTK kinases (PCTAIREs 1–3) strongly associates with

chromosomal damage though this information has not been

previously published. The family of MAPKs is well-known to have

a fundamental role in mitosis and cell cycle control [30], and are

involved with chromosome damage and micronucleus formation

[31], though this is the first report placing MAPK15 in such a role.

Glycogen synthase kinase 3 alpha (GSK3a) has been reported to

be involved with chromosome alignment and cytokinesis [32–35],

thus its selection by mathematical modeling is not unanticipated.

However, GSK3a is one of the more promiscuous kinases selected

in the mathematical model, with a large number of micronucleus

negative compounds also inhibiting the kinase above 80% at the

10 mM concentration (Figure 3). These data contrast with reported

literature, as they suggest that combinations of kinase inhibition,

rather than just GSKa alone, may be required for chromosome

damage. Model kinases in the calmodulin mediated kinase

(CAMK) family were the most specific with regard to their

inhibition of micronucleus positive compounds (Figure 3) and were

repeatedly chosen by the model, yet the majority, including

CAMK1a, CAMK2a and 2d, MELK, BRSK2, and PRKAA2, do

not have any reported function involving mitotic chromosome

dynamics. The two remaining kinases are FLT3 and MST1,

neither of which have any known role in either chromosomal

segregation or mitosis. FLT3 has been reported to associate with

acute lyphoblastic leukemia [36] and chromosomal instability in

the form of hyperdiploid aneuploidy observed in the same disease

[37], but its inhibition has not been linked to the missegregation of

chromosomes. MST1, also known as STK3, has been identified to

be a substrate of caspases and play a role in apoptosis [38].

Besides lack of validation of the mechanistic relevance of some

model kinases, additional experimental limitations are that kinase-

independent mechanisms of micronucleus formation exist while

others are based upon analysis parameters. In any analysis, the

robustness of modeling complex endpoints is limited by the

training dataset. Care was taken in selecting which compounds to

include and were chosen by judiciously sampling our internal

kinase inhibitor library for SMKIs representative of broad

scaffolds and designed for a variety of kinase targets. Nevertheless,

data were limited to past and current kinase projects at Roche and

may not reflect future efforts. Another potential concern with this

approach is that not all kinases are available in the Ambit

competition binding assay. At the time of the analysis, only 290 of

the 518 protein kinases were tested. While the 290 kinases account

for a large portion of the kinome and do not appear to miss large

branches of the kinome tree (data not shown), current panels are

more comprehensive and will likely be more complete in the

future. In addition to the inherent limitations of the training set,

the modeling approach does not necessarily identify all kinases that

are highly predictive of chromosome damage. As an example,

several kinases were statistically significant in FS1 but were not

selected by the FS methods. This is a challenge often observed

while analyzing large data sets [39–41]: features that correlate

individually with the endpoint are not chosen because they may be

correlated with other features that are more highly correlated with

the endpoint, and thus these features become redundant. Said

differently, it is often the case that there is more than one set of

features that is highly predictive of the endpoint. Such observa-

tions have been made frequently in other areas of biological

research where the number of features outnumbers the sample

number, e.g. microarray studies [39–41].

Despite limitations, the strengths of this method lie in its utility.

At Roche and other pharmaceutical companies, SMKIs are

designed to inhibit a kinase that has a known role in the pathway

or disease of concern. While hundreds of compounds may be

developed that strongly bind to their target kinase, it is not often

clear whether inhibiting other, non-targeted kinases will affect the

success of the compound in further stages of the pipeline,

especially in toxicological studies, where many compounds often

fail. In the process of building the model, we found that

promiscuous SMKIs often tested positive for micronuclei forma-

tion (Figure S1), and this was greatly enriched through model

development (Figure 3). While general promiscuity may be a

relatively good marker for determining the outcome of a

micronucleus assay, there are examples where it isn’t (Figure

S1), suggesting that specific inhibition of particular kinases is of

relevance. Providing information to medicinal chemists early in

the lead identification/optimization process, beyond just general

guidance of promiscuity, is critical to the success of such a strategy,

as it provides direction for development as well as compound

prioritization for additional development. Knowledge of these 21

kinases within Roche has been of assistance in designing SMKIs

Predicting Kinase-Mediated Chromosome Damage
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where a decrease in genotoxicity has been observed for this

compound class.

While the framework presented here provides a robust method

for identifying kinases correlated to genotoxicity, causality must be

addressed by other means, along with concerns about indirect

mechanisms of action and kinases not included in the dataset.

There are several kinases that are not solely inhibited by MNT

positive compounds, including CLK2, FLT3, GSK3a, MAPK15,

PCTK1, and EIF2AK2. This raises the question of whether their

inhibition specifically causes the micronucleus formation or if their

inhibition requires the inhibition of other kinases for the induction

of chromosome damage. Because there is high sequence homology

amongst kinases in the ATP binding pocket, it is possible that some

of the selected kinases do not cause chromosomal damage, but

instead are correlated with the inhibition of others that do.

Alternatively, there a number of MNT positive compounds that do

not inhibit any of the kinases chosen in the model. Possible

explanations include: first, a number of mechanisms independent

of kinase inhibition can influence mitotic chromosome dynamics

and second, kinases, which have not been screened in this study,

may influence the outcome of the micronucleus result.

Development of SMKIs that carry a genotoxic liability can

occur, though the generation of additional data demonstrating

that the mechanism of action occurs in a non-DNA reactive,

threshold-observable manner, is often necessary to appease

regulatory agencies. These additional developmental complexities

are best avoided, as they are expensive, time consuming, and no

guarantee exists that attrition due to chromosomal damage will be

avoided. Thus, many companies prefer to spend time and

resources during lead optimization to identify compounds free of

such liabilities, rather than risk failure due to later-stage attrition.

The use of mathematical modeling to better understand what

underlies such toxicities is one of the first steps in designing drugs

free of these particular liabilities.

Additional studies can shed light on the underlying pathways

possibly connecting the model kinases, as it is clear that all are

involved in some larger biological network and should not be

considered as independent features. Experimental studies can help

to confirm possible connections. As a basis for such future

investigations, our methodology provides a starting point for

biological hypothesis generation, in addition to its utility as a

computational model for predicting genotoxicity.

Materials and Methods

Compounds
The 113 compounds used in this project were synthesized

internally or purchased from Sigma Chemical company (St. Louis,

MO). The structural diversity of the 113 compound training set

was assessed by representing each compound with Extended

Connectivity Fingerprints (ECFP) in Pipeline Pilot 6.0 [42], a

molecular characterization of compounds as a 2-dimensional

fingerprint. ECFP for each compound was used as input for

principal components analysis (PCA), as shown in Figure 1.

Kinase inhibition
All 113 compounds were sent to Ambit Biosciences (San Diego,

CA) for kinase selectivity analysis against 317 kinases using

KINOMEscan assays. These 317 kinases cover a large and diverse

portion of the human kinome. For each kinase in this high-

throughput competition binding screen, ligand-bound kinase

quantities are measured in the presence and absence of the

compound. Input values for this project are reported in terms of

percent inhibition (%) for each compound against each of the 317

kinases. These measurements provide a means for identifying on-

target and off-target kinases, as well as for quantifying the

selectivity or promiscuity of an SMKI. This is performed in a cell

free binding assay which is used as a surrogate for cellular kinase

inhibition, which can be influenced by physical-chemical proper-

ties (solubility and permeability) that may impact intracellular

concentrations and kinase inhibition.

In vitro micronucleus test
The in vitro micronucleus assay was conducted according to a

previously published protocol [43]. Briefly, the established

permanent mouse lymphoma cell line L5178Y tk+/2 (ATCC

CRL 9518) growing in suspension was obtained from Covance

Laboratories Ltd. (Harrogate, UK). The top dose for evaluation

was generally selected to observe acceptable toxicity (decrease of

the relative cell count (RCC) below 50%) or clear signs of

precipitation in the aqueous medium. Micronucleus results

obtained when the RCC falls below 40% are not interpreted as

this exceeds the cytotoxicity cut-off. Soluble and non-toxic

compounds are evaluated up to a maximal dose level of

5000 mg/mL or 10 mM whichever is lower. The cell cultures

were exposed to the test compound for 24 h and harvested either

immediately or following a 24 h recovery period in case of cell

cycle arrest. For assessment of cytotoxicity cell numbers are scored

at harvest with the use of a Coulter Counter and relative cell

counts (RCC, as % negative control) were calculated (population

doublings and cell morphology were assessed in parallel). 1000

cells per dose were scored with a magnification of 10006 and

micronuclei were evaluated according to previously described

criteria [44]. A compound is considered to induce a significant

level of micronuclei, and thus yield a positive MNT result, if one or

more concentrations show at least a 2% frequency of micro-

nucleated cells in either of the two testing regimens (generally

corresponding to a 2.5 fold increase over historical controls).

Methylmethanesulfonate (15 mg/ml) is used as a micronucleus

positive control.

MNT assay results were ultimately considered binary, with a

positive result corresponding to toxicity and a negative result to

non-toxicity. While some compounds were easily classified, others

required reclassification because of experimental parameters.

Because Ambit data was measured at a 10 mM concentration for

all SMKIs, positive micronucleus results that occurred above this

10 mM cutoff could be due to kinase inhibition that would not be

reflected in the kinase inhibition assay results. Thus, to better

correlate the kinase inhibition to micronucleus positive results,

compounds identified to be micronucleus positive above this

threshold were reclassified as negative.

Dataset
The study was based on a training set of 113 internal SMKIs.

To make the model generalizable to the prediction of future

compounds, a large and structurally dissimilar group of SMKIs

was selected. The training set compounds were chosen to

represent a diversity of molecular structures, physicochemical

properties, and kinase targets. Each compound was assessed for

chromosomal damage, a sign of potential toxicity, using an in vitro

micronucleus test. Additionally, each compound was screened in a

competition binding assay to quantify inhibition of 317 kinases.

Preprocessing was performed prior to employing machine

learning methods. From the 317 kinase panel, mutant kinases were

removed from the dataset as their mechanistic function would be

difficult to interpret. Additional kinases were removed because

their percent inhibition level, usually less than 50% at 10 uM, did
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not differ among the 113 compounds, making them uninformative

when separating positive from negative MNT results.

Model-building framework
When building a model to predict a binary endpoint, best

practices for machine learning recommend using feature selection

methods to reduce dimensionality of the data, followed by input

into a pattern recognition method. From observation, we have

seen that while a selection of certain methods performs well with a

given dataset, others methods do not. Similarly, while there are

many instances of machine learning methods that perform well,

their performance results are not always reproducible with other

datasets. In this analysis we present a framework that involves

sweeping over variety of methods, which allows the choice of

methods to be driven by the data rather than investigator

preference, and selecting methods and method parameter based

on top-performing results. An overview of the framework is given

in Figure 4. Implementation details of the framework, such as

choice of programming language and which methods to include,

are left to the investigator. This analysis was performed in R

version 2.6.2 [45], based on the number of machine learning

packages readily available.

Generation of models
The first phase of the analysis aimed to identify the machine

learning methods to be used in the model (Figure 4a). We started

by creating 10 random splits of 5-fold stratified cross validation.

Briefly, each split randomly grouped the 113 SMKIs into 5

subsets, or folds. Each fold was stratified, meaning that the

proportion of MNT positive compounds to MNT negative

compounds in each fold roughly reflected that of the full dataset.

For each of the k folds, k-1 subsets were used as the training set to

build the model, while the remaining subset was used as the test set

to estimate performance.

For each fold within each split of data, a combination of two

feature selection (FS) methods were run, followed by a binary

Figure 4. Framework for building, optimizing, and assessing mathematical model. The computational framework for identifying a model
first starts by sweeping through combinations of univariate and multivariate feature selection methods, followed by a pattern recognition method.
The best performing combination of methods is selected for the final model (A). In the optimization phases, the optimal number of features to use in
the final model (B) and tuned parameters of the pattern recognition method (C) are identified. In the final phase of the framework (D), the model
methods from A and the optimized parameters from B and C are used to identify the final model features and assess final model performance.
doi:10.1371/journal.pcbi.1000446.g004
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classifier. FS methods were used to determine which kinases, or

features, are likely to correlate most with MNT result. Feature

selection methods were separated into two groups: univariate filter

methods capable of handling larger input data (FS1), and more

computationally-intensive multivariate methods (FS2). FS1 meth-

ods consider features independently and are thus less likely to

overfit to the given dataset. Such methods include a Kolmogorov-

Smirnov/T-test filter, single train error [46], and ReliefF [47].

However, since the FS1 methods do not address redundancy of

features, multivariate approaches were employed in FS2 to

consider correlation among a given subset of features. FS2

methods included random forests [20], genetic algorithm [48],

simulated annealing [48], Gram-Schmidt Orthogonalization [49],

and RFE-SVM [50]. The inhibition values against the features

chosen in FS2 were then used as input into a pattern recognition

(PR) method which predicted a positive or negative result.

Classifiers implemented in the PR phase included support vector

machines [51], random forests [20], linear discriminant analysis

[52], k-nearest neighbors [53], partial least squares [54], and

principal components analysis [45]. This analysis swept over

several combinations of FS1, FS2, and PR methods, although the

analysis may include any method that can be implemented within

the computational framework.

For each combination of FS1, FS2, and PR, model performance

was estimated using 10 splits of 5-fold cross validation. The FS1,

FS2, and PR method combination that yielded the greatest

accuracy was chosen for model optimization in the next phase of

the analysis.

Model optimization
Once the model methods were selected, the second phase of the

analysis aimed to identify the optimal model parameters, namely

the number of features to be used in the final model kinase profile,

as well as hyperparameters for the binary classifier (Figure 4b and

4c). For the same 10 splits of 5-fold cross validation, FS1, FS2, and

PR methods were fixed. First, for each trial of 1065-fold cross

validation, the first part of this phase entailed sweeping over a

different number of features to be selected in FS2. This number

would ultimately dictate the number of kinases to be used in the

final model profile. Similar to selecting model methods in the

previous phase, the model number of features was chosen based on

which number yielded the lowest error rate. In order to avoid

overfitting, the lowest number of features with a mean accuracy

within one standard deviation of the optimal number of features’

accuracy was chosen for the final model.

The second part of this model optimization involved tuning of

the hyperparameters for the optimal PR method. Tuning

methodology will be dictated by the optimal PR method selected

in the first phase of the model. Our analysis yielded Support

Vector Machines (SVM) as the optimal PR method. Thus in this

optimization phase of the analysis, we used the full dataset and

swept over cost, gamma, and kernel function to identify the

optimal SVM hyperparameters to use in the final model. Another

example hyperparameter is the number of neighbors k used in a

vote-based classifier such as k-nearest neighbors. Specific param-

eters depend on which PR method was selected in the previous

phase of the analysis.

Model assessment
The final phase of the analysis aimed to estimate the

performance of the final model and identify the model kinase

profile (Figure 4d). Ideally, an external set of compounds would be

used to validate the model after model optimization. Because such

data were not available at the time, model performance was

assessed by re-splitting the original dataset into 50 splits of 10-fold

cross validation. This number of iterations is much greater than

the 10 splits of 5-fold cross validation used when building and

tuning the model and provides for a more accurate performance

estimate. While more iterations of the model were run,

computational costs were manageable as model methods and

parameters were already pre-selected. For each fold in each split,

the optimal FS1 and FS2 methods selected in the model-

generating phase of the analysis were run. The N most informative

features were chosen in FS2 for each fold, with N being selected

during model optimization. For each fold, the N selected features

were then inputted into the optimal PR method with the

hyperparameters that were chosen in the model optimization

phase.

Final model performance was estimated by calculating mean

accuracy, sensitivity, and specificity over all 500 iterations (50 splits

of 10-fold). The kinase profile for the final model was then

calculated based on frequency of selection during FS2. After

tabulating how many times each kinase was selected in the 500

runs, the top N were chosen as the final model set, as they are

often selected as informative when separating class labels.

The statistical relevance of kinases in the model profile was

verified by performing a dropout experiment. From the 290

kinases, the N final model kinases were removed. The final phase

of assessing model performance was then run using 50 splits of 10-

fold cross validation with an input data matrix of 113

compounds6(290-N) kinases. Performance results of the dropout

experiment were then compared to that of the original model.

Additionally, q-values for each of the final model kinases were

calculated to assess feature significance based on minimum false

discovery rates. The biological relevance of kinases in the model

profile was then verified by reviewing literature.

Supporting Information

Table S1 List of kinases used for analysis.

Found at: doi:10.1371/journal.pcbi.1000446.s001 (0.44 MB

DOC)

Figure S1 Kinase inhibition heat map of the 113 small molecule

kinase inhibitors assayed for micronuclei and the 290 Ambit panel.

Found at: doi:10.1371/journal.pcbi.1000446.s002 (0.93 MB TIF)
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