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Abstract

Trp-cage is a designed 20-residue polypeptide that, in spite of its size, shares several features with larger globular proteins.
Although the system has been intensively investigated experimentally and theoretically, its folding mechanism is not yet
fully understood. Indeed, some experiments suggest a two-state behavior, while others point to the presence of
intermediates. In this work we show that the results of a bias-exchange metadynamics simulation can be used for
constructing a detailed thermodynamic and kinetic model of the system. The model, although constructed from a biased
simulation, has a quality similar to those extracted from the analysis of long unbiased molecular dynamics trajectories. This
is demonstrated by a careful benchmark of the approach on a smaller system, the solvated Ace-Ala3-Nme peptide. For the
Trp-cage folding, the model predicts that the relaxation time of 3100 ns observed experimentally is due to the presence of a
compact molten globule-like conformation. This state has an occupancy of only 3% at 300 K, but acts as a kinetic trap.
Instead, non-compact structures relax to the folded state on the sub-microsecond timescale. The model also predicts the
presence of a state at Ca-RMSD of 4.4 Å from the NMR structure in which the Trp strongly interacts with Pro12. This state
can explain the abnormal temperature dependence of the Pro12-d3 and Gly11-a3 chemical shifts. The structures of the two
most stable misfolded intermediates are in agreement with NMR experiments on the unfolded protein. Our work shows
that, using biased molecular dynamics trajectories, it is possible to construct a model describing in detail the Trp-cage
folding kinetics and thermodynamics in agreement with experimental data.
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Introduction

Understanding protein folding thermodynamics and kinetics is a

central issue in molecular biology [1–3] and computer-aided

modeling is becoming increasingly useful also in this field. Direct

comparison between simulations and experiments requires both an

accurate description of the system and the possibility to sample

extensively the configuration space. In order to observe folding with

molecular dynamics, it is necessary to use very large computers

[4,5], worldwide distributed computing [6], or an enhanced

sampling technique [7–16].

A system that is almost ideal for theoretical investigation is the

Trp-cage (TC5b) [17], a designed 20-residue miniprotein that folds

rapidly [18] and spontaneously to a globular structure. The NMR

structure (1L2Y) [17] reveals a compact hydrophobic core, in which

the Trp side chain is buried. The secondary structure elements

include a short a-helix (residues 2–8), a 310-helix (residues 11–14)

and a polyproline II helix at the C-terminus. The folding

mechanism of this system has been studied with several experi-

mental techniques. Calorimetry, circular dichroism spectroscopy

(CD) [19] and fluorescence [18] show a cooperative two-state

folding behavior with transition midpoint at approximately 314 K

and a relaxation time of 3.1 ms at 296 K [18]. UV-Resonance

Raman [20] reveals a more complex unfolding behavior, with the

presence of a compact intermediate that retains an a-helical
character and in which the hydrophobic core is even more compact.

NMR experiments [17,21] show a substantially cooperative thermal

unfolding, but the large negative chemical shift deviations of

Pro12-d3 and Gly11-a3 suggest that those residues might pack

more tightly as the temperature is raised. Also fluorescence

correlation spectroscopy experiments cannot be interpreted in

terms of a simple two-state folding and the formation of a molten-

globule-like intermediate has been proposed [22].

By atomistic modeling the Trp-cage folding has been studied

using several different approaches [23–33]. In particular, with an

all-atom explicit-solvent description, the folding of Trp-cage has

been studied by replica exchange molecular dynamics (REMD)

[31,34]. Starting from an extended configuration, a structure with

a Ca root mean square deviation (RMSD) ,2 Å from the NMR

reference structure is obtained after 100 ns of simulation on 40

replicas [34]. A relatively high melting temperature of 440 K is

predicted. Other studies suggested that, even if Trp-cage is a

rather small system, achieving statistical convergence in a REMD

simulation may require much longer simulation times [35,36]. The
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kinetics of Trp-cage folding was studied, in explicit solvent, by

transition path sampling (TPS) [36] and transition interface

sampling (TIS) [37]. The folding of Trp-cage was also investigated

by two of us using the bias exchange metadynamics approach (BE)

[38], in which metadynamics potentials acting on different

collective variables (CVs) are exchanged among molecular

dynamics (MD) simulations performed at the same temperature.

Using this method it is possible to explore simultaneously a

virtually unlimited number of CVs. Since all the MD simulations

are performed at the same temperature the number of replicas

does not grow with the system size like in REMD and in the

approach of Ref. [39]. Using BE it was possible to reversibly fold

Trp-cage [38], villin headpiece, advillin headpiece together with

two of their mutants [40] and Insulin chain B [41] using an explicit

solvent force field, in less than 100 nanoseconds of simulation with

only eight replicas. Recently this method was also used for

exploring the mechanism of enzyme reactions [42].

In atomistic simulations of biological systems, after an

exhaustive exploration is achieved, it is necessary to extract from

the trajectory the relevant metastable conformations, to assign

their occupation probability, and to compute the rates for

transitions among them. Several methods have been developed

for this scope [43–48]. These methods have the big advantage of

reducing a complex dynamics in a high-dimensional configuration

space to a Markov process describing transitions among a finite

number of metastable states. They are suitable for analyzing an

ergodic molecular dynamics trajectory, but they cannot be

straightforwardly applied if the system is evolved under the action

of an external bias.

In this paper we present a method that allows exploiting the

statistics accumulated in a bias exchange metadynamics run [38]

for constructing a detailed kinetic and thermodynamic model of a

complex process such as the Trp-cage folding. The approach

presented here aims at extracting the same information from a BE

simulation as one can obtain from the analysis of a long ergodic

MD run or of several shorter runs [43–48]. The method relies on

the projection of the BE trajectory on the space defined by a set of

variables, which are assumed to describe the relevant physics of

the system. These variables are not necessarily the ones that are

used for the BE simulation and can be chosen a posteriori. Once

the CVs are selected, the rate model is constructed following three

steps:

1. A cluster analysis is performed on the BE trajectories in a

possibly extended CV space, assigning each configuration

explored during the biased dynamics to a reference structure

(bin) that is close by in CV space.

2. Next, the equilibrium population of each bin is calculated from

the BE simulations using a weighted histogram analysis

method(WHAM) [49] exploiting the metadynamics bias

potentials.

3. Finally, a kinetic model is constructed by assigning rates to

transitions among bins. The transition rates are assumed to be

of the form introduced in Ref. [50], namely to depend

exponentially on the free energy difference between the bins

with a prefactor that is determined by a diffusion matrix D and

by the bins relative position. The only free parameter in the

model is D, as the free energies are already assigned. Following

Ref. [47] D is estimated maximizing the likelihood of an

unbiased MD trajectory (not necessarily ergodic).

The model constructed in this manner is designed to optimally

reproduce the long time scale dynamics of the system. It can be

used, for example, for characterizing the metastable misfolded

intermediates of the folding process. The advantage of using

biased trajectories, besides the acceleration of slow transitions, is a

greatly enhanced accuracy of the estimated free energy at

transition state regions.

This approach is first illustrated on the Ace-Ala3-Nme peptide

(hereafter Ala3). This system is simple enough to allow bench-

marking the results against a long standard MD simulation. For

this system the model is capable of reproducing with excellent

accuracy the kinetics and thermodynamics observed in the

unbiased run. The same approach is then applied to the Trp-

cage miniprotein. A model is built that allows describing the

folding process, computing the folding rates and the NMR spectra,

simulating a T-jump experiment, etc. The scenario that emerges is

in good agreement with the available experimental data. By kinetic

Monte Carlo(KMC) [53,54] and Markov cluster analysis(MCL)

[51,52] several metastable sets (clusters) are identified. These

states, except for the folded cluster, can be considered misfolded

intermediates of the folding process. At 298 K two main clusters

are present, with a population of 58% and 25%, respectively. The

most populated is the folded state and its structural properties are

very close to the NMR ensemble. The second most populated

cluster retains a significant amount of secondary structure, but has

a Ca RMSD from the native state of approximately 4.4 Å. In this

cluster, the Trp is trapped in a hydrophobic pocket and its distance

from Pro12 and Gly11 is reduced. The presence of this cluster in

the thermal ensemble of the system can explain some anomalies in

the temperature behavior observed in NMR [17] and UV-Raman

[20] experiments. The structures of the most populated misfolded

intermediates are in good agreement with the unfolded states

distances reported in Ref. [21]. Using the kinetic model a

fluorescence T-jump experiment is also simulated. In agreement

with the experimental results [18], a relaxation time of 2.360.7 ms

is found. This time is primarily determined by the relaxation

towards the folded state of a compact molten globule-like

structure, which acts as a kinetic trap. Relaxation times among

all the other clusters, including transitions between fully unstruc-

tured states and the folded state, are all in the sub-microsecond

time domain. Thus, surprisingly, the relaxation time measured by

Author Summary

Understanding the mechanism by which proteins find
their folded state is a holy grail of computational biology.
Accurate all-atom simulations have the potential to
describe such a process in great detail, but, unfortunately,
folding of most proteins takes place on a time scale that is
still not accessible to routine computer simulations. We
introduce here an approach that allows for constructing an
accurate kinetic and thermodynamic model of folding (or
other complex biological processes) using trajectories in
which the process under investigation is forced to happen
in a short simulation time by an appropriate external bias.
An important strength of this approach is the possibility of
identifying and characterizing misfolded conformations
that, in some proteins, are related to important diseases.
We use this method to study the folding of Trp-cage,
predicting the structure of the folded state and the
presence of several intermediates. We find that, surpris-
ingly, fully unstructured ‘‘unfolded’’ states relax towards
the folded conformation rather quickly. The slowest
relaxation time of the system is instead related to the
equilibration between the folded state and another
compact structure that acts as a kinetic trap. Thus, the
experimental folding time would be determined primarily
by this process.

Kinetic Model of Trp-Cage Folding
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fluorescence may not be directly related to the ‘folding’ transition,

if one calls ‘folding’ the transition from a random coil to the native

state.

Methods

Bin-based thermodynamic model
In the BE approach [38] a large set of CVs that are expected to

be relevant for the process under investigation is chosen. A

number NR (number of replica) of MD simulations (walkers) are

run in parallel, biasing each walker with a metadynamics bias

acting on just one or two collective variables. In BE the sampling is

enhanced by attempting, at fixed time intervals of a few ps, swaps

of the bias potentials between pairs of walkers. The swap is

accepted with a probability

min 1,exp
1

T
Va

G xa,tð ÞzVb
G xb,t
� �

{Va
G xb,t
� �

{Vb
G xa,tð Þ

� �� �� �
, ð1Þ

where xa and xb are the coordinates of walker a and b and V
a(b)
G x,tð Þ

is the metadynamics potential acting on the walker a(b). In this

manner, each trajectory evolves through the high dimensional free

energy landscape in the space of the CVs sequentially biased by

different low dimensional potentials acting on one or two CVs at

each time. The results of the simulation are NR low dimensional

projections of the free energy [38]. In BE the convergence of the

bias potential to the corresponding free energy projection is

monitored like in standard metadynamics: if the CVs are properly

chosen and describe all the ‘‘slow’’ degrees of freedom, after a

transient time, VG reaches a stationary state in which it grows

evenly fluctuating around an average that estimates the free energy

[55]. Convergence of metadynamics has been demonstrated

analytically for a Langevin model [56], and numerically for

several realistic systems [55], also in the presence of exchanges

between different replicas [39].

Low dimensional free energy projections are often not very

insightful, as in complicated processes like protein conformational

transitions each minimum in a low dimensional profile may

correspond to several different structures. In order to estimate the

relative probability of the different structures one should find a

manner to estimate the free energy in a higher dimensional space

(e.g NR).

In this section a novel method to address this issue is described.

The idea is to exploit the low-dimensional free energies obtained

from BE to estimate, by a weighted-histogram procedure, the free

energy of a finite number of structures that are representative of all

the configurations explored by the system. These structures are

determined by performing a cluster analysis, namely grouping all

the frames of the BE trajectories in sets (bins) in which all the

elements are close to each other in CV space. Since the scope of

the overall procedure is constructing a model that describes also

the kinetic properties of the system, it is important that the bins are

defined in such a way that they satisfy three properties:

1. The bins must cover densely all the configuration space

explored in BE, including the barrier regions.

2. The distance in CV space between nearest neighbor bin

centers must not be too large. This, as it will be shown in the

following, is necessary for constructing the rate model.

3. The population of each bin in the BE trajectory has to be

significant, otherwise its free energy estimate will be unreliable.

A set of bins that satisfy these properties is here defined dividing

the CV space in small hypercubes forming a regular grid. The size

of the hypercube is defined by its side in each direction:

ds~(ds1,ds2,:::,dsn) where n is the number of collective variables.

This determines directly how far the bin centers are. Each frame of

the BE trajectory is assigned to the hypercube to which it belongs

and the set of frames contained in a hypercube defines a bin. This

very simple approach is used here only in order to keep directly

under control the distance between the bins, but the results

presented in this Section apply also if the cluster analysis is

performed with one of the other approaches that have been

developed for this scope [43,44,57].

The canonical weight of each bin is estimated by a weighted

histogram procedure based on the metadynamics bias potentials.

The derivation that we report follows ref. [49]. Denote by Vi
G s,tð Þ

the history-dependent potential generated by the walker i up to

time t expressed in Boltzmann constant units. After a certain time

tF (5 ns for Ala3 and 22 ns for Trp-cage), metadynamics has

explored all the available CV space. At the end of the simulation,

an estimate of the free energy is the average of Vi
G s,tð Þ after tF

[55,58]:

Vi sð Þ~ 1

ttot{tF

ðttot

tF

dt Vi
G s,tð Þ ð2Þ

where ttot is the total simulation time. During the last part of the

BE run Vi
G s,tð Þ fluctuates around Vi sð Þ (except for an irrelevant

additive constant that grows linearly with time), but these

fluctuations are small if the deposition rate of the Gaussians is

not excessive. In order to keep the error induced by these

fluctuations under control it is convenient to consider two different

bias potentials of the form of Eq. 2, one obtained extending the

integral from tF up to (ttotztF )=2, the other from (ttotztF )=2 up

to ttot. Only the configurations collected after tF in which the two

bias potentials are consistent within few kBT (kBT for Ala3 and

2kBT for the Trp-cage) are retained for further analysis. The

unbiased probability to observe bin a is estimated on walker i using

the standard umbrella sampling reweighting formula:

pi
a~

X
k[Vi

a

e
1
T

Vi si
kð Þ{f ið Þ ð3Þ

where f i is a parameter that fixes the normalization and Vi
a is the

set of frames in the walker i that are assigned to bin a: The pi
a -s

are used to construct the best possible estimate of the probability

pa of observing bin a. This requires estimating the error on pi
a.

Here it is assumed that the error on a bin free energy estimate is:

s2 pi
a

� �
~g

X
k[Vi

a

e
2
T

Vi si
kð Þ{f ið Þ~gpi

ae
1
T

V
i

a{f i
� �

%gpae
1
T

V
i

a{f i
� �

ð4Þ

where g is a constant that takes into account the correlation time

and

V
i

a~T log

P
k[Vi

a
e

2
T

Vi si
kð ÞP

k[Vi
a

e
1
T

Vi si
kð Þ

0
@

1
A: ð5Þ

In order to simplify the notation we have neglected the position-

dependence of g. For both Ala3 and Trp-cage we used an upper

bound for g ( = 1 and 10, respectively, considering that the

trajectory is saved every ps) estimated from several unbiased MD

Kinetic Model of Trp-Cage Folding
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simulations started from different configurations. In the last passage

in Eq. (4) the fact that pi
a is an unbiased estimator of pa is assumed.

The combined probability pa is now written as a linear combination

of the pi
a-s, namely pa~C

X
i
pi

api
a, where the weights pi

a are

parameters that have to be determined and C is normalization

constant. The expected error on pa is s2 pað Þ~ C2
X

i

pi
a

� �2
s2 pi

a

� �
.

The optimal weights for each bin a are determined separately

minimizing this error with the constraint
X

i
pi

a~1. This gives

pi
a~e

1
T

f i{V
i

a

� �
(
X

j
e

1
T

f j{V
j

a

� �
){1 and, finally,

Fa~{T log pa~{T log
X

i

pi
api

a~{T log

P
i ni

aP
j e

1
T f j{V

j

a

� � ð6Þ

with ni
a~

X
k[Vi

a

e
1
T Vi si

kð Þ{V
i

a

� �
. The constants f i are obtained

iteratively from the condition

e{1
Tf i

~
1P

a
ni

a

X
a

e{1
TV

i

a pa~C
1P

a
ni

a

X
a

e{1
TV

i

a

P
k nk

aP
j e

1
T

f j{V
j

a

� � : ð7Þ

The free energy estimate given by Eq. 6 is affected by an error

s2 Fað Þ~T2 s2 pað Þ
p2

a

~
gT2P

i ni
a

ð8Þ

consistently with what is found in the normal weighted histogram

analysis method.

Within this framework, the average value of an observable O
can be calculated, using the estimated free energies, as

SOT~

P
a

Oa exp {Fa=Tð ÞP
a

exp {Fa=Tð Þ ð9Þ

where the sums run over all the bins, T is the temperature and Oa

is the average value of O in the bin a. If the bin size is small

enough, the bias potentials are approximately constant for the

configurations belonging to the same bin [40]. Thus Oa can be

reliably estimated as the arithmetic average of O in all the

configurations explored by the BE trajectory belonging to the bin

a. Corrections deriving from the variation of the bias potentials

inside a bin have also been considered but they lead to negligible

effects for small ds.

The enthalpy Ha of bin a is obtained averaging the enthalpy

over the structures belonging to the bin. The entropy Sa is

estimated as Sa~ Ha{Fað Þ=T . Neglecting the dependence of the

entropy on the temperature, the free energy at a temperature T ’
different from T is estimated as

Fa T ’ð Þ~Ha{T ’Sa~Ha{
T ’
T

Ha{Fa Tð Þð Þ ð10Þ

with an error of s2(Fa(T ’))~(
T ’
T

)2s2(Fa(T))z(1{
T ’
T

)2s2(Ha).

Using Eq. 9 together with Eq. 10 allows extrapolating the

average value of the observables for a few tens of K around the

temperature at which the simulation is performed. The uncer-

tainty on O can be derived at each temperature from the error on

Fa, Ha, and Oa using error propagation on Eqs. 9 and 10:

s2(SOT)~

P
a

e{2Fa(T ’)=T ’ (SOT{Oa)2

T ’2
s2(Fa(T ’))zs2(Oa)

h i
P
b

e{Fb(T ’)=T ’

 !2
ð11Þ

where s2(Oa) is the standard deviation of O inside bin a.

Bin-based kinetic model
In this section we describe a manner for constructing an

approximate kinetic model describing transitions between the bins

introduced in the previous Section. Constructing the model

requires estimating the rates kab for a transition between every

pair of neighboring bins a and b. As BE trajectories are biased, the

transition probabilities observed in the BE run cannot be taken as

a direct measure of the true transition rates. The kinetic model is

constructed assuming that the transitions between bins are

described by rates of the form introduced in Ref. [47,50], namely

by diffusion with a bias determined by their free energy difference:

kab~k0
abe{1

2 Fb{Fað Þ=T ð12Þ

where k0
ab~k0

ba are the rates associated to simple diffusion on a

flat free energy surface. This form of the transition rates ensures

that the limiting probability distribution of the dynamics is correct,

namely that the probability to observe bin a at long times scales is

proportional to exp {Fa=Tð Þ. If the bins form a hypercubic grid

in CV space the rates k0
ab can be exactly expressed as a function of

the (possibly position-dependent) diffusion matrix Da and of the

hypercube side ds [47]. In the following to simplify the notation we

denote by D the diffusion matrix appearing in the transition rate

between two bins a and b assuming that D is the average of Da

and Db [47]. In one dimension the bins are labelled by a single

integer (i) and, following Refs [47,50], k0
ið Þ i+1ð Þ~

D

ds2
and zero

otherwise. In d dimensions the bins are labelled by d integers

i1,i2, � � � ,idð Þ. If D is diagonal, the one-dimensional expression for

the rates can be generalized straightforwardly. If D is non-diagonal

the only rates different from zero are those in which one or two of

the components of i1,i2, � � � ,idð Þ vary by one:

k0
���,ik ,���ð Þ ���,ik+1,���ð Þ~

Dkk

ds2
k

{
X
j=k

Djk

dskdsj

����
����

k0

���,ik ,���,ij ,���ð Þ ���,ik+1,���ij+1,���ð Þ~max
Djk

dskdsj

,0

� 	 ð13Þ

This form of the rates can be derived discretizing the Fokker-

Planck equation for diffusion on the regular grid defined by the

hypercube centers. The derivatives are discretized as centred

differences, in such a way that if D is a positive-definite matrix all

the resulting rates are positive, as is required in a kinetic model.

The error of this procedure scales as the square of the distance

between neighbouring bins [47]. At finite grid spacing the

accuracy can be improved allowing transitions between non-

neighbouring bins. It can be verified that if the system is evolved

with the rate equation 12 using Fa~0, then the Einstein relation is

satisfied, namely

Kinetic Model of Trp-Cage Folding

PLoS Computational Biology | www.ploscompbiol.org 4 August 2009 | Volume 5 | Issue 8 | e1000452



S si tð Þ{si 0ð Þð Þ sj tð Þ{sj 0ð Þ
� �

T~2Dijt ð14Þ

The rates given by Eq. 12 are used in a KMC algorithm [51,52]

to generate a dynamics between bins. If the bins size is small

enough the KMC kinetics resembles the kinetics of an over-

damped Langevin dynamics [47]. If the free energy is flat, by

construction the model gives the correct diffusive behaviour but if

F=0 deviations from this behavior are observed when the bin size

is too large. On the other hand, a small bin size can hinder the

accuracy of the free energies. Thus, both large and small bin size

may alter the quality of the kinetic model due to bad description of

the underlying free energy surface or inaccurate sampling.

Moreover even if there are no problems related to the bin size,

describing the dynamics with Eq. 12 amounts to neglecting

memory effects. This approximation can be particularly severe if

an important variable is not included explicitly in the model. The

model is expected to be reasonably accurate if the memory time is

much smaller than the typical transition time (usually between

metastable sets) that one wants to measure.

The diffusion matrix entering in Eq. 13 is estimated using the

approach of Ref. [47], in which one maximizes the likelihood that

a given MD trajectory is generated by a rate equation of the form

Eq. 12. Computing D requires first generating at least one MD

trajectory without the metadynamics bias. The accuracy of the

procedure can be improved, if the relevant metastable states of the

system are known, by running several independent MDs starting

from these states. Otherwise one can select at random a few

conformations along the BE trajectory and use these as the initial

conditions for MD. The trajectory (or the set of trajectories) is then

mapped at a time lag Dt onto the bins a 0ð Þ,a Dtð Þ,a 2Dtð Þ, � � �ð Þ.
Then several KMC trajectories are run with an initial guess for D,

starting from the bins visited by the MD trajectory. Using the

KMC trajectories one computes the conditional transition

probabilities at a time lag Dt pD(cjb) among all the pairs of bins

b, c visited by the trajectory. This is evaluated by counting

transitions between the bins: pD(cjb)~
n(c(Dt)jb(0))

n(b)
where

n(c(Dt)) is the number of times the KMC trajectory is found in

bin c at time Dt being in bin b at time zero, and n(b) is the number

of times the trajectory visits bin b. This procedure is slightly

different from the one used in Ref. [47], where pD(cjb) is

calculated by diagonalizing the rate matrix, which in the cases

considered here has a very large size (of the order of 1056105).

The notation pD indicates that these probabilities depend

parametrically on D.

Using these probabilities one evaluates the logarithm of the

likelihood to observe the sequence of bins obtained by MD. This is

given by

L Dð Þ~logP
t

pD a tzDtð Þja tð Þð Þ: ð15Þ

L Dð Þ is then maximized as a function of D. This can be done by

simulated annealing, starting from an initial guess of D and

iterating until the likelihood reaches a plateau. As outlined in Ref

[48], the diffusion matrix found in this way depends in general by

the chosen time lag. A common behavior is that by increasing the

time lag Dt the elements of the diffusion matrix converge to a well

defined value. This means that after this Dt the dynamics between

bins is close to Markovian and is well approximated by the model

proposed. As a consequence only transition that occur on a time

scale bigger than Dt are correctly described by this model.

Applying this procedure the prefactor of the rate Eq. 12, which

has the form of a jump process among a discrete set of states, is

directly optimized. This is a clear advantage with respect to other

methods for computing D, in which a continuous evolution of the

collective variables is assumed. Moreover, as the free energies Fa

are known, the only variational parameter is D and comparably

short trajectories are sufficient to determine it with a good

statistical accuracy.

Ace-Ala3-Nme system
The approach described in the previous two sections has been

carefully benchmarked on solvated Ala3. For this system, it was

possible to compare the predictions of the kinetic model, with the

results of a very long (,2 ms) molecular dynamics trajectory.

All the BE and MD simulations were performed using the

GROMACS suite of programs [59,60] and the AMBER03 [61]

force field. Ala3 was placed in a periodic cubic box containing

1052 TIP3P water [62] molecules. The time step was set to 2 fs

and the LINCS [63] algorithm was used to fix the bond lengths of

Ala3. The SETTLE algorithm [64] was used to fix angle and bond

length of water molecules. Electrostatic and Lennard-Jones

interactions were calculated with a cutoff of 1.0 nm. Lennard-

Jones interactions are switched off smoothly from 0.9 nm to

1.0 nm. The neighboring list was updated every 5 steps and the

cut-off distance for the short-range neighbor list was set to 1.1 nm.

The Particle Mesh Ewald method [65,66] was used to treat long-

range electrostatic interactions with a maximum grid spacing for

the fast fourier transform of 0.12 nm and an interpolation order of

4. A constant temperature of 300 K was achieved by coupling the

system to a Berendsen thermostat [67] with a characteristic time of

0.1 ps. A constant pressure of 1 bar was achieved by coupling the

system to a Berendsen barostat [67] with a characteristic time of

2.5 ps. Several independent MD simulations were performed, with

a length varying between ,30 ns and ,30 ns, for a cumulative

time of 1.8 ms.

The conformations of Ala3 are specified by its six backbone

dihedral angles (wi,yi, where i~1,2,3) (see Fig. S1, inset).

Following Refs. [68–70], w2 and y2 (central Ramachandran

angles of Ala3) were considered in order to assign the main

conformations of the system, denoted by PPII (w2[½{900,{300�,
y2[½1200,1800�), b (w2[½{1800,{1200�, y2[½1200,1800�), aR

(w2[½{900,{300�, y2[½{900,00�), and aL (w2[½300,900�,
y2[½00,900�). Besides the latter conformational states, eight

different states were also considered in order to analyze the results

of the kinetic model. These are the free energy minima with the

three dihedrals (y1,y2,y3) in the a or b region of the

Ramachandran plane, namely (a,a,a), (a,a,b), etc. (see Fig. S1).

The system was also simulated using bias exchange metady-

namics (BE) [38] exploiting the six dihedral angles (see Fig. S1,

inset) as CVs. Each CV was biased in a different walker. Hence,

NR = 6, and each walker evolved under the action of a one-

dimensional metadynamics potential acting on one of the six CVs.

The width and the height of the Gaussians used in metadynamics

were 0.1 rad and 0.1 kJ/mol respectively. A new Gaussian was

added to the metadynamics potential every 1 ps. Exchanges of the

bias potentials between pairs of walkers are attempted every 10 ps.

Three independent BE simulations of 30 ns each (one simulation

consist of 30 ns for each replica) were carried out in order to check

the reproducibility of the results.

Trp-cage system
The computational setup used in Ref. [38] is briefly

summarized here. The simulations were performed with the

GROMACS suite of programs [59,60] and the AMBER03 force

field [61], at a temperature of 298 K. The initial structure (pdb

entry 1L2Y) [17] was solvated with 2075 TIP3P [62] water

Kinetic Model of Trp-Cage Folding
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molecules in a 40640640 Å water box. The system was simulated

using BE [38]. Five collective variables (CVs) were biased

according to the bias exchange scheme [38]. CV1: number of

Cc contacts; CV2: number of Ca contacts; CV3: number of

backbone h-bonds. CV1, CV2, and CV3 are defined asX
ij

1{ rij=rc

� �8

 �

: 1{ rij=rc

� �10

 �{1

where the sum runs over

the appropriate set of atoms (all the Cc for CV1, all the Ca for

CV2 and all the backbone H and O for CV3) and rc~5, 6.5 and

2 Å for CV1, CV2, and CV3 respectively. CV4: fraction of y
dihedrals belonging to the a region in the Ramachandran plot,

defined as
XN

i~1

1

2
1zcos yi{45oð Þð Þ. CV5: correlation between

successive y dihedrals, defined as
XN{1

i~1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z cos2 yi{yiz1

� �q
.

The sums in CV4 and CV5 run over all the residues. All the

variables are dimensionless and none of them requires the a priori

knowledge of the folded state. The Gaussian widths chosen for

CV1, CV2, CV3, CV4, CV5 were s1~1:0, s2~2:0, s3~1:0,

s4~0:4, and s5~0:4, respectively. Simulations were performed

with 8 walkers: one for each variable plus two walkers

reconstructing a free energy surface in two dimensions: CV3-CV4

and CV4-CV5. The last walker, the ‘‘neutral walker’’, is not biased

by any metadynamics potential, but is allowed to exchange

conformations with the others. A Gaussian of height 0.1 kJ/mol

was added every 1 ps to the bias potential for all the walkers except

the neutral walker. The total length of the simulations was 50 ns. In

Ref. [38] it was shown that the neutral walker statistics is

approximately canonical, and all the averages were there computed

using only its configurations, while the trajectories of the biased

walkers were not used at all. The converged free energy profiles for

each walker can be found in Ref. [38]. The MD simulations used for

calculating the diffusion matrix and the NMR properties were run

with the same computational setup of BE simulation (except for

specified changes in temperature).

Calculation of NMR properties. The protons chemical

shift deviations (CSD) and ring current shifts (RCS) of a specific

configuration were estimated using the SHIFTS program [71]

version 4.1. The CSD and RCS calculated for the full ensemble of

bins (or for a specific cluster), were evaluated first averaging in

each bin and then averaging the result using Eq. 9 for all the bins

(for all the bins belonging to a specific cluster, see Results). The

RCS temperature derivatives were calculated by finite difference

in the temperature interval 298–303 K. A 20 ns MD simulation

starting from the NMR structure [17] at 282 K was also used for

calculating NMR properties. The variation of the a protons RCS

with the temperature was calculated by applying Eq. 9 and 10.

Calculation of the dynamical properties: simulated T-

jump experiment. The Trp solvent accessible surface area

(SASA) was calculated for each bin averaging over all the

configurations belonging to a bin using the program g_sas in the

GROMACS distribution [72]. The Trp SASA relaxation after a

temperature jump (T-jump) was estimated using the rate model.

The T-jump experiment was mimicked generating 1,000,000

initial bins from an equilibrium distribution at 291 K. The bins

free energies at 291 K used for generating the distribution were

evaluated applying Eq. 10. Starting from each initial bin a KMC

[51,52] trajectory of 100 ms was run at 298 K. The Trp SASA was

then calculated as a function of time averaging over this ensemble.

The influence that the error on the free energies and on the

enthalpies has on the results has been checked generating several

kinetic models in which Fa and Ha were defined adding to the

original values a random number drawn from a Gaussian

distribution with standard deviation given by the error interval.

A simulated Trp SASA T-jump experiment was repeated for each

model. The error on the relaxation time was estimated from the

standard deviation of the measures on the different models.

Results

Application to a benchmark system: Ala3

Ala3 is a simple polypeptide that has been extensively used as a

benchmark system. Although small, this system shows several

protein-like features, such as intramolecular hydrogen bonds and a

fragment of a-helical structure. Since the system is small, it is

possible to characterize carefully its equilibrium and kinetic

properties by extended MD simulations. In this section the results

obtained by applying the approach presented in the Methods

section to the Ala3 system will be exposed.

BE simulation of Ala3. The system was simulated using BE

[38] employing the six backbone dihedral angles (see Fig. S1, inset)

as CVs for biasing the dynamics (see Ace-Ala3-Nme system section).

As expected BE improves the sampling of saddle regions (see Fig.

S2B) and less stable minima (e.g. the aL region of the

Ramachandran angle). The results of the BE simulation of Ala3

are six one-dimensional free energy profiles (see Fig. S5), each a

function of one of the six dihedral angles. After approximately 5 ns

the free energy profiles do not change significantly anymore (see also

Fig. S2A and S6), except for the fluctuations that are typical of

metadynamics. The profiles extracted from the three independent

BE runs do not show sizable differences (root mean square deviation

(RMSD) of free energy <0.4 kJ/mol, maximum deviation <1 kJ/

mol), and they agree with the MD results within the error bars

(RMSD of free energy <0.8 kJ/mol, maximum deviation <2 kJ/

mol, see Fig. S2B). The profiles obtained applying eq.2 averaging on

the last 10 ns of a BE simulations are shown in Fig. S5.

Bin-based thermodynamic model. Even in this simple

system the different structures (see Fig. S1) are defined by the value

of at least two of the six collective variables and thus one-

dimensional free energies are not very insightful. In order to

estimate the relative probability of the different structures we

applied the approach introduced in the Methods section. The six

dimensional space was divided in hypercubes of side ds (‘‘bins’’).

Due to the high dimensionality of the space the number of bins

increases rapidly by decreasing the box side ds. Reducing ds from

40u to 30u the number of bins that are visited increases from

70,000 to 300,000. On the other hand, for small ds most of the

bins are visited only a few times in the BE trajectories, and this

hinders the accuracy of the free energy estimate (see Eq. 8). The

free energy of each bin was calculated for several choices of the

bins size ds applying Eq. 6 to the BE simulation data. The free

energy profile entering in Eq. 6 was calculated using eq.2 with

tF ~5 ns. In order to reduce the error induced by the time

dependent fluctuations, the bias potential was averaged

independently in the two halves of the interval ½5ns,30ns� (see

Methods). Only configurations collected after 5 ns in which the

two averaged potentials are consistent within kBT are retained for

further analysis. The free energies were evaluated independently

from the ,2 ms equilibrium MD trajectories by applying the

standard thermodynamic relation Fa~{T log na, where na is the

population of the bin a. In Fig. 1, it is shown that the free energies

calculated in the two manners correlate very well, especially at low

free energy, where MD is accurate. Indeed, the horizontal stripes

at high F in Fig. 1 correspond to bins that are explored only a

small number of times in MD. In Fig. 1, inset, it is shown the

distribution of the relative error FBE{FMDð Þ=sMD where FMD

and FBE are the free energies of the bins computed by MD and BE

and sMD is the error on FMD estimated by Eq. 8 on the MD

trajectory (using g~1 ps). A gaussian fit to these data (blue line)
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shows that this relative error has an average value of zero and is

normally distributed, indicating that the deviations are not

systematic and are only due to inaccurate sampling. If the

analysis is repeated for a larger bin size the width of the relative

error distribution becomes smaller. In fact, all the bins are visited

more often and the free energies are computed with better

accuracy. As already underlined, in normal MD the error is small

for low free energy states and large otherwise. In BE the error is

instead much more uniform, and the free energy can be computed

reliably also for several bins that are not even observed in MD.

This property is essential for constructing a reliable kinetic model

of the system.

The equilibrium population of each of the PPII, b, aR, and aL

regions in the (w2,y2) Ramachandran plot defined in the Methods

section was computed by summing the populations of the bins

which are contained inside. The occupation probability calculated

from MD and BE simulations is reported in Table 1: extended

conformations (PPII and b) are the most populated, the helical aR

state is less populated while aL has an occupancy lower than 0.1%,

in agreement with available experimental data [73–75] and with

previous simulations [68–70]. Once again (Table 1), the agreement

between BE and MD results is very good for all the regions.

Bin-based kinetic model. A kinetic model of Ala3 was built

according to the procedure introduced in the Methods section. The

free energies estimated from the BE simulations were used for

constructing the kinetic model according to eq. 12. The diffusion

matrix entering in eq. 13, was calculated by maximum likelihood for

several choices of the time lag Dt and bin size on MD simulations of

length ranging from a few ns to 300 ns. To estimate the accuracy of

the kinetic model the mean first passage times (MFPT) for

transitions among the four regions in (w2,y2)-space PPII, b, aR,

and aL have been calculated both from MD and KMC. Moreover,

the MFPT have been calculated also for transitions between the 8

bins corresponding to the 8 free energy minima obtained assigning

the three y dihedral angles in the a or in the b region (see Methods

and Fig. S1). First, the kinetic model has been constructed for a bin

Figure 1. Bins free energies of Ala3 from BE and from MD. Correlation between the bins free energies calculated using Eq. 6 applied on BE
simulations data and using the standard thermodynamics relation Fa~{T log na on MD results. A bin size of 30u has been used. In the inset it is
shown the distribution of the deviations between the bins free energies calculated from BE and from MD, divided by the estimated error on the MD
free energy. A Gaussian fit of the distribution is also shown.
doi:10.1371/journal.pcbi.1000452.g001

Table 1. Equilibrium populations of the four main regions in
the Ramachandran plot w2,y2ð Þ of Ala3.

PPII b aR aL

MD 34.3% 12.6% 22.0% 0.050%

BE 32.1% 12.0% 22.3% 0.085%

The results from BE are compared to those from MD.
doi:10.1371/journal.pcbi.1000452.t001
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size of 30u and optimizing a position independent D with a time lag

Dt~16 ps. The correlation plot between MD and KMC is shown

in Fig. 2A, where only transitions observed at least 50 times in the

MD trajectory are reported. The overall correlation is excellent

except for transitions that display a large error bar in the MD

simulation. The distribution of the first passage times for well visited

transitions involving the central dihedral angles are also shown in

Fig. 2 (panels B and C), both for MD and KMC. The agreement is

excellent especially for the PPII?b transition, which occurs on a

long time scale. All these results show that the rate model is able to

reproduce accurately the kinetics of the real system. In order to

quantify this accuracy it is useful to consider the slope S of the line

fitting the pairs (tMD
i ,tKMC

i ) of MFPT in Fig. 2A, where i denotes a

transition, as well as the RMS relative deviation

E~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
i

tKMC
i {S tMD

i

S tMD
i

� 	2

vuut
where the sum runs over the N transitions. S and E, which should

ideally have the values 1 and 0, have been computed for many

different models in order to point out the critical issues that can

affect the accuracy of the rate model:

N The time lag Dt used to estimate D. A position

independent D was optimized for different choices of time lag

Dt and MD trajectory length. The value of S that is obtained for

each Dt is reported in Fig. 3. For Dt~16 ps an error E~0:180
and S~0:995 is obtained, whereas for Dt~6 ps E~0:188 and

S~0:721, and for Dt~2 ps E~0:185 and S~0:357. This

shows that the correct time scale is obtained if the time lag Dt is

large enough. For very small Dt the MD trajectory cannot be

approximated by a Markovian model [48].

N The size of the bins. Care must be taken in employing a bin

size which is small enough to describe accurately the free

energy of the system as a function of the CVs. Increasing the

bin size from 30u to 36u still leads to reasonable transition

times: the standard deviation and the slope become E~0:184
and S~0:766 for Dt~16 ps (Fig. 2A). If the bin size is further

increased to 40u the kinetic model compares badly with MD:

E~0:682 and S~0:152. A position independent D was

optimized for each bin size using a 300 ns MD trajectory.

N The length of the MD trajectory used to estimate D by
maximizing the likelihood. The value of S as a function of

the length of the MD trajectory is reported in Fig. 3. A ,50 ns

MD trajectory is necessary to obtain a D which accurately

reproduces the MFPT with S&1. Increasing the length of the

MD trajectory up to 300 ns does not change significantly S,

whereas employing a shorter trajectory down to ,10 ns gives

slightly larger errors. Thus changing the length of the MD

trajectory between 10–300 ns affects the time scale S much

less than the time lag Dt.

N The position-dependence of D. The MFPT was calculated

using two different diffusion matrices obtained maximizing the

likelihood only for the part of the MD trajectory that is close to

Figure 2. Mean first passage times between the free energy
basins of Ala3. Panel A: correlation between the MFPT among the four
regions in (w2,y2)-space PPII , b, aR , and aL, and among the eight
attractors (see text and Fig. S1), obtained by MD simulations and by
KMC using the kinetic model. The MFPT are calculated as the average
time to go from one region to another, without passing through
different regions. The error bars due to the statistical error in the MD
simulations are also displayed. Large bins have a cubic side of 36u, while
when not specified a cubic side of 30u is used. Panel B: distribution of
FPTs from aR to PPII for MD and the kinetic model. Panel C: distribution
of FPTs from PPII to b for MD and the kinetic model. For panel B and C
a cubic side of 30u and a time lag of 16 ps was used for calculating the
diffusion matrix D.
doi:10.1371/journal.pcbi.1000452.g002

Figure 3. Dependence of the diffusion coefficient of Ala3 on the
time lag and the trajectory length. Dependence of the slope S of the
line fitting the pairs of mean first passage times (tMD

i ,tKMC
i ) (see text and

Fig. 2A) from the parameters used in the fit of the diffusion matrix D: the
length of the MD run and the time lag Dt. For Dt§12 ps S converges to
the optimal value 1 (dashed line). A cubic side of 30u was used.
doi:10.1371/journal.pcbi.1000452.g003
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two different attractors aaað Þ and abað Þ, always using a time lag

Dt~16 ps. The difference in the slope S is of the order of 10–

20%. This shows that the error that derives from neglecting the

position dependence of D is, at least for this system, smaller than

the error due to the choice of the time lag Dt.

As a general comment, even in the worst cases investigated

(short Dt, short MD trajectory), provided the bins size is not very

large, the rate model produces MFPTs that are well correlated

with the MD results, as shown by the relatively small value of E.

The various approximations introduced in deriving the model

affect only the proportionality factor, as quantified by S, that can

be ,0.5 in the worst case (see Fig. 3). If the free energy of bins

were estimated from MD and not from BE the correlation in the

MFPT would be completely lost (data not shown). This is due to

the fact that even in a quite extended MD simulation barriers are

not well sampled; instead, in the BE simulation all the relevant

bins are explored and the accuracy of the barriers between clusters

is remarkably improved.

Application to the Trp cage folding
The results presented here were obtained analyzing, with the

method introduced in the Methods section the BE trajectory of

Trp-cage from Ref. [38].

Bin-based thermodynamic model. The set of bins used for

constructing the rate model was defined partitioning the five-

dimensional CV space in small hypercubes according to the

procedure outlined in the Methods section. A convenient choice of

the cubic sides was found to be dsi~2si, where si is the width of

the Gaussian used for CV i. With this choice, the number of bins

that are explored at least twice is ,10000. To check the

consistency of the model other cubic sides were also attempted.

We checked that the CVs we are using do not lump together

different conformations: indeed, the Ca RMSD from the bin

reference structure is less then 2.5 Å for most of the low free

energy bins. We also verified that if a compact secondary structure

element is present in the reference structure of a bin, the same

structure element will be present in the overwhelming majority of

frames assigned to that bin: high RMSD values are primarily

determined by flexible regions that undergo fast rearrangement on

the ns time scale. The free energies of the bins were estimated

using Eq. 6, evaluating the biasing potentials on each of the eight

replicas by Eq. 2 with tF ~22 ns. In order to reduce the error

induced by the time-dependent fluctuations, the bias potential was

averaged independently in the two halves of the interval

½22ns,50ns� (see Methods). Only configurations collected after

22 ns in which the two averaged potentials are consistent within

2kBT are retained for further analysis. Unlike for the Ala3 system

in the case of the Trp-cage an extended ergodic MD simulation is

not available, as equilibrating the system would require

performing a run of several tens of ms. Thus, for Trp-cage it is

not possible to compare the equilibrium bins free energies with the

ones obtained using BE. Instead the free energies estimated with

the WHAM-like [49] procedure are compared with the ones

obtained using the neutral walker statistics as described in Ref.

[38]. The correlation between the two free energies is excellent,

especially for bins with low free energy (see also Fig. S3). As shown

in Ref. [38], the neutral walker reliably reproduces the ensemble

generated with normal replica exchange. This shows that the three

methods, replica exchange, the neutral walker method and the

weighted histogram approach described in the Methods section, all

give consistent results for the statistics of the most populated bins.

The errors on the free energies computed using the neutral walker

ensemble are large for bins whose occupancy is low and bins of

high free energy are sometimes not explored at all. The number of

bins whose error is below 4 kJ/mol is approximately 1000 and

3000 for the neutral walker and the weighted histogram

procedure, respectively (see also Fig. S3, inset). The weighted

histogram free energies are systematically very reliable up to

,25 kJ/mol. It is worth to note that most of the low free energy

bins are visited independently by several walkers (e.g. the lowest

free energy bin is visited by all the walkers).

Bin-based kinetic model. Like for the Ala3 case, the free

energies of the bins were used for estimating the rate for the

transitions between all the neighbouring bins according to Eq. 12.

The diffusion matrix entering in eq. 13 was evaluated using the

maximum likelihood approach described in the Methods section

on five MD trajectories for a total time of ,500 ns. In order to

estimate the variation of D with the protein conformations, the

MD trajectories were initiated from structures belonging

respectively to the folded state, and clusters 2, 3, 4 and 5 (see

below for the definition of the clusters). Optimizing D separately in

each cluster leads to a cluster-dependent diffusion matrix (see Text

S1). However, these variations influence the relevant observables

only mildly. Indeed, the folding relaxation times (see Dynamical

properties section) computed with a cluster-dependent D or with a

constant D (calculated using all the MD trajectories at once) are

consistent within a standard deviation of 6500 ns (see Text S1).

This uncertainty is comparable to the one deriving from the error

on the bins free energy (see Dynamical properties section). All the

diffusion matrices, together with the relaxation times obtained

using them for the kinetic model are reported in Text S1. The

error bars reported for each element of the diffusion matrices

indicate that they are well converged with the simulation length.

As the uncertainty induced by using different D is small, all the

analysis below is performed employing a position independent D
obtained by likelihood optimization using all the trajectories at

once.

The maximum likelihood analysis has been repeated sampling

the MD trajectory at several different time lags Dt. Due to

important memory effects D becomes approximately independent

on the time lag only for Dtw10{12 ns. The diffusion matrix

obtained with Dt~12 ns was used for constructing the kinetic

model. As a consequence, the rate model is by construction unable

to reproduce the kinetics of transitions that occur on a time scale

shorter than 12 ns. The value of few elements of the diffusion

matrix as a function of the time lag is reported in Fig. S7.

Metastable sets (clusters) of the Trp-cage rate model
The rate model described in the Methods section has the form

of a generalized rate equation with the rates given by Eq. 12. The

presence of metastable sets (‘‘clusters’’) was detected applying the

MCL [53,54] method to the Trp-cage kinetic model. The

algorithm requires choosing a parameter p that tunes the

granularity of the description: for p~1 only one cluster is

detected, while for large p all the bins are assigned to different

clusters. Several choices of the p parameter are attempted (in Ref.

[53,54] the value p~1:2 is considered). At 298 K, for p~1:13
only two relevant clusters are found, one with an occupancy of

<90% and one of <5%. The RMSD among the structures

belonging to the big cluster is very large, indicating that, for this

system, p~1:13 is not appropriate. For p~1:14 the large cluster

splits in two clusters with populations of <12% and <77%. Still

the larger cluster includes qualitatively different structures. At

p~1:15 the larger cluster splits further in three, while the other

clusters remain approximately unchanged. Increasing further p up

to 1.17 does not modify significantly the three most populated

clusters, whereas for p~1:2 the system is fragmented in more than
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10 clusters. At p~1:15, only 5 significantly populated (.1%)

clusters are found, the two larger ones having a population of

<58% and <25% respectively (Table 2). The average Ca RMSD

between the clusters structures and the NMR ensemble is <1.8 Å

for cluster 1 and .4.4 Å for cluster 2 and the other clusters.

Moreover, all the bins with Ca RMSD ,2 Å belong to cluster 1.

This allows concluding that MCL analysis using p~1:15 is able to

identify a folded cluster with structural properties similar to the

NMR ensemble. Its occupancy is of 58% at 298 K. Remarkably,

at this temperature it exists another cluster with non-negligible

population (25%) that contains structures that are different from

the structural ensemble generated from the NMR data (Ca

RMSD = 4.4 Å). In the next section the consequences of the

existence of this second cluster in the thermal ensemble at 300 K

are discussed. It is worth to note that in the MD simulations used

for the calculation of D, if the trajectory starts from a structure

belonging to a cluster, it remains there for most of the simulation

(few tens of ns). This means that MD simulations are consistent

with the description of metastable states given by the MCL

algorithm. In Fig. 4A, the most populated clusters obtained for

p~1:15 are shown using a projection on three variables, the Ca

contacts, the a-helix fraction, and the correlations between

consecutive dihedrals. Each color corresponds to a different

cluster, and the lowest free energy bin (attractor) of each cluster is

depicted as a sphere of the same color.

The properties of the clusters depicted in Fig. 4A are

summarized in Table 2. In Fig. 5, the hydrophobic contacts and

the hydrogen bonds with the Trp6 are shown schematically for

each attractor. Selected proton distances are also displayed for the

three most populated clusters. A good agreement with the NMR

unfolded state distances reported in Ref. [21] is found. Cluster 1,

as already anticipated, resembles very closely the NMR structure.

More details will be provided in the following section (the atomic

cartesian coordinates for the reference structure of cluster 1 are

reported in Dataset S1). Cluster 2 has a Ca RMSD of ,4.4 Å with

respect to the NMR structure, but it retains at least part of the

native a-helix. The Trp SASA in this cluster is 70.561 Å2, which

compares with the value of 47.160.6 Å2 observed in the folded

cluster. This indicates that Trp is shielded from the solvent also in

cluster 2. Arg16 forms a p-stacking with Tyr3 (see Fig. 4A) while

Trp6 is in contact with Pro12, Pro18, Gly11 and the aliphatic

chain of Arg16 (see Fig. 5). As outlined in Fig. 5, except for the

Arg16 Hb2-Trp6 Hg2 distance, the cluster 2 attractor(reference

structure) shows Pro12 Hc2-Trp6 Hg2 and Arg16 Hb3-Trp6 Hg2
distances shorter than those in the folded cluster. The nearest

hyperpolarized [21] Trp6 proton can be different in each cluster

(e.g. in cluster 1 the Arg16 Hb2-Trp6 H1 distance is shorter than

Arg16 Hb2-Trp6 Hg2). These distances are in very good

agreement with those found in the NMR experiments [21] for

the unfolded state. This cluster resembles the intermediate

observed in a 100 ns implicit solvent simulation (Ref. [24], the

atomic cartesian coordinates for the reference structure of cluster 2

are reported in Dataset S2). Cluster 3 (orange) still contains a short

a-helix. The Ca contacts are reduced with respect to the folded

cluster and the Trp is partially solvent exposed. The reference

structure of cluster 3 is similar to the state I of Ref. [36] and to the

intermediate structure found in Ref. [31], with the difference that

the Asp9-Arg16 salt bridge in cluster 3 is formed only in a fraction

of the bins belonging to the cluster. This may indicate that the salt

bridge is rather unstable. The Leu7 Hd2-Trp6 H3 distance in the

cluster 3 attractor is shorter than that in the folded state. Also in

this case the distance compare well with the NMR experiments

value [21]. This imply that the presence of cluster 2 and cluster 3

(the two most populated misfolded clusters) is consistent with the

unfolded state ensemble information reported in Ref. [21] (the

atomic cartesian coordinates for the reference structure of cluster 3

are reported in Dataset S3). The other clusters show only a small

residual secondary content and can be generically referred to as

‘‘unfolded states’’. The attractor of cluster 4 is stabilized by the

formation of the Asp9-Arg16 salt bridge (the atomic cartesian

coordinates for the reference structure of cluster 4 are reported in

Dataset S4). The bins belonging to cluster 5 are mostly compact

molten globule structures characterized by the presence of several

hydrophobic and Ca contacts (even more than in the native state)

but small secondary content (see Fig. 4A and Fig. S8). In the most

stable bin of this cluster Trp6 is in contact with Pro17 and Pro18

residues (see Fig. 5, the atomic cartesian coordinates for the

reference structure of cluster 5 are reported in Dataset S5). In

Fig. 4B the occupancies of cluster 1, 2, and 5 are plotted as a

function of temperature. As expected the folded cluster (cluster 1)

increases its occupancy as the temperature decreases. Its

population is 50% at 310 K, a temperature that is consistent with

the experimental melting point of 317 K [19,20]. The error on the

occupancies becomes large at Tw325 K, indicating that the

temperature extrapolation based on Eq. 10 is unreliable after this

temperature. The occupancy of cluster 5 is almost negligible at

300 K (2.8%), but it grows significantly with temperature(see

Fig. 4B). The importance of this will become clear when the kinetic

properties of the system will be discussed. The helical content

decreases only slowly with temperature, consistently with REMD

results in explicit solvent [34]. On the average, only ,1 a-helical
residue melts between 290 and 320 K.

Table 2. Selected properties of the Trp-cage clusters represented in Figure 4A, at 300 K.

1 2 3 4 5

% occupancy 58.360.8 24.660.7 7.060.3 1.260.1 2.860.2

DH (kJ/mol) 0.061.9 5.062.6 11.763.8 13.865.3 38.265.3

TDS (kJ/mol) 0.061.9 2.962.6 6.563.8 4.165.3 30.765.3

Ca RMSD (Å) 1.8260.05 4.4460.03 6.7660.04 5.5460.06 6.0860.05

Trp SASA (Å2) 47.160.6 70.561.0 126.460.7 116.761.0 140.460.8

Helical residues 5.3160.02 2.9160.03 3.8660.04 0.6660.03 1.7060.03

Enthalpies and entropies are expressed with respect to the folded cluster value. The occupancy of each cluster B has been calculated as PB~
X

a[B
e{Fa=T=

X
a

e{Fa=T

where the summation at the numerator is extended to all bins a belonging to the cluster B. The observables reported in the table are evaluated using Eq. 9, where the
summation is extended only to the bins a that belong to a specific cluster. The RMSD is computed as the average RMSD between the cluster structures and all the structures
in 1L2Y PDB entry. The number of helical residues has been computed according to Ref. [82] using the program g_helix in the GROMACS distribution.
doi:10.1371/journal.pcbi.1000452.t002
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Figure 4. Metastable kinetic clusters of Trp-cage. Panel A: metastable sets (clusters) detected by MCL method using p~1:15. The colored
spheres correspond to the lowest free energy bins of each cluster. The corresponding structures are shown with the same color code. Panel B:
occupancy as a function of temperature of cluster 1, 2, and 5.
doi:10.1371/journal.pcbi.1000452.g004
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NMR Properties of Trp-cage
In order to characterize in more detail the nature of the clusters

described in the previous section, it is useful to consider their

NMR properties. As only cluster 1 and 2 are compact and show a

significant content of secondary structure, the investigation is here

restricted to these two clusters.

In Fig. 6A the a protons CSDs of cluster 1 are compared with the

experimental results (full circles). The shifts are estimated as described

in the Method section. The correlation between theoretical and

experimental NMR CSDs is rather good (R2~0:96), while cluster 2

shows a much smaller correlation with experiments, especially for

protons that have negative CSDs. The correlation with NMR data is

even smaller for all the other clusters. This confirms that the cluster

classification deriving from Markov cluster analysis accurately

discriminates between the folded state (cluster 1), an unfolded state

with several native-like features (cluster 2), and all the rest. The

correlation with experiments is retained using in the average the full

ensemble of bin (R2~0:95).

Even if correlation is good, it has to be noted that the

proportionality factor between theoretical and experimental CSDs

is 0.46 in the full ensemble of bins and 0.6 in cluster 1. To

investigate the origin of the variations in the proportionality factor

two 20 ns equilibrium MD simulations have been performed, at

282 K (experimental temperature) and at 300 K, starting from the

NMR structure and with the same computational setup used in the

BE simulation. At both temperatures the proportionality factor

with experimental CSDs is 0.8 instead of 1, therefore 0.8 has to be

considered the reference value for our computational setup. The

optimal proportionality factor of 0.8 is obtained if the CSDs are

computed on the lowest free energy bin of cluster 1. The slope

difference between 0.6 (cluster 1) and 0.8 may be ascribed to small

inconsistencies between the ensemble of structures generated with

BE and by an unbiased MD starting from the NMR structure. The

further slope variation when the calculation is extended to the full

ensemble of bins is most likely a consequence of calculating NMR

properties at 298 K instead of at the experimental temperature of

282 K where the population of cluster 1 is larger.

Using a similar procedure (see Methods) RCS and its

temperature derivative were also computed. It is worth to note

that most of the large CSD are due to the Trp RCS [17]. The

protons whose RCS is large are also those whose RCS depends

more strongly on T , in excellent agreement with the experimental

Figure 5. Trp6 interactions in the clusters reference structures of Trp-cage. Hydrophobic contacts within 3.9 Å and hydrogen bonds(Å) are
displayed. The distances(Å) between Leu7, Pro12, Arg16 and Trp6 selected protons are shown for the 3 most populated clusters. The corresponding
values can be compared with the unfolded state NOE contact distances reported in Ref. [21]. The nearest hyperpolarized Trp6 protons in the NMR
experiment are selected for measuring distances. Short Ile4-Trp6 proton distances [21] (4–5 Å) are not reported in the figure since they are found mostly
in open random-coil like structures and in some more compact cluster with population ,1%. This figure was generated using the program LIGPLOT [81].
doi:10.1371/journal.pcbi.1000452.g005
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data [17]. The a protons RCS temperature derivatives as a

function of the RCS are plotted in Fig. 6B. The results are plotted

as a function of the RCS estimated at 298 K. The comparison is

performed at 298 K and not at the experimental temperature of

282 K in order to avoid error propagation that is unavoidable if

Eq. 10 is used for extrapolating the results for a large temperature

difference. Despite of this, the two observables correlate linearly

(R2~0:94 for the a-protons), consistently with experiments [17].

Side chain protons in the C-terminal part of the protein fall on the

same correlation line, also in agreement with the experiments [17].

A few protons deviate significantly from this linear behavior. The

most significant deviation are observed for Pro12-d2, Pro12-d3,

and Gly11-a3, the last two being also reported experimentally

[17]. The RCS of Pro12-d3 and Pro12-d2 is large, while their

RCS derivative is almost zero. The cluster decomposition

proposed here can be used to elucidate the presence of these

outliers. In fact, the RCS of Pro12-d3 is 20.5360.01 p.p.m. and

20.9760.02 p.p.m in cluster 1 and 2 respectively, while other

protons (except Pro12-d2 and Gly11-a3) have RCS which are less

negative in cluster 2 than in cluster 1 or similar in the two clusters.

The RCS of Gly11-a3 has a similar value in both clusters. This

significant difference derives from the fact that Pro12-d3 and

Figure 6. Simulated NMR chemical shift deviations and ring current shifts in Trp-cage. Panel A: correlation between experimental and
calculated a protons CSD for the cluster 1 (black circles), the lowest free energy bin (empty circles), and the ensemble obtained from a simulation
started from the NMR structure at 282 K (black squares) and 300 K (empty squares). The continuous and dashed lines are obtained from a linear
regression on the black circles and the squares, respectively. The thin dashed line corresponds to a proportionality factor of 1 between experiment
and theory. Panel B: correlation between protons ring current shift temperature derivative and the corresponding ring current shift value evaluated at
298 K. Results are shown for a protons (empty circles) and side chain protons (black circles). Ring current shift temperature derivative is calculated as
a finite difference between 298 and 303 K using the chemical shift temperature extrapolation obtained using Eq. 9 and 10.
doi:10.1371/journal.pcbi.1000452.g006
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Pro12-d2 in cluster 2 are much closer to Trp than in cluster 1.

Since, increasing the temperature, the relative population of

cluster 2 and 1 changes (see Fig. 4B), the RCS of Pro12-d2,

Pro12-d3 and Gly11-a3 changes with temperature less than the

RCS of other protons. In view of these results, the anomalous

behavior of Pro12-d3 and Gly11-a3 observed experimentally can

be considered a signature of the presence of cluster 2 in the

thermal ensemble of Trp-cage.

Dynamical properties: simulated Trp SASA T-jump
experiment

The fluorescence relaxation after a temperature jump (T-jump)

was estimated according to the procedure outlined in the Methods

section. This observable is used in Ref. [18] to infer information on

the Trp cage folding kinetics. The fluorescence properties of the

system are here estimated by computing the Trp SASA, which is

known to correlate with fluorescence [76]. The result shows a

smooth decay to an asymptotic value on the time scale of the

microseconds. A double exponential decay model describes very

accurately the data (R2~0:9986, see Fig. S4). The two time

constants are t1~248, and t2~2313 ns. The large gap between

the first and the second time constant is a strong indication of two-

state behavior. The value of t2 is in agreement with the

experimental relaxation time of 3.1 ms for the florescence T-jump

[18]. This shows that the rate model is capable of reproducing

accurately the dynamics of the real system, at least for what

concerns the relaxation of fluorescence. The microscopic rear-

rangements that determine t2 will be discussed in detail in the next

section. The influence that the error on the free energies and on

the enthalpies has on the results is ,500 ns (see Methods). The

error deriving from neglecting the position dependence of D is

,500 ns (see section Application to the Trp cage folding and Text

S1). Thus the overall error on the relaxation time isffiffi
(

p
5002z5002)*700 ns. Including the correction suggested in

Ref. [77] to take into account the unphysical viscosity of TIP3P

water [78] the relaxation time is t2~3763+1200 ns, still in fair

agreement with experiments.

Trp-cage folding dynamics
Here the dynamics of the system is investigated in more details,

still using the rate model introduced in the Methods section. The

characteristic times of the system are related to the eigenvalues of

the rate constant matrix. Consistently with what is found for the

Trp SASA relaxation, the second largest eigenvalue corresponds to

a characteristic time of 2447 ns. The third eigenvalue corresponds

to 434 ns, with a gap of 2013 ns from the first, consistently with a

two state behavior [18]. The second eigenvector has large positive

components in cluster 1 and 2 and large negative components in

cluster 5. This suggests that the longest relaxation time of the

system is associated to a transition between these states. In order to

analyze more quantitatively this issue, the rates for the transitions

between the clusters found by Markov cluster analysis were

extracted from a very long KMC simulation (tKMC~1:5 seconds).

For two clusters A and B with occupancy PA and PB, the rate

constant to go from A to B was calculated counting the number of

times NAB that a trajectory goes from A to B without passing from

any other cluster during the KMC simulation. The rate to go from

A to B was estimated as kAB~NAB=(PA
:tKMC). To minimize the

number of recrossing, the KMC trajectory is assumed to visit a

cluster any time it visits any bin belonging to the group of lowest

free energy bins containing 70% of the cluster population. Bins

that do not fall in this definition were considered as transition

states. The transition rates obtained in this manner are

represented in Fig. 7. For clarity, all the clusters whose occupancy

is below 1% are omitted from the figure. The equilibration

between cluster 1 and 2 is rather fast and transition times to cluster

3 are also in the sub-microsecond domain, but when the system

reaches cluster 5 on average ,2 ms are necessary to return to the

folded cluster. The folding pathways schematized in figure are

consistent with the two routes proposed by Ref. [36], except for

the transitions involving cluster 5. The folding pathway initiating

from cluster 4 and passing from cluster 3 is characterized by the

early formation of an a-helix and resembles the pathway passing

from state I in Ref. [36]. The pathway passing from cluster 2 is

instead characterized by the formation of several hydrophobic

contacts, while the a content remains on average lower. This

resembles the pathway passing from state L in Ref. [36]. If the

molten-globule state (cluster 5) is neglected the folding and

unfolding rates are compatible with those reported in Ref. [37],

considering the difference in the force field.

Discussion

The kinetic model and its validation
The approach presented here exploits the trajectories of

multiple metadynamics simulations for building a thermodynamic

and kinetic model of complex processes (e.g. protein folding)

whose description requires a large number of collective variables.

The aim of the model is to reproduce the long time scale dynamics

of the system and to extract the metastable sets (clusters) of the

kinetic process. These states may correspond, for example, to

misfolded conformations. The model is constructed as follows: in a

first step the equilibrium probabilities of a finite set of

conformational states, or bins, are determined by a weighted-

histogram procedure exploiting the low-dimensional free energies

estimated by metadynamics. In a second step an approximated

description of the kinetics is obtained estimating the transition

rates among the bins. The diffusion matrix entering in the model is

estimated by a maximum-likelihood procedure [47] employing

relatively short unbiased MD trajectories. The approach was

tested on the Ace-Ala3-Nme peptide in explicit solvent using the

six backbone dihedral angles as CVs. For this system equilibrium

MD trajectories on the microsecond timescale are sufficient to

sample the relevant conformational space and were used as a

reference to evaluate the accuracy of the kinetic model obtained

from the BE results. The bins free energies obtained with the

method presented here are in excellent agreement with free

energies computed from equilibrium MD. The transition rates

among neighboring bins are used to run a long KMC. The mean

first passage times among selected states obtained in this way are in

agreement with those extracted from the reference MD simula-

tions.

A kinetic model of Trp-cage folding
Trp-cage is a designed miniprotein that, due to its small size and

fast folding rate, has been the object of several theoretical

investigations. Here this system is analyzed with a new method,

introduced in this paper, that allows deriving a kinetic model of the

system by analyzing a set of biased MD trajectories. The model

shows the presence of several metastable states (clusters). The most

populated one can be classified as the folded state. The second

most populated cluster has a Ca RMSD of ,4.4 Å from the NMR

structure and retains part of its secondary structure (see Fig. 4A).

In this cluster the Trp is more strongly packed between Gly11 and

Pro12 than in the NMR structure and its population relative to

cluster 1 increases with temperature (see Fig. 4B). This can explain

the anomalous behavior of the temperature dependence of the

CSD of Pro12-d3 hydrogen atom observed both experimentally

Kinetic Model of Trp-Cage Folding
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[17] and in the simulated NMR experiment (see Fig. 6B). The

cluster 2 and cluster 3 reference structures are consistent with

experimental unfolded state distances [21] (see Fig. 5). The

presence of these two clusters is also in agreement with the

strengthening of proline(s)-Trp excitonic interactions with tem-

perature and the broad a-helix melting observed in Ref. [20].

In spite of the presence of several intermediates both the

simulated T-jump experiment (see Fig. S4) and the spectrum of the

kinetic matrix associated with the rate model are consistent with a

two state kinetics [18]. The calculated time constant of the folding

process is ,2.360.7 ms (or ,3.861.2 ms including the correction

of Ref. [77]) in fair agreement with the experimental relaxation

time [18]. To investigate the folding dynamics using the kinetic

model we derived a folding mechanism which involves the

detected intermediates (see Fig. 7). Starting from open structures,

the folding process can follow two main routes. One of them

consists in an earlier formation of the N-terminal a-helix (cluster 3)

followed by the hydrophobic collapse, while the other involves first

the formation of hydrophobic contacts with less helical content

(cluster 2) and then the completion of both secondary and tertiary

structure. This is in agreement with the pathways found in Ref.

[36]. The time required to undergo these transitions is in the sub-

microsecond time domain, which is less than the slowest relaxation

time found in the simulated T-jump experiment and more

consistent with the third eigenvalue of the kinetic matrix. Indeed,

the folding mechanism (see Fig. 7) shows that, if Trp-cage reaches

the molten globule state, more than 2 ms are necessary to reach the

folded state. This implies that the experimental folding time is

ultimately determined by the slow equilibration between the first

two clusters and the compact molten globule state that acts as a

kinetic trap. In this state no secondary structure element is present,

but a hydrophobic core with several tertiary contacts is formed. In

Ref. [79] the Pro12Trp mutation brings to an increased stability of

the folded state and a faster folding time of ,1 ms. This seems to

be in agreement with the folding mechanism presented here, since

the mutation would strongly stabilize cluster 1 and cluster 2 but

not the molten globule cluster. A possible way to assess

experimentally the presence of the molten globule could be a

mutation of Pro17 to a more polar residue (e.g. Asn) or a chemical

modification of this residue as the lower rigidity associated to the

absence of the Pro17 ring could destabilize the folded state [80]. In

fact in the attractor of cluster 5 Pro17 shows a strong interaction

with Trp6, and this interaction does not play a key role in other

relevant clusters (see Fig. 5).

Figure 7. Schematic representation of the Trp-cage folding dynamics. Times (inverse of rates) for the transitions between the relevant
clusters are shown on the arrows. The uncertainty on each transition time due to both the error on the free energies and the position-dependence of
D is at most 40%. Only the clusters whose population is higher than 1% are shown. Continuous arrows correspond to direct transitions between
clusters that occur on a time smaller than 1 ms. Dashed arrows correspond instead to transition that occur on a time larger than 1 ms or taking place
through other intermediate low-populated clusters, not represented in the Figure.
doi:10.1371/journal.pcbi.1000452.g007
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In conclusion, we have presented an approach aimed at

constructing a rate model for complex biomolecular processes

starting from a set of biased MD trajectories. One could argue that

other approaches aimed at the same purpose are based on less

severe assumptions. Distributed simulation techniques allow

computing the folding rates directly, and have been applied

successfully for studying folding in explicit solvent of even larger

systems [32,43,45]. Normal replica exchange [29,34], when

converging, provides a direct measure of the equilibrium

distribution, and does not require a complicated reweighting

procedure. Finally, if one would use an implicit solvent description

of the system, one could observe several folding/unfolding events

by simple finite-temperature molecular dynamics, and it would not

be necessary to use an enhanced sampling technique. In this

framework, a rate model for the system could be constructed in a

more rigorous manner [43,44,46]. Still, despite of the approxi-

mations that are done, the approach presented here provides a

picture of the dynamics and thermodynamics of the system that is

detailed and in agreement with all the experimental evidences

presented so far. We believe that this result ultimately derives from

the combined use of an accurate (but expensive) force field, and of

a method that, at the price of generating non-equilibrium

trajectories, allows an efficient exploration of configuration space

and the accurate calculation of free energies.

Supporting Information

Dataset S1 Cartesian coordinates of folded state (cluster 1)

reference structure in Protein Databank format.

Found at: doi:10.1371/journal.pcbi.1000452.s001 (0.02 MB

TXT)

Dataset S2 Cartesian coordinates of cluster 2 reference

structure in Protein Databank format.

Found at: doi:10.1371/journal.pcbi.1000452.s002 (0.02 MB

TXT)

Dataset S3 Cartesian coordinates of cluster 3 reference

structure in Protein Databank format.

Found at: doi:10.1371/journal.pcbi.1000452.s003 (0.02 MB

TXT)

Dataset S4 Cartesian coordinates of cluster 4 reference

structure in Protein Databank format.

Found at: doi:10.1371/journal.pcbi.1000452.s004 (0.02 MB

TXT)

Dataset S5 Cartesian coordinates of cluster 5 (compact molten

globule) reference structure in Protein Databank format.

Found at: doi:10.1371/journal.pcbi.1000452.s005 (0.02 MB

TXT)

Figure S1 Structures of the attractors for the relevant free

energy basins of Ala3 found in the MD and BE simula-

tions. Inset: Schematic picture of Ala3 test system. The dihedral

angles w and y displayed in the figure are chosen as CVs for the

BE simulation. They are labeled with suffix according to their

position along the chain.

Found at: doi:10.1371/journal.pcbi.1000452.s006 (4.96 MB TIF)

Figure S2 Free energy profiles as a function of w1 (see Fig. S1)

for Ala3. Panel A: time evolution of 2VG(s,t) during a BE

simulation between 1 and 8 ns; after ,5 ns the bias potential

converges and grows parallel to itself. Panel B: Free energy profile

from the 1.8 ms MD simulation compared with the profiles

obtained from three independent BE simulations. The 3 BE

profiles are obtained by applying eq. 2.

Found at: doi:10.1371/journal.pcbi.1000452.s007 (0.49 MB TIF)

Figure S3 Correlation between free energies of neutral walker

and WHAM for Trp-cage. Correlation between the bins free

energy evaluated using the approach described in the Methods

section and using the neutral walker ensemble at T = 298 K. Inset:

cumulative number of bins with an error smaller than the value

reported in abscissas. The error is estimated using Eq. 8. The value

of g entering this equation is estimated from the correlation time of

the bin occupancies and is equal to 10 ps.

Found at: doi:10.1371/journal.pcbi.1000452.s008 (0.39 MB TIF)

Figure S4 Simulated Trp-SASA T-jump of Trp-cage. Simulated

TRP SASA evolution as a function of time at 298 K starting from

an initial distribution at 291 K (black line). The red line is a double

exponential fit to the data. The two time constants of fit are

t1 = 248 ns, t2 = 2313 ns. The diffusion matrix entering in the

kinetic model was calculated using several MD simulations for a

cumulative time of ,500 ns. A time lag of 12 ns was used in the

maximum likelihood approach for calculating D.

Found at: doi:10.1371/journal.pcbi.1000452.s009 (1.16 MB TIF)

Figure S5 Free energy profiles of Ala3 along the six backbone

dihedral angles. The profiles are calculated using eq. 2 on the last

10 ns of a 30 ns BE simulation.

Found at: doi:10.1371/journal.pcbi.1000452.s010 (0.15 MB TIF)

Figure S6 Free energy profiles as a function of time for Ala3

obtained with a 30 ns BE simulation. 2VG is reported for each

backbone dihedral angle at several times after the filling time.

Each time is represented with a different color: black (10 ns), red

(11 ns), green (12 ns) and blue (13 ns). The parallel growth in time

of the metadynamics bias potential is evident from the picture.

Found at: doi:10.1371/journal.pcbi.1000452.s011 (0.36 MB TIF)

Figure S7 Diffusion matrix of Trp-cage as a function of the time

lag. Few elements of the diffusion matrix are reported. A MD

trajectory of ,500 ns and the maximum likelihood approach

explained in the manuscript is used for calculating D at each time

lag. After approximately 8–10 ns the diffusion matrix elements

show a converging behaviour.

Found at: doi:10.1371/journal.pcbi.1000452.s012 (1.00 MB TIF)

Figure S8 Bins network topology at T = 298 K projected on

three dimensions: Ca contacts, dihedral correlations and a-helix

fraction. Each bin is represented as a sphere whose dimension and

color is associated with the free energy (kcal/mol). The location of

the folded state and the molten globule (cluster 5) lowest free

energy bins are indicated in the figure.

Found at: doi:10.1371/journal.pcbi.1000452.s013 (3.07 MB TIF)

Text S1 Diffusion matrix tables and correspoding rates.

Found at: doi:10.1371/journal.pcbi.1000452.s014 (0.07 MB PDF)
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