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Abstract

Many large-scale studies on intrinsically disordered proteins are implicitly based on the structural models deposited in the
Protein Data Bank. Yet, the static nature of deposited models supplies little insight into variation of protein structure and
function under diverse cellular and environmental conditions. While the computational predictability of disordered regions
provides practical evidence that disorder is an intrinsic property of proteins, the robustness of disordered regions to
changes in sequence or environmental conditions has not been systematically studied. We analyzed intrinsically disordered
regions in the same or similar proteins crystallized independently and studied their sensitivity to changes in protein
sequence and parameters of crystallographic experiments. The observed changes in the existence, position, and length of
disordered regions indicate that their appearance in X-ray structures dramatically depends on changes in amino acid
sequence and peculiarities of the crystallographic experiment. Our study also raises general questions regarding protein
evolution and the regulation of protein structure, dynamics, and function via variations in cellular and environmental
conditions.
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Introduction

In the past decade, significant progress has been achieved in our

understanding of the ubiquity and function of intrinsically

disordered proteins [1–8]. What once seemed to be a set of

exceptions to the traditional structure-to-function paradigm,

where every protein was believed to have unique and stable 3D

structure to carry out specific function, turned into a field where

computational and experimental approaches were developed and

combined to accurately characterize disordered proteins [9],

understand their function [4,7,8] or mechanisms of binding [10–

13], and estimate their abundance in the protein universe [14–16].

Undoubtedly, bioinformatics analyses and methods played a

significant role in this process, especially a set of predictors and

statistical techniques [8,17]. However, despite previous success,

questions can be raised about the generality of our view of

disordered proteins in terms of sequence-to-structure determinants

and influence of environmental conditions. Here, we attempt to

address these questions by investigating the variability of observed

disordered regions with changes in sequence and environmental

conditions used for crystallization.

Recent studies document the effects of varying environmental

conditions on regions of intrinsic disorder in similar proteins.

Zurdo et al. studied two yeast ribosomal stalk proteins, P1a and

P2b, which have different functional roles despite high sequence

similarity and suggested that their functional differences stem from

different structures [18]. Although neither protein is compact in

solution and possesses folded structure under physiological pH and

temperature, P1a was found to be mostly disordered with low

helical content, whereas P2b had significant residual structure.

This residual structure disappeared at temperatures below 30uC,

but was regained under low pH or in the presence of

trifluoroethanol. Palaninathan et al. reported that conformational

changes were observed in the tertiary and quaternary structures in

the crystals of the native human transthyretin (TTR) [19]. At

pH = 4.0, TTR forms a tetramer and its crystal structure includes

electron density for a functionally important EF helix-loop region.

At pH = 3.5, this region is completely disordered.

Our search of the Protein Data Bank (PDB) resulted in

additional examples where slight changes in experimental

conditions strongly correlated with the presence or absence of

disordered regions. One such case is cyclophilin 40 (Cyp40),

shown in Figure 1 (complete list of analyzed proteins can be found

in Table S1, Suppl. Data). Cyp40 is one of the principal members

of a family of large immunophilins found in mammals. The exact

biological function of large immunophilins is incompletely

understood, though they are believed to be strongly associated

with Hsp90 and play a crucial regulatory role in the upkeep of

steroid receptor activity. In PDB, Cyp40 is stored as 1IIP-A

(tetragonal form) and 1IHG-A (monoclinic form). Both structures

were obtained using the vapor diffusion, hanging drop method

with recorded temperature of 277K, but 1IIP-A was crystallized at

a pH of 8.0, whereas 1IHG-A was crystallized at pH of 6.1. The

two proteins are identical, yet a rmsd of 14.2 Å was obtained from
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their structural alignment. Importantly, 1IHG-A contains an

ordered region A299-Y365 that was absent from the structure of

1IIP-A (Figure 1). Neither protein was solved in the presence of

natural ligands.

In addition to experimental studies, computational analyses of

redundant sets of experimentally determined structures for

identical protein regions have provided evidence of the existence

of numerous protein fragments observed in both ordered and

disordered states [20]. The authors analyzed these ‘dual-

personality’ fragments and showed that they are characterized

by amino acid compositions different than those for either ordered

or disordered proteins and that their main functional roles are

regulatory.

The examples discussed above demonstrate the strong influence

experimental parameters can have on disordered residues in

crystallized proteins. However, a hypothesis that variation in

experimental conditions could potentially trigger structural

changes affecting the existence, position or length of intrinsically

disordered regions has not been systematically tested and

quantified. In the following work, we provide evidence of

significant variation of disordered regions, and protein structures

in general, under the same or different experimental conditions

that we believe can serve as a basic indicator of environmental

regulation of protein structure and disordered regions in vivo.

Results

To estimate the consistency of disordered residues and regions

in protein crystal structures, we studied the overlap between

disordered regions in pairs of highly similar proteins crystallized in

independent experiments. At least one protein sequence in a pair

was required to contain disordered regions of length$3 residues

and two proteins were considered similar if their global sequence

identity was $90%. We investigated the influence of temperature,

pH value, and salt concentration at the time of crystallization. To

facilitate this analysis, each experimental factor was clustered into

two groups, low and high (Materials and Methods). Thus, we refer

to the experiments carried out under conditions clustered in the

same or different groups as same (similar) and different (dissimilar)

experimental conditions, respectively.

Consistency of intrinsically disordered residues
Figure 2 shows the mean agreement of disordered residues

obtained in pairs of identical proteins and proteins with sequence

identity in the range [90, 100)%. When all experimental

conditions were similar, the agreement of disordered residues for

identical sequences was 92% (95% for monomers only). For the

same set of experimental conditions, however, and sequence

identity in the range [90, 100)%, the agreement of disordered

regions decreased to 52% for the set of all protein chains

(P = 1.4?10248; Wilcoxon test) and 50% for monomers

(P = 5.5?10210; Wilcoxon test). We also investigated the situation

when at least one experimental condition was different (e.g.

temperature, salt concentration, and/or pH value). For both

identical proteins and those in the [90, 100)% range, the reduction

of the mean agreement of residues designated as disordered was

about 11 percentage points (see Fig. 2 caption for P-values). In an

attempt to estimate which of the experimental conditions had the

largest influence on the variability of observed disordered regions,

a count for each condition was incremented for each protein pair

with inexact matches of disordered regions whenever this

condition differed. We found that salt concentration had slightly

larger impact (39%) than temperature (31%) and pH value (30%),

as shown in Figure 2 (inset). Furthermore, we found that, in

general, an increase in temperature (6%) and pH value (7%) lead

to an increase in the number of disordered residues in identical or

similar protein chains. In contrast, an increase in salt concentra-

tion (11%) leads to a decrease in the number of observed

disordered residues.

We also grouped all pairs of sequences with identity$90% into

those solved using at least one, two, or three similar experimental

conditions and at least one, two, or three different experimental

conditions. We estimate that, assuming unchanged experimental

platforms for structure determination, the mean agreement of

intrinsically disordered residues is 73% (79%, 83%) if one (two,

three) or more experimental conditions are similar (Figure 3, left).

When different experimental conditions were considered, the

agreement of disordered residues was consistently around 50%.

In Table 1 we present complete results of the consistency

measurements for both ordered and disordered regions for the

pairs of chains with sequence identity$90%. Ordered regions

from such pairs of proteins appeared as highly overlapping

(.98%), which is due to the unbalanced number of ordered and

disordered residues in the non-redundant data set (14:1 ratio).

Finally, we estimated the mean agreement of disordered

residues using pairs of similar and identical protein sequences

wherein experimental information at the time of pair generation

was not considered. If identical protein pairs are considered, the

mean overlap of disordered and ordered residues was 89% and

99%, respectively. When we considered disordered regions of

length 30 or more, the mean overlap was 93% and 98%,

respectively (Figure 4). Interestingly, all pairs from our analysis in

which long disordered regions significantly differed belonged to

dissimilar experimental classes thus strongly suggesting that the

appearance of disordered regions is influenced by variations in

experimental conditions (e.g. 1COT-B and 1S6P-B). Consider-

ation of similar sequences resulted in a significant reduction in the

mean overlap: 31% for all disordered regions and 35% for long

disordered regions only. Note that the slightly smaller overlap of

disordered residues, compared to the one from Figure 2, is due to

the influence of completely ordered proteins for which we were

Author Summary

Intrinsically disordered proteins, proteins that exist as
conformational ensembles without time-invariant residue
positions, have emerged as an important and common
class of proteins in all kingdoms of life. Disordered proteins
are characterized by distinct amino acid preferences,
distinct mechanisms of binding, distinct substitution
patterns and rates of evolution, and functional roles
predominantly related to signaling and regulation. In
recent years, disordered proteins have also been linked to
human disease, both through conformational diseases or
via host-pathogen interactions. However, despite in-
creased importance, most studies of disordered proteins
do not consider the environmental context in which the
protein is found or the level of sequence change that
would strongly influence the property of being disordered.
To address this, we studied and quantified the variability of
intrinsically disordered protein regions under different
external conditions, such as temperature or pH, and
compared them to the variability introduced by small
sequence changes. We found that both have a strong
impact on the existence of disordered regions, thus
potentially regulating protein function by environmental
factors or facilitating evolutionary change.

Consistency of Intrinsically Disordered Regions
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unable to extract experimental conditions and therefore were

excluded from the analysis in Figure 2.

Consistency of intrinsically disordered regions
The observed consistency of disordered residues may not

necessarily be the same at the level of entire disordered regions.

Figure 3 (right) shows the percentage of disordered regions that

were found as ordered in their entirety when the same or similar

proteins were crystallized in independent experiments. When all

crystallographic parameters were similar, 13% of regions were

found as completely ordered. On the other hand, when all

parameters were different we estimated that close to 50% of the

regions were lost (P = 1.7?10210; Wilcoxon test).

To understand whether a loss of disordered regions could be

due to potential ligand binding, we investigated pairs of proteins

(p1, p2), where p1 contained a disordered region r for which p2

contained all ordered residues in the segment aligned with r. We

considered that a ligand influenced disorder-to-order transition if

any of its atoms could be found within 10 Å of any of the ordered

residues from p2 corresponding to r as well as requiring that the

ligand was not present in the model of protein p1. We found that

about 25% of disordered regions that underwent order-disorder

transition were due to direct ligand binding. Thus, ligands in PDB

considerably influence the existence of disordered regions.

However, their influence appears to be a less significant factor

than experimental conditions or sequence variation.

Predictability of intrinsically disordered residues
The results presented in Table 1 and Figures 2–4 provide estimates

regarding the limits of predictability of intrinsically disordered

residues. By combining the mean agreement of both ordered and

disordered residues in identical protein chains when all experimental

conditions agree, we estimate that the prediction accuracy of

computational models constructed to predict disordered regions,

measured by averaging sensitivity and specificity, is approximately

95%. This accuracy reduces to 90% if the experimental conditions

are not taken into consideration, which is closer to the situation used

in computational studies. However, since we considered only

identical pairs of proteins, both of these limits seem overly optimistic.

Thus, we believe that a more realistic estimate is provided when all

sequence pairs with identity$90% are considered and experimental

conditions are ignored. The observed agreement of disordered and

ordered residues in such a case was 66% and 96%, respectively.

Thus, the maximum balanced-sample accuracy is probably about

Figure 1. Structural alignment, using DALI, of two crystal structures of cyclophilin 40. Molecule 1IIP-A (blue) and 1IHG-A (pink) were
crystallized under different pH values (8.0 vs. 6.1) and solved in different space groups. Regions that are observed as disordered in 1IHG-A are colored
in red.
doi:10.1371/journal.pcbi.1000497.g001

Consistency of Intrinsically Disordered Regions
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Figure 2. Percentage of overlap of disordered residues between protein pairs with sequence identity [90, 100)% and identical
proteins. Set of all proteins is shown in orange and monomers are shown in green. Proteins were crystallized under at least one different
experimental condition or three similar experimental conditions. Bars with asterisk (*) indicate results obtained using less than 100 proteins. (Inset)
Percentage of times temperature, pH, and salt conditions changed when non-zero overlap occurred between a pair of proteins. P-values for 100%
identity vs. [90, 100)% groups: all proteins with three similar conditions P = 4.0?10262, all proteins with at least one different condition P = 1.8?102109,
monomers with three similar conditions P = 7.3?10211, monomers with at least one different condition P = 3.5?10231. P-values for 100% identity
group: all proteins with three similar conditions vs. at least one different condition P = 1.6?10226, all monomers with three similar conditions vs.
monomers with at least one different condition P = 5.6?1023. P-values for [90, 100)% identity group: all proteins with three similar conditions vs. at
least one different condition P = 1.4?1023, all monomers with three similar conditions vs. monomers with at least one different condition P = 3.4?1022.
doi:10.1371/journal.pcbi.1000497.g002

Figure 3. Consistency of disordered residues and regions as a function of experimental conditions. (Left) Percentage of overlap of
disordered residues for pairs of proteins whose sequence identity is $90% and crystallized under at least one, two, and three similar and different
experimental classes. (Right) Percentage of disordered regions that were observed as ordered in their entirety between the same set of protein pairs.
Bars with asterisk (*) indicate results obtained using less than 100 proteins.
doi:10.1371/journal.pcbi.1000497.g003

Consistency of Intrinsically Disordered Regions
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81%. Interestingly, the best models in CASP7 assessment have

reached 74–78% balanced-sample accuracy [21], so it is unclear

whether the current general predictors can be significantly improved.

The knowledge of experimental conditions, on the other hand, should

be able to improve the predictability of disordered residues by at least

5 percentage points (Figure 2). In addition, structures of solved

homologs and mutants could provide an additional increase if the

points of low stability can be identified.

Discussion

This study addresses the relationship between intrinsically

disordered protein regions, protein sequence, and parameters of

crystallographic structure determination. The existence, position,

and length of disordered regions in highly similar proteins was

shown to strongly depend on variation in amino acid sequence as

well as the parameters of crystallographic experiments, such as

temperature, pH, and salt concentration. For identical protein

chains, most of the observed rearrangements in the crystal lattice

can be explained by variation in experimental conditions. For

highly similar chains, both experimental conditions and the

intrinsic change of protein structure were significant factors.

However, we are hesitant to assign relative importance to these

factors since the observed sequence differences in PDB are likely to

be non-random (for example, mutations with functional or

phenotypic significance are frequently of interest for structure

determination). The presence/absence of ligands appeared to be

less significant in our analysis.

Table 1. Mean overlap for disordered (D) and ordered (O) regions for protein pairs with $90% sequence identity crystallized
under similar and different experimental conditions.

At least one condition At least two conditions At least three conditions

Same Number of proteins 4086 3488 852

Conditions Mean D overlap 73.0 78.8 83.4

Mean O overlap 98.7 99.0 99.1

Mean accuracy 85.9 88.9 91.2

DRs missing (%) 23.8 17.9 13.3

Different Number of proteins 1427 440 42

Conditions Mean D overlap 49.3 45.9 49.7

Mean O overlap 98.0 98.4 98.8

Mean accuracy 73.7 72.1 74.2

DRs missing (%) 47.2 50.9 46.3

Mean accuracy is an average of overlaps between ordered and disordered regions.
doi:10.1371/journal.pcbi.1000497.t001

Figure 4. The mean observed agreement between ordered and disordered residues in similar and identical protein chains. All
disordered regions ($3 residues) and long disordered regions ($30 residues) are separately presented. The P-values for the [90, 100)% and 100%
sequence identity pairs were P = 0.29 and P = 0.02, respectively.
doi:10.1371/journal.pcbi.1000497.g004

Consistency of Intrinsically Disordered Regions
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The presence of a disordered region under one set of

experimental conditions and absence under another can be

understood through the framework of the probabilistic theory of

protein folding. At every time instant, a protein can be assigned a

probability of any particular conformation based on its energy

landscape [22,23]. For ordered proteins, such energy landscapes

are characterized by single (or a small number of) deep minima

with high probabilities associated with the corresponding confor-

mations. Since the number of conformations in the high energy

states is huge and the barriers for moving away from the dominant

conformation are relatively large, the energy landscape has a

shape of a funnel [23]. This minimum energy state is often

associated with protein function and is called the native state. On

the other hand, the energy landscapes for disordered proteins are

shallower, typically characterized by flat and rugged valleys, i.e.

they contain a large number of energy minima with relatively

small barriers for transitioning between distinct conformations

[24]. Consequently, the probability of each conformation

corresponding to an energy minimum is relatively low. The

absence of a high probability conformation eventually leads to

missing electron density during crystallographic experiments.

Thus, the variability in structures of identical proteins solved

under different experimental conditions is caused by the

environment-driven changes of the energy landscape (Figure 5).

The altered probability distribution over the space of allowed

tertiary structures ultimately results in a population shift between

ensembles of pre-existing conformational isomers [23–25].

The folding funnel theory can not only accommodate both the

thermodynamic and the kinetic requirements for protein folding

[22], but also provide a general framework under which folding,

binding (including allostery), or effects of mutations and post-

translational modifications can be considered [23,24,26]. For

example, folding and binding essentially represent the same

phenomenon with a distinction that the chains are disconnected in

the case of binding [23,25,27]. In allostery, a lower probability

conformation may be the one preferred for binding. If this

complex is the preferred state, the increased probability of a bound

conformation will cause a population shift over time from one

dominant conformation to the one preferred for binding [26,28].

Recently, population shifts were demonstrated for ubiquitin,

where all bound conformations available from crystallographic

experiments were shown to be accessible in solution by NMR [29].

A limitation of our analysis is that it only included disordered

proteins with at least two deposited structures in PDB, and thus

may be a non-representative sample. In addition, this data set is

enriched for short disordered regions that have distinct sequence

biases relative to long regions [30,31]. A full analysis including

long disordered regions was not possible due to the small number

of available protein pairs; however, the overall trends indicate that

long disordered regions may be equally sensitive to variation in

sequence and experimental conditions.

In general, this work provides evidence that disordered protein

regions are very sensitive to changes in amino acid sequence and

experimental conditions of crystallographic experiments. The

success of such crystallographic experiments depends on the

complexity of protein’s structure and also on a number of

experimental or environmental factors including purity of the

protein sample, temperature, ionic strength, pH, and precipitants

such as ammonium sulfate or polyethylene glycol [32]. Undoubt-

edly, there are a number of factors that distinguish crystallization

conditions from physiological conditions, but there is also a body

of evidence that protein structures often correspond to their native

states [32]. Therefore, it is reasonable to speculate that a wide

range of intracellular and extracellular conditions may have

similar effects on the dynamics of protein 3D structure in vivo. The

habitats for many living organisms vary from acidic to cold or hot,

with various species being able to tolerate wide ranges of

environmental conditions. As suggested and quantified by our

analysis, any similar variations in cellular environments could have

profound effects on protein structure, dynamics, and function.

Sensitivity to sequence changes, on the other hand, may facilitate

the evolution of function, especially for proteins with the same fold

classification.

Materials and Methods

Data sets
Our initial data set S comprised of 18,884 protein chains from

PDB (March 2008) characterized by X-ray crystallography with

resolution of at most 2 Å (Table S2, Suppl. Data). It contained two

subsets: D–a set of 14,646 chains containing at least one disordered

region of length$3, identified as those missing C-a atoms in the

ATOM fields; and OD–a set of 4,238 completely ordered chains

such that each sequence was $90% identical to one or more

sequences in D. For each sequence in S we extracted experimental

conditions: temperature, pH value, and concentration of salt (e.g.

ammonium sulfate, potassium sodium tartrate, sodium cacodylate,

and a number of others), whenever available (1 sequence in D and

1502 sequences in OD, did not have any experimental conditions

extracted due to differences in file format). While temperature and

pH value can be obtained from designated fields in PDB, the salt

concentration was mined from REMARK200 and REMARK280

fields and manually checked in a number of cases. For simplicity of

our analysis, each experimental condition was clustered into two

groups, high and low, as discussed in the Results section (Figure S1,

Suppl. Data). Temperature was clustered into group high (Th),

containing temperatures greater than or equal to 200 K and group

low (Tl), containing temperatures below 200 K at the time of

experiment. pH value was clustered into Ph and Pl based on

threshold 6.5, while the salt concentration was clustered into Sh

and Sl based on the threshold of 100 mM.

To construct the non-redundant data sets, the initial set D was

split into overlapping subsets, where each subset set Di contained

proteins crystallized at experimental conditions Ei M {Th, Tl, ThPh,

ThPl, …, TlPlSl}. More specifically, data set containing proteins

crystallized at conditions ThPh, had proteins solved at high

Figure 5. Stylized depiction of the energy landscape as a
function of the environment. For low temperatures, on the left, the
energy landscape is characterized by a dominant, high-probability,
conformation (ordered state). For high temperatures, on the right, the
valley of the landscape flattened and became rugged without any
single dominant conformation (disordered state).
doi:10.1371/journal.pcbi.1000497.g005

Consistency of Intrinsically Disordered Regions
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temperature and high pH value, but the salt concentration could

be from the entire range or unknown. Each data set Di was also

filtered into a non-redundant set Di2nr such that no two chains had

sequence identity greater than or equal to 25% on a global level

(BLOSUM62 matrix, gap opening penalty = 211, and gap

extension penalty = 21). This approach of defining non-redundant

sets was used for estimating the overlap of disordered regions

between classes Ei and Ej. The size of each data set is shown in

Table 2.

Consistency of disordered residues and regions
Consistency of disordered residues and regions was estimated by

calculating the mean overlap of ordered and disordered regions in

similar or identical protein chains, crystallized at the same or

different experimental conditions. Two protein chains were

considered to be similar if their global sequence identity was

$90%. This threshold was selected to ensure not only similar 3-D

structure between two proteins [33], but also similar function [34].

The mean overlap between two globally aligned proteins p M Di–nr

and q M Sj, where the sequence identity (si) between p and q was

greater than or equal to threshold t1 and lower than t2, was

calculated as follows. Let Op and Dp be the sets of positions of

ordered and disordered residues in protein p, and Oq and Dq sets of

positions of ordered and disordered residues in protein q,

respectively, as shown in Figure 6. The residue positions are

calculated after the alignments are completed. The indices

corresponding to insertions and deletions, as well as the indices

corresponding to disordered regions of length below 3, were

ignored.

We calculate the overlap between ordered (oo) and disordered

regions (od) as

oo p,qð Þ~ 1

2
: Op\Oq

�� ��
Op

�� �� z
Op\Oq

�� ��
Oq

�� ��
 !

od p,qð Þ~
1

2
: Dp\Dq

�� ��
Dp

�� �� z
Dp\Dq

�� ��
Dq

�� ��
 !

0

8><
>:

if Dq

�� ��w0

if Dq

�� ��~0

Note that q can be a completely ordered sequence, while p is

guaranteed to contain at least one disordered region. The average

overlap of ordered and disordered regions for a pair (p, q) is

calculated as

acc p,qð Þ~ 1

2
: oo p,qð Þzod p,qð Þðð Þ

We use the term accuracy for the mean overlap due to its

similarity to a prediction process in which ordered and disordered

regions in one protein serve as predictions for the other protein.

The overlaps between pairs of proteins are then generalized to

the level of data sets. An average accuracy for chain p is first

calculated over all sequences q that are within the sequence

identity range [t1, t2) from p, denoted by si(p, q) M [t1, t2). Then, the

average accuracy between data sets Di–nr and Sj, corresponding to

experimental conditions Ei and Ej, is calculated as the mean over

all proteins p. We formalize the entire calculation as

acc Ei,Ej

� �
~

1

Ni

X
p[Di{nr

1

N
p
j

:
X

q[Sj , si p,qð Þ [ t1, t2½ Þ
acc p,qð Þ

where Ni~ Di { nrj j and N
p
j is the number of sequences q M Sj that

when aligned to p have sequence identity in range [t1, t2). Assuming that

the maximum prediction accuracy of intrinsically disordered regions is

limited by an empirically observed agreement in similar proteins, this

approach provides an estimate of the upper limit of the balanced

sample accuracy over the given two sets of experimental conditions.

The results for several groups of experimental conditions were obtained

by simple group averages. The number of pairs for each group of

experimental conditions is listed in Table S3 (Suppl. Data).

To quantify the agreement of disordered regions for two sets of

experimental conditions Ei and Ej, we used a conceptually similar

Table 2. Number of proteins with available temperature, salt,
and pH value data (pre- and post-removal of redundant
proteins) along with respective number of disordered and
ordered residues in each class.

Temperature Salt pH

Thigh Tlow Shigh Slow Phigh Plow

D # proteins 3,675 14,822 4,413 1,986 11,715 6,136

# disordered
residues

41,868 220,068 55,870 24,191 158,063 96,378

# ordered
residues

788,496 3,150,810 831,521 393,542 2,534,009 1,306,568

Dnr # proteins 556 1,600 700 392 1,393 846

# disordered
residues

10,196 33,815 13,699 7,724 27,717 18,695

# ordered
residues

161,864 455,274 188,698 106,142 401,679 232,957

Only proteins with explicitly state values corresponding to temperature, pH or
salt were used.
doi:10.1371/journal.pcbi.1000497.t002

Figure 6. Calculation of the mean overlap between ordered
and disordered residues between two homologous proteins p
and q. About 30% of the disordered residues in p are disordered in q
(the length of D1

p \ D1
q over the length of D1

p | D2
p). Similarly, 100% of

disordered residues in q are disordered in p (the length of D1
q \ D1

p

over the length of D1
q). Thus, the mean agreement of disordered

residues between p and q is about 65%. The mean agreement of
ordered residues is calculated using the same approach.
doi:10.1371/journal.pcbi.1000497.g006

Consistency of Intrinsically Disordered Regions
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approach. For each protein p M Di–nr we calculated the fraction of

regions for which the overlap with sequence q M Sj was zero. The

fraction of such regions in p was then averaged over all proteins

from q M Sj where si(p, q) M [t1, t2). Finally, the fraction of regions

that undergo order-disorder transition between two sets of

experimental conditions Ei and Ej was further averaged over all

proteins p M Di–nr.

Statistical confidence for the estimates was calculated by

bootstrapping the non-redundant data sets Di–nr 10,000 times.

Supporting Information

Figure S1 Histogram of observed temperature (a), pH (b), and

salt concentration (c) in the data set.

Found at: doi:10.1371/journal.pcbi.1000497.s001 (3.54 MB TIF)

Table S1 Complete list of analyzed protein pairs.

Found at: doi:10.1371/journal.pcbi.1000497.s002 (0.12 MB

XLSX)

Table S2 Complete list of analyzed proteins.

Found at: doi:10.1371/journal.pcbi.1000497.s003 (0.59 MB

XLSX)

Table S3 The number of pairs for each group of experimental

conditions.

Found at: doi:10.1371/journal.pcbi.1000497.s004 (0.02 MB

XLSX)
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