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Phylodynamics: The Discovery
Phase

The advent of extremely high through-

put DNA sequencing ensures that genomic

data from microbial organisms can be

acquired in unprecedented quantities and

with remarkable rapidity. Although this

genomic revolution will affect all microbes

alike, our focus here is on RNA viruses, as

the rapidity of their evolution, which is

observable over the time scale of human

observation, allows phylodynamic infer-

ences to be made with great precision. In

the foreseeable future it is likely that

complete genome sequencing will become

the standard method of viral characteriza-

tion, providing the highest possible reso-

lution for phylogenetic studies. The rapid-

ity with which genome sequence data were

generated from the ongoing epidemic of

swine-origin H1N1 influenza A virus [1] is

testament to the power of this technology.

Understandably, pathogen discovery is

a major focus of this new-scale genome

sequencing [2]. It is now possible to

sequence the entire assemblage of viruses

in a particular tissue type or host species

[3–5], as well as all those viruses that are

associated with specific disease syndromes

[6,7]. In essence, this new era of metage-

nomics constitutes a crucial taxonomic

discovery phase in virology and epidemi-

ology that allows the genetic characteriza-

tion of new viruses within hours of their

isolation.

Assembling an inventory of viruses that

may emerge in human populations is of

major importance to public health and to

students of biodiversity. However, it is only

the first step in developing a full quanti-

tative understanding of the processes that

shape the epidemiology and evolution—

the phylodynamics—of RNA virus infec-

tions [8]. To achieve this goal, we argue

here that the field of viral phylodynamics

requires its own discovery phase; that is, a

comprehensive and quantitative analysis

of the interaction between the ecological

and evolutionary dynamics of all circulat-

ing RNA viruses from the molecular to the

global scale. Such a marriage of phyloge-

netic and epidemiological dynamics is

currently only potentially possible for the

select few human viruses for which large

genome sequence datasets have been

acquired, such as HIV and influenza A

virus, and even here fundamental gaps in

our knowledge remain (see below). Indeed,

it is striking that so few complete genome

sequences are currently available for

viruses whose epidemiological dynamics

are known in exquisite detail, such as

measles [9,10]; these sequences have been

so sparsely sampled in both time and space

that a full phylodynamic perspective has

not yet been achieved. We contend that a

better understanding of RNA virus phylo-

dynamics will allow more directed at-

tempts at pathogen surveillance, facilitate

more accurate predictions of the epidemi-

ological impact of newly emerged viruses,

and assist in the control of those viruses

that exhibit complex patterns of antigenic

variation such as dengue and influenza.

Just as PCR and first-generation DNA

sequencing ushered in the science of

molecular epidemiology, so next-genera-

tion sequencing may herald the age of

phylodynamics. Box 1 lists a number of

key questions that can be addressed within

this phylodynamics research program.

A number of important advances are

needed to meet our goal of a comprehen-

sive catalog of the diversity of phylody-

namic patterns in RNA viruses. Because

answers to many of the most interesting

research questions depend on sufficiently

large sample sizes, we require large

numbers of sequences that have been

rigorously sampled according to strict

temporal, spatial, and clinical criteria,

and that as much of these data are publicly

accessible as possible. A phylodynamic

analysis has little value unless viral ge-

nomes are sampled on the same scale as

the epidemiological processes under inves-

tigation.

The only acute virus for which a suitably

expansive genome dataset currently exists is

influenza. In this case, the .4,000 com-

plete genomes generated under the Influ-

enza Genome Sequencing Project [11]

have provided important new insights into

the evolution and epidemiology of this

major human pathogen [12]. To highlight

one key insight here, these genome se-

quence data have revealed that multiple

lineages of influenza virus are imported and

circulate within specific geographic locali-

ties (even within relatively isolated popula-

tions), generating both frequent mixed

infections [13] and reassortment events

[14]. Even so, the sampling of these

genome sequences (and associated epide-

miological covariates) may not be dense

enough to fully capture spatial dynamics

[15]. There is also a marked absence of

samples from asymptomatically infected

patients (or those with mild disease), so it

is impossible to link genetic variation to

clinical syndrome. Such a bias against

viruses sampled from individuals with

asymptomatic infections is a common

problem in molecular epidemiology.

Epidemiological Factors

It is also clear that for many RNA

viruses we need to better understand a
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number of key epidemiological factors,

such as the interaction between local

persistence, epidemic dynamics in both

time and space, the impact of measures to

control the spread of infection, and the

consequences of adaptive evolution in

those viral genes that interact most

intimately with the host immune response.

It is instructive to imagine the ideal

database for addressing these issues. In

the case of acute infections, the goal would

be to collect four parallel datasets on the

appropriate scale of interest during out-

breaks (Figure 1). This database would

comprise, first, epidemic dynamics in time and

space, ideally at a comparable or higher

frequency than the generation time of

individual infections. Second, and in

parallel, our ideal study would collect viral

genome sequence data at these time points,

sampling both within and among infected

hosts. Both disease incidence data (bol-

stered by contact tracing) and viral

sequence data furnish information on the

transmission network traced by an out-

break. Third, we would need to know the

underlying contact network of susceptible

individuals, which serves as fuel for the

epidemic. This is a difficult structure to

measure directly, although novel measure-

ments of human interactions are increas-

ingly shedding light on the problem [16].

Finally, measurements of the immunity

structure of our contact network [17]—

reflecting the past history of the virus in

the population—are key for understanding

both the dynamics of epidemic spread and

the evolutionary pressures that shape virus

diversity.

The outbreak of foot-and-mouth disease

(FMD, an RNA virus infection of cattle) in

the UK in 2001 resulted in a database that

is arguably closest to our ideal on the

epidemiological scale [18,19]. Notwith-

standing a variety of gaps in data from

the epidemic [20], it is one of the most

well-documented large outbreaks in terms

of the availability of spatiotemporal inci-

dence data in parallel with contact tracing

and the underlying spatial pattern of the

susceptible farms as a measure of the

contact network. In addition, analyses of

viral sequences from relatively small sam-

ples of farms have drawn important

conclusions about epidemic spread and

allowed the testing of new methods to

recover the spatiotemporal patterns writ-

ten into sequence data [18,20]. Impor-

tantly, samples exist from over half the

,2,000 confirmed infected premises in

2001: sequencing whole FMD virus ge-

nomes from these samples would provide a

vast resource for basic and applied devel-

Box 1. Key Research Questions in RNA Virus Phylodynamics

(1) What is the range of phylodynamic patterns observed in RNA viruses? Can they

be categorized into specific groups? How do these patterns relate to other ‘‘life

history’’ variables exhibited by RNA viruses?

(2) What epidemiological and evolutionary processes give rise to these phylodynamic

patterns? What generalities can be drawn?

(3) How commonly does natural selection (compared to neutral evolutionary

processes) determine the population dynamics of pathogens? On what scale does

natural selection act? How does viral immune escape reduce herd immunity at the

population level and allow the persistence of viral lineages in epidemic troughs?

(4) What is the range of spatial patterns exhibited by RNA viruses? What

epidemiological factors are responsible for these patterns?

(5) How do different viral species (various respiratory viruses, for example) interact

in host immunity?

Figure 1. Sampling scales for acute RNA viruses and the associated phylodynamic processes that viral genome sequence data and
host sampling can elucidate.
doi:10.1371/journal.pcbi.1000505.g001
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opments in integrating epidemiological

and phylogenetic information to dissect

spatiotemporal spread. We suggest that

achieving this task would be a huge

contribution to understanding the phylo-

dynamics of acute viruses. Another virtue

of animal infections like FMD is that the

relationship between the determinants of

viral variability within and between hosts

can also be dissected by experimental

infections (see [21] for another example).

A parallel limitation of many phyloge-

netic approaches to viral epidemiology is

that they have often proceeded in the

absence of the necessary metadata, such as

the precise time and place of sampling or

those that relate to clinical syndrome [22].

A perhaps more challenging goal for

phylodynamics is therefore to integrate

phylogenetic patterns with other biological

variables, such as the nature of antigenic

variation, the capacity for drug resistance,

or the clinical syndrome of the host, as well

as the spatial host network data outlined

above. Cohort studies may be the most

productive way to link genomics with

epidemiological variables.

The lack of a synthesis of phylogenetic

and phenotypic/epidemiological data is

reflected in the current debate over the

mode of antigenic evolution in human

influenza A virus. Although it has long

been known that the hemagglutinin (HA)

and neuraminidase (NA) proteins of hu-

man influenza A virus evolve by strong

natural selection to evade the host immune

response—a process commonly called

antigenic drift [23,24]—the precise mech-

anisms by which such drift occurs are

uncertain. From a phylodynamics perspec-

tive, the key observation is that over long

time periods a single lineage of HA

sequences from subtype A/H3N2 influen-

za viruses links epidemic to epidemic [23],

although intensive sampling has revealed

that single populations may harbor far

higher levels of genetic diversity [25].

Rather different phylodynamic patterns

are seen in other influenza viruses, includ-

ing those sampled from birds (Figure 2).

Three models have been proposed to

explain the distinctive phylodynamic pat-

tern observed in human A/H3N2 viruses:

(i) that there is short-lived cross-immunity

among viral strains [26], (ii) that the HA

evolves in a punctuated manner among

antigenic types that are linked by a

network of neutrally evolving sites [27],

and (iii) that the virus continually reuses a

limited number of antigenic combinations

[28].

To determine which combination of

these models best explains influenza phy-

lodynamics will require more expansive

genome sequence data, as well as focused

sampling and epidemiological surveillance

in Southeast Asia, which is likely the global

source population for the virus [29]. More

importantly, it is also crucial that these

phylogenetic data are combined with

detailed, spatiotemporally disaggregated

antigenic information. Indeed, it is re-

markable that despite the abundance of

information on the antigenic characteris-

tics of individual influenza viruses, most

notably through the use of the hemagglu-

tinin inhibition (HI) assay [17], these data

have not been routinely linked to phylo-

genetic information. It is clear that both

antigenic and phylogenetic analyses would

greatly benefit from each other.

New-Generation Computational
Tools

Another important challenge for phylo-

dynamics is to match the remarkable

ongoing developments in genome se-

quencing technology to the increase in

the power of the computational tools

available to analyze these sequence data.

Crucially, in phylogenetics, the size of the

space of possible trees increases faster than

exponentially with the number of sequenc-

es, such that the availability of datasets

comprising thousands of complete ge-

nomes [30] presents a major combinato-

rial problem. This problem creates a

growing discrepancy between our ability

to generate genome sequence data and our

capacity to analyze them using the most

sophisticated methods. Redressing this

Figure 2. Phylodynamic patterns of human and avian influenza viruses. The left diagram shows the phylogeny of the hemagglutinin (HA)
gene of human H3N2 influenza A viruses sampled between 1985 and 2005, revealing the ‘‘ladder-like’’ branching structure indicative of antigenic
drift. By comparison, the phylogeny of the HA gene of human influenza B virus sampled over the same interval (center diagram) shows the co-
circulation of the antigenically distinct ‘‘Victoria 1987’’ and ‘‘Yamagata 1988’’ lineages, as well a shorter length from root to tip, reflecting a lower rate
of evolutionary change. Finally, the phylogeny for the HA gene of H4 avian influenza virus (right diagram) reveals the deep geographic division
between the Eurasian and Australian versus North American lineages of this virus.
doi:10.1371/journal.pcbi.1000505.g002
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balance should be the major goal of

bioinformatics in the future; and in fact

some progress has been made recently

[31].

It is also clear that improvements need

to be made to the methods that are

available to analyze genome sequence

data. A powerful set of research tools in

this area comprises those based on coales-

cent theory, as this provides a natural link

between the analysis of epidemiological

and phylogenetic patterns [8,32]. In par-

ticular, the coalescent allows the demo-

graphic characteristics of viral populations

(particularly population size and growth

rate) to be inferred directly from gene

sequence data. Coalescent analyses are

especially powerful in the case of RNA

viruses, because their rapid evolution

means that temporal and spatial dynamics

are discernable over the period of human

observation [33] and can in theory be

combined with time series epidemiological

data. However, currently available coales-

cent methods are restricted by the limited

scope of demographic models and their

inability to fully incorporate spatial infor-

mation. In particular, most acute RNA

viruses have complex population dynamics

that combine distinct periods of growth

and decline. The most commonly used

phylodynamic tool available in such cases

is the Bayesian skyline plot (and the related

Bayesian ‘‘skyride’’ [34]), which represents

a piecewise graphical depiction of changes

in genetic diversity through time [32]. In

the case of neutral evolution, such changes

in genetic diversity also reflect underlying

changes in the number of infected hosts.

Although the Bayesian skyline plot can

reveal unique features of epidemic dynam-

ics (Figure 3) [30], precise estimates of

parameters such as population growth rate

are not yet possible.

The coalescent methods commonly

used to study RNA virus evolution focus

largely on temporal dynamics (a natural

function of the rapidity of viral evolution),

with little consideration of patterns of

spatial diffusion. Although these phylogeo-

graphic patterns are becoming increasing-

ly well described for RNA viruses [35], few

methods effectively recover the spatial

component in genome sequence data.

For example, commonly used parsimony-

based approaches consider a single phylo-

genetic tree without an explicit spatial

model (see, for example, [36]). In addition,

these methods usually describe the place of

origin and direction of spread of viral

lineages without formal tests of competing

spatial hypotheses. As a specific case in

point, although gravity models (in which

patterns of viral transmission reflect the

size of and distance between population

centers) have been applied successfully to

morbidity and mortality data from human

influenza A virus to describe its spread

across the United States [37], they have

yet to be interpreted within a phylogenetic

setting. A clear push for the future should

therefore be the development of coalescent

tools that integrate the analysis of spatial

and temporal dynamics within a single

framework, with a focus on those that

combine phylogenetic data and informa-

tion on the dynamics of the host contact

network of susceptible, infected, and

immune individuals.

Looking beyond the Consensus
Sequence

The vast majority of studies of RNA

virus evolution undertaken to date, partic-

ularly of those viruses that cause acute

infections, rely on the analysis of consensus

sequences in which the nucleotide shown

for any given site is the most common

among all the genomes within a patient.

Although the use of consensus sequences is

adequate for many aspects of molecular

epidemiology, in which complete genomes

may suffice to determine even tight

transmission chains [20], there is growing

evidence that key evolutionary processes

occur beyond the consensus. In particular,

extensive intra-host gene sequencing has

revealed the existence of minor viral

subpopulations within individual hosts that

are not detected by consensus sequencing

and that are sometimes of great pheno-

typic importance [38,39]. Given the in-

trinsically high mutation rates of RNA

viruses, as well as the immense size of

intra-host populations, such extensive ge-

netic and phenotypic diversity is only to be

expected.

Figure 3. Fluctuating genetic diversity of influenza A virus. The figure shows a Bayesian skyline plot of changing levels of genetic diversity
through time for the HA gene (165 sequences) of A/H3N2 virus sampled from the state of New York, US, during the period 2001–2003. The y-axes
depict relative genetic diversity (Net, where Ne is the effective population size, and t the generation time from infected host to infected host), which
can be considered a measure of effective population size under strictly neutral evolution. Peaks of genetic diversity, reflecting the seasonal
occurrence of influenza, are clearly visible. See [30] for a more detailed analysis.
doi:10.1371/journal.pcbi.1000505.g003
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A full description of the extent and

structure of intra-host viral genetic varia-

tion is critical for understanding evolu-

tionary dynamics, informing on such issues

as the frequency of mixed infection, and

hence the degree and extent of cross-

immunity; the frequency with which

antigenic variants are produced and

whether antigenic evolution can occur on

the time scale of individual infections; and

the size of the population bottleneck that

might accompany inter-host transmission.

As a case in point, it is commonly assumed

that viruses experience a severe population

bottleneck as they are transmitted to new

hosts, a phenomenon that greatly restricts

the power of natural selection to fix

advantageous mutations. Although this

assumption appears to be true in some

cases [40], whether this is a general

property of RNA viruses is unclear; the

evidence that multiple viral lineages can

be transmitted among hosts argues against

a narrow bottleneck in all cases [41]. To

more accurately determine the size of the

transmission bottleneck, analyses of intra-

host genetic diversity along known trans-

mission chains will be essential. On a

larger scale, it is unclear whether phylo-

dynamic patterns differ within and among

hosts, and whether any differences among

these scales of analysis are qualitative or

quantitative.

Intra-host sequence data are also essen-

tial for understanding the process of cross-

species virus transmission and emergence.

Key parameters in determining whether a

virus will adapt successfully to a new host

species include the extent of intra-host

genetic diversity, the fitness distribution of

the mutations produced, and how many of

these mutations will assist adaptation to

new host species [41–43]. No such data

are available for any acute RNA virus, so

testing models for viral emergence is

difficult. We believe, however, that under-

standing the mechanics of this adaptive

process is at least as important as surveying

for new emerging viruses.

Challenges for the Future

Our discussion has highlighted a num-

ber of key challenges for a successful

phylodynamic research agenda. These

challenges comprise data, theory, and

methodological issues, and are briefly

summarized as follows. First, with respect

to data, it is clear that more genome

sequences must be acquired and with

increased temporal and spatial precision.

For example, wherever possible, GenBank

records should contain the exact day and

precise latitude and longitude of sampling.

In addition, it is essential that these

sequence data be linked with the relevant

metadata, such as the associated clinical

syndrome and (if applicable) measure of

antigenicity. Similarly, it is essential that

equivalent genome sequence data be

acquired from multiple time points within

individual hosts. Second, in terms of

theory, it is crucial that we fully integrate

patterns of viral evolution across multiple

epidemiological scales, from within hosts,

to local outbreaks, and on to global

pandemics. Although the coalescent is

hugely useful in this respect, it is essential

that its theoretical framework be extended

to incorporate models of population

growth and decline that most accurately

reflect the population dynamics of acute

RNA viruses, in particular the dynamics of

the susceptible ‘‘denominator’’ that fuels

epidemics. Sequencing of all available

samples from the UK 2001 FMD epidem-

ic would yield great scientific dividends

here. Third and finally, with respect to

methodology, new computational tools are

needed to rapidly make phylodynamic

inferences from genomic datasets that

may contain thousands of sequences and

that efficiently integrate genomic with

other forms of biological data. We hope

this review will stimulate research in all

these areas.
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9. Bjørnstad ON, Finkenstädt B, Grenfell BT (2002)

Dynamics of measles epidemics. I. estimating

scaling of transmission rates using a time series

SIR model. Ecol Monogr 72: 169–184.

10. Grenfell BT, Bjornstad ON, Finkenstädt BF
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