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Abstract

Fluctuations in the copy number of key regulatory macromolecules (‘‘noise’’) may cause physiological heterogeneity in
populations of (isogenic) cells. The kinetics of processes and their wiring in molecular networks can modulate this molecular
noise. Here we present a theoretical framework to study the principles of noise management by the molecular networks in
living cells. The theory makes use of the natural, hierarchical organization of those networks and makes their noise
management more understandable in terms of network structure. Principles governing noise management by ultrasensitive
systems, signaling cascades, gene networks and feedback circuitry are discovered using this approach. For a few frequently
occurring network motifs we show how they manage noise. We derive simple and intuitive equations for noise in molecule
copy numbers as a determinant of physiological heterogeneity. We show how noise levels and signal sensitivity can be set
independently in molecular networks, but often changes in signal sensitivity affect noise propagation. Using theory and
simulations, we show that negative feedback can both enhance and reduce noise. We identify a trade-off; noise reduction in
one molecular intermediate by negative feedback is at the expense of increased noise in the levels of other molecules along
the feedback loop. The reactants of the processes that are strongly (cooperatively) regulated, so as to allow for negative
feedback with a high strength, will display enhanced noise.
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Introduction

Some molecular processes involved in cellular regulation operate

in a regime of low molecule numbers (a few to tens per cell).

Inevitable fluctuations in reaction rates, induced by thermal noise,

can then bring about significant heterogeneity in isogenic popula-

tions by causing fluctuations in copy numbers of molecules [1–6]

(reviewed in [7–10]). Fluctuations arise in molecule levels because of

the asynchronous occurrence of synthesis and degradation events.

The extent of noise in the molecule number of a species is commonly

captured by a measure of noise significance, defined as the variance

in the copy number divided by the squared mean copy number, as

determined from many single-cell snapshots for a population of

(isogenic) cells. For molecules engaged in equilibrium reactions, this

ratio is of the order of 1 divided by their mean copy number, making

noise in such molecule numbers irrelevant whenever the molecule

numbers exceed 100. For systems away from thermodynamic

equilibrium and depending on kinetics and stoichiometry, noise can

become appreciable even at high copy numbers for molecules

(hundreds to thousands per cell) [11]. The noise in a specific

molecule is partially determined by the molecules it forms a network

with, due to noise propagation [12–14]. A molecule with a large

copy number might display large noise, due to its communication

with a molecular species with a low copy number. This may explain

much of the noise found in the levels of many proteins. Despite their

high mean levels, many of them are short-lived and are translated

from mRNAs occurring at low levels [7,8].

Our understanding of the functional consequences of particular

network structural aspects, such as feedback, cascades, cooperative

enzymes, and time-scale separation, has profited greatly from

numerous theoretical studies in the last decades (e.g. [15–21]).

Many of these studies adopted a metabolic control analysis

perspective on metabolic and hierarchical networks; where the

latter networks may involve signaling and gene expression. [17,22–

24] (recently reviewed in Bruggeman et al. [25]). They focussed on

deterministic (macroscopic) network properties rather than taking a

stochastic (mesoscopic) perspective. Hierarchical networks consist of

modules, called levels in this framework, that are composed out of

reaction networks where molecules affect the rates of processes as

reactants and effectors. Inter-level interactions occur via effector

interactions only; this means that the regulating molecules of one

level act as activators and inhibitors of processes in another level

without being consumed in the latter level. Examples of hierarchical

networks are gene-expression and signaling cascades or metabolic

systems involving gene expression and signaling.

Metabolic control analysis and its theoretical extensions have

shown that sensitivity amplification and feedback in hierarchical

networks allows for a repertoire of mechanisms for ultra- or

insensitive (robust) responses to changes in particular signals and it

has given us insight into distribution of control in metabolic

networks [15,16,23,24,26–28]. These mechanisms also play a

pivotal role in noise propagation through signaling and gene-

expression cascades as indicated by experimental work and

numerical simulations [12–14]. Noise transmission depends on
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the strength of macromolecular interactions (sensitivity) and on time

scales. High frequency fluctuations in the copy number of one

molecule can only transfer to other molecules if it affects an enzyme

(or uncatalyzed process) that operates at even faster (internal)

kinetics. If the reaction catalyzed by that enzyme involves other

molecules, then noise will be transferred to the molecule numbers of

these reactants if the enzyme is fast enough to track the fluctuations

in the regulator. If the enzyme was not sensitive to the regulator,

noise transfer would not have occurred.

Stochastic (mesoscopic) dynamics of molecular networks can be

described by the so-called master equation, which models a

Markov process (with continuous time and discrete-state space). It

specifies the rate of change of the probability density functions for

all the copy numbers of molecules (the system’s state) over time

[29]. Linear noise approximation (LNA) [11,12,29,30] provides a

first order approximation of the dynamics of the probability

densities described by the master equation. It provides exact

solutions for networks described by linear rate equations (e.g. of

the sort, k:x but neither k:x:y nor k:x= Kmzxð Þ).
We will reformulate LNA in terms of response analysis (RA),

developed within the framework of metabolic control analysis

[24,26,31], with the aim of merging the two methods. In this way,

we can exploit the extensive knowledge about control and responses

of hierarchical molecular networks within metabolic control analysis

for studying the principles of noise propagation. In the first section, we

introduce LNA and RA to derive the basic equation of the new,

combined theory. Subsequently, we describe how noise in a single

molecular intermediate is received and transmitted by its surrounding

molecular network. We derive equations that indicate how noise is

transmitted along cascades and how it is modulated by processes that

operate at certain time-scales, feedback and feedforward loops. The

analysis yields new insight into potent mechanisms for noise

reduction, as well as in which mechanisms may be at the origin of

the frequently observed heterogeneity of clonal cell populations.

Results

Derivation of the theoretical framework
The deterministic dynamics of the average copy numbers of

molecular intermediates of biochemical reaction networks are

often described by a system of ordinary differential equations in

the following form [17] (assuming a single compartment),

1

V

d

dt
SnT p,tð Þ~Nv SnT p,tð Þ,p,Vð Þ ð1Þ

The stoichiometric matrix N has as entries nij , which denote the

stoichiometric coefficient of the i-th molecular intermediate in the

j-th reaction. The rate vector v has as entries the rate equations of

the reactions. The rate equations depend on the copy numbers of

molecules, compartment volume (V) and kinetic parameters

(entries of p). Without loss of generality, we assume that the

system is described in terms of independent variables, i.e. no linear

dependencies occur in the rows of N [32]. The units of SniT are

copy numbers per cell; concentration is obtained by division by

system volume (V).

In a macroscopic steady state, with steady state molecule

numbers SnTS (solution to Eqn. 1 at steady-state conditions), an

estimate of the magnitude of fluctuations can be obtained with

linear-noise approximation (LNA) [9,11,29,30]. LNA prescribes a

Gaussian distribution for the probability density function of the

molecular numbers at steady state. In steady-state LNA, the

covariance matrix SdndnT derives from the following fluctuation-

dissipation theorem,

N
Lv

LSnT
SdndnTzSdndnT N

Lv

LSnT

� �T

zNDvNT~0: ð2Þ

It contains the Jacobian matrix N Lv
LSnT, the rates v and the

stoichiometric matrix N. A diagonal matrix is denoted by Dv, with

the elements of vector v as diagonal elements. All factors of Eqn. 2

are evaluated at a (asymptotically-stable) steady-state of reference of

the macroscopic system description. Since, each elementary

reaction can induce noise, reversible reactions have to be split into

their forward and backward elementary rate. If the units are taken

to be concentrations rather than copy numbers, the volume V
appears as a multiplier in front of the last term in Eqn. 2 [11]. LNA

is commonly derived as a mesoscopic limit of the master equation,

only then does the probability density function for the state become

a multi-variate Gaussian distribution. Even though, LNA is strictly

not applicable to processes having only a few molecules as reactants

in our experience it works remarkably well in those regimes.

We shall now reformulate Eqn. 2 in terms of quantities that are used

to describe responses and noise levels of molecular systems, i.e. local

response coefficients and noise strengths. Control and responses of

modular and hierarchical systems, such as gene-expression and

signaling cascades or metabolic systems involving gene-expression

and signaling, have been studied as extensions to metabolic control

analysis [22–24] (recently reviewed in Bruggeman et al. [25]).

Hierarchical networks are composed out of reaction network segments,

so-called levels, that interact not by way of mass flow but solely via

regulatory influences. This means that the regulator, originating from

one level, where it is being synthesized and degraded, acts as a modifier

of a rate in yet another level without it being consumed by the latter

process. Hereby the stoichiometric matrix of the entire hierarchical

network becomes block-diagonal, which provided the mathematical

basis for hierarchical control analysis and modular response analysis

[22–24]. In this work, noise transmission occurs between levels. Intra-

level noise transmission can also be treated by LNA. This is not our aim

here. The work of Levine and Hwa [33] considers intra-level noise

propagation for metabolic networks.

Author Summary

Within cells, fluctuations in molecule numbers are inevitable,
since the synthesis and degradation of molecules are not
synchronised. Such molecular noise can be transferred to
other molecules through regulatory interactions. Noise in
molecular networks, and especially in gene expression, has
been studied extensively over the past years, both exper-
imentally and through mathematical modelling. In this work,
we present a theoretical framework that merges concepts
derived from metabolic control analysis (which was originally
developed to describe the control in metabolic pathways)
with linear noise approximation (a concept from statistical
physics). This framework is useful to analyse how noise
propagates through molecular networks, how noise can be
managed within the networks and how different network
designs reduce or enhance noise. The present theory makes
use of the natural, hierarchical organization of regulatory
networks and makes their noise management more under-
standable in terms of network structure. Within this paper, we
apply the framework to signaling and regulatory cascades,
and analyse how feedback and time scale separation
influence noise propagation in molecular networks.

Noise Management by Molecular Networks
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Response analysis describes the responses of levels with respect

to each other. Local response coefficients quantify the interaction

strengths between species of different levels. Local response

coefficients are given by r
SnjT
SnkT~L lnSnjT

�
L lnSnkT - which we

shall often denote as r
nj
nk

. They denote the fractional change in the

average steady state copy number of molecule j, SnjT, (in a

recipient level) upon a fractional change of the mean copy number

of molecule k, SnkT, in a sender level; while keeping all other

molecule copy numbers fixed at their reference steady-state values.

Hence, local response coefficients quantify the strength of direct

interactions between levels in hierarchical regulatory networks.

The matrix of local response coefficients can be interpreted as a

normalised Jacobian matrix [24,31],

r~{D1=SnTS

:D1=l
:NLv=LSnT:DSnTS

: ð3Þ

Global responses of molecular networks to changes in their

environment can be understood in terms of the strength of the

molecular interactions and the network structure using modular

response analysis [24]. Modular response analysis derives from

modular approaches to metabolic control theory. In earlier

works modular response analysis was used to determine

interaction strengths from steady state and transient data

[31,34].

The diagonal values li of the Jacobian matrix N Lv
LSnT equal

SjnijLuj

�
LSniT with nij as the stoichiometric coefficient of the i-th

intermediate in reaction j. Their reciprocal values are the entries

of the diagonal matrix D1=l. They can be interpreted as local or

intrinsic eigenvalues for each variable, i.e. when all other variables

are held fixed at their steady-state values. Intrinsic eigenvalues

determine the intrinsic dissipation time scale of a molecular species

as determined by its synthesis and degradation reaction, as one

would obtain ddSniT=dt~lidSniT for the decay of a fluctuation in

species i in the (artefactual) condition that all other variables were

held fixed. (This does not describe the normal response of the

system to a fluctuation in ni; then it would bring about a response

in other species which in principle could affect the dissipation of

the fluctuation in ni through network-level feedback.) A local

eigenvalue defines an intrinsic dissipation time scale ti (~{1=li)

and the units of li are therefore 1= time½ �. For the simple case of

synthesis and degradation of mRNA, each described with mass

action kinetics, lmRNA would equal the mRNA degradation rate

constant, kdeg. The life time of the mRNA would be given by

1
�

kdeg.

Molecular noise is often expressed in terms of a noise strength,

gii~Sd2niT
�
SniT2, corresponding to a squared coefficient of

variation. Noise strengths appear as diagonal entries in the

normalised covariance matrix,

g~D1=SnTS
SdndnTD1=SnTS

: ð4Þ

The off-diagonal entries are scaled co-variances, i.e.

gij~SdnidnjT
�

SniTSnjT
� �

. They quantify the correlations be-

tween fluctuations. If they equal ‘{1’, ‘0’, or ‘1’ fluctuations in the

copy numbers ni and nj are anti-correlated, uncorrelated, and

positively correlated, respectively. Reformulation of the fluctua-

tion-dissipation theorem in terms of interaction strengths (response

coefficients) and noise strengths yields the following relation,

{Dlrg{grTDlzD1=SnTS
NDvNTD1=SnTS

~0 ð5Þ

This equation merges response analysis for hierarchical

networks with linear noise approximation. The term on the right

is the so-called diffusion matrix which captured the fluctuation

generating potential of the network. This potential increases with

the stoichiometric coefficients and the rate of reactions. Its

magnitude is reduced by the steady-state molecule numbers.

The two terms on the left of Eqn. 5 capture the fluctuation

dissipating potential of the network. This potential depends on

interaction strengths and increases with a higher values for the

intrinsic eigenvalues, which act as rate constants for fluctuation

dissipation. Interaction strengths have a dual role, as we shall see

below, they can contribute to the enhancement and reduction of

noise. Since, they act also as the determinants of robustness, signal

sensitivity and homeostatic properties of networks, they will prove

very important in this work. Even though changes in their values

may be beneficial to signal transmission, they may at the same

time enhance noise propagation. We will show how such negative

side effects can be modulated in networks by time scale separation

and feedback design.

Below we will outline a method where each molecule is

considered as a noise source in a hierarchical network. All noise

generated by processes somewhere in the system propagates

through the hierarchical network via the direct interactions, paths

and cycles between network segments that act as levels. The

strengths of these interactions are captured in terms of local

response coefficients and enhance or reduce the resultant global

noise in the level of molecular species. Noise propagation will be

shown to depend on the amplifying or attenuating potential of

molecular interactions and the time scale of interaction paths in

the network. LNA is not restricted to hierarchical networks, noise

transfer between molecules that are linked via stoichiometrically

coupled interactions can be treated as well. Here we report only

the analysis of hierarchical networks.

Intrinsic noise: single molecular species as noise sources
We illustrate how noise arises in a molecular network by

considering a simple system first; one molecular intermediate is

converted by a single synthesis and degradation reaction. A

generic network is depicted in Figure 1C, A and B show specific

examples. Hereby we gain insight into how noise is generated in

larger networks, which we will treat in the following sections.

Intrinsic noise in the copy number of a molecule is the noise that

remains when all other molecules in the network are held constant.

Application of the above derived formalism yields the following

expression for the intrinsic noise strength (cf. [9,11]):

gXX ~
SdnX

2T
SnX T2

~{
uS

SnX TlX

1

SnX T
, ð6Þ

The net steady-state flux through the system is denoted by uS .

The first factor in Eqn. 6 equals the concentration control

coefficient of the synthesis rate; denoted by CSnX T
u1

in terms of

metabolic control analysis. This coefficient quantifies the extent of

control of the synthesis reaction on the steady-state copy number

of molecule X , SnX T, as the fractional response in this amount

upon a fractional change in the activity of the synthesis process

(e.g. ksynth). In the simplest pathway design, with the first reaction

product insensitive and the second reaction first-order in nX , this

control coefficient equals 1. Then, the noise equals that of the

Poisson distribution obtained for systems at thermodynamic

equilibrium, i.e. SnX T{1. Indeed this control coefficient, which

equals minus that of the second reaction on the concentration of

Noise Management by Molecular Networks
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X , measures the extent to which the copy number noise deviates

from this classical picture. If the first reaction is product insensitive

and the second reaction saturated with X, then the control

coefficient can become quite high and the noise can much exceed

the Poisson case. In more complicated situations the sensitivities of

both reactions are variable. For a general biochemical pathway

(Figure 1A), the intrinsic eigenvalue, containing the sensitivities

(elasticity coefficients), equals, lX ~ Lu1

LSnX T { Lu2

LSnX T. In this situation,

the noise depends on the state of the network.

In a covalent-modification cycle (the signalling system depicted

in Figure 1B), the intrinsic eigenvalue is given by

lep~
Luk

LSnepT
{ ep

e
Luk

LSneT
{

Lup

LSnepT
{ ep

e

Lup

LSneT

� �
; with ep as the phos-

phorylated form of the enzyme (uk and up denote the rates of the

kinase and the phosphatase, respectively). When this cycle operates

in its ultra-sensitive regime [27] it will display large noise.

It is illuminating to interpret Eqn. 6 in terms of the timescales in

the system. The time scale of the generation of fluctuations is given

by the turnover time of X , tFLUC~nX=uS ([time/(generated

fluctuation of size 1 molecule]). The ‘local’ eigenvalue lX , which

corresponds to a diagonal element of the Jacobian matrix, provides

an estimate for the timescale to dissipate fluctuations in X ,

tDISS~{1=lX (unit: [time/(dissipated fluctuation of size 1
molecule)]). The ratio of these times gives the accumulated size

of the fluctuation during the time required to dissipate a

fluctuation of size one molecule. Rewriting equation (6) gives,

gXX ~
tDISS

tFLUC

1

SnX T
: ð7Þ

This equation indicates that if the time to generate a fluctuation

would be increased, such that a smaller number of fluctuations are

generated per unit time, the noise would reduce (at a constant

dissipation time for a fluctuation). In other words, the accumulated

deviation from the average number of molecules - the noise -

would be reduced. Similarly, a reduction in the dissipation time for

a fluctuation would also reduce the noise.

Equation 6 provides an exact solution of the master equation if

the rate equations for the decay process(-es) is (are) linear in the

copy number of X , and the production is independent of X .

Figure 1. Two molecular networks with a single (independent) molecular intermediate and illustration of molecule noise. (A) A
synthesis and degradation network and (B) a covalent-modification cycle (middle). Each of these networks can be depicted as a self-regulating
intrinsic noise source (C), which acts as a noise transmitter in large networks. A more complicated network that still qualifies as a valid intrinsic noise
source would be a molecule having multiple synthesis and degradation reactions. (D) A representative steady-state trajectory for a molecule copy
number per cell, e.g. a mRNA. In (E), the steady state copy number distribution is displayed; analytically as a Gaussian distribution (red line) and from
stochastic simulations with the Gillespie algorithm (blue line). The Gaussian distribution is the LNA estimate, with the mean deriving from the
macroscopic description (Eqn. 1) at steady state and the variance from Eqn. 2.
doi:10.1371/journal.pcbi.1000506.g001
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Under such conditions, the noise equals 1=SnX T. In case of

nonlinear rate equations (mass-action or elementary complex

(Michaelis-Menten)), LNA becomes an approximation. Noise then

depends in addition on rate sensitivity coefficients (so-called

elasticity coefficients), which determine lX .

The inverse of the mean copy number of a molecular

intermediate, which is often taken as a (Poissonian) noise estimate,

has only limited validity in molecular networks. It applies, for

instance to the network: S'X with S fixed, i.e. at thermodynamic

equilibrium, and S'X'P with S and P fixed, i.e. at steady state,

under the condition that the reactions are described with first-

order mass action kinetics. If S and P are assumed variable, the

noise equals 1=SXT{1=T , with T as SzX or SzXzP. For

signaling cycles or linear pathways, operating at their ‘ultra-

sensitivity’ regime, i.e. large CSnX T
uS

in Eqn. 6, the intrinsic noise

can be much higher than the Poissonian estimate.

In this work, the network displayed in Figure 1 will be

considered as an generic noise source. In the sections that follow

we will consider how its noise propagates through hierarchical

networks and under what conditions it may be enhanced or

attenuated in specific network designs. Levine and Hwa [33] took

an orthogonal perspective to ours and increased the complexity of

this network in an intra-level fashion. They considered noise

propagation in metabolic networks rather than hierarchical

networks. They found evidence for little noise propagation

between metabolic intermediates for flux-driven metabolic path-

ways with enzymes having little or no sensitivity to the

concentration of their product(-s). Such enzymes have been called

slave enzymes in metabolic control analysis [35].

Noise propagation in dictatorial hierarchical networks
In this section, we are interested in determining how the

intrinsic noise of a molecule X propagates to a second molecule Y ,

e.g. from mRNA to protein (Figure 2A) or from a kinase to its

target protein in a signal transduction cascade (Figure 2B). We

consider that solely the synthesis of Y is regulated by X (Figure 2C,

with the feedback of Y onto X absent). For simplicity, we assume

that X is not regulated by any other species and therefore its net

noise is captured by Eqn. 6. In the next section, we will consider

feedback. Within the formalisms of control and response analysis,

the resulting network resembles a dictatorial hierarchical network

composed out of two levels with mass flow occurring solely within

these levels [25]. The levels are coupled by way of the regulatory

effect of X on the synthesis rate of Y ; X is not consumed in this

process but acts solely as an effector.

The analytical solution of the covariance matrix from the FDT

relationship (Eqn. 5) indicates that the network-level noise (or

global noise), gYY , in the level Y at steady state equals the sum of

two terms,

gYY ~gint
Y zgextr

Y ð8Þ

In this relationship, gint
Y represents the intrinsic noise in Y

analogous to the noise for X as given in equation (6). The second

term in Eqn. (8) expresses the extrinsic noise in Y , noise that

originates from a molecular species converted in another level than

the one where Y is inter-converted. If stoichiometrically-coupled

molecules are considered, the noise would originate from a

molecule which is one reactants of a reaction involving Y .

The extrinsic noise is composed of a multiplication of three

factors; (i) the squared sensitivity of Y to X , captured by the local

response coefficient, rY
X , (ii) the time scale separation between Y

and X , and (iii) the intrinsic noise in X ,

gextr
y ~rY

X gXY ~ rY
X

� �2 lY

lY zlX

gint
X ð9Þ

The l-terms in this equation should be interpreted as first-order

rate constants for the dissipation of fluctuations. Alternatively, the

time scale separation term could have been written in terms of

characteristic life times for fluctuations in X and Y as,

tX= tX ztYð Þ (with ti~{1=li).

Eqn. 9 indicates that the extrinsic noise is always positive. It

does not matter whether the effect of X on the synthesis of Y is

stimulatory or inhibitory. This indicates that the global noise in Y ,

gYY , can not be reduced below gint
YY by having an external

controlling level (mediated by X ) in such a cascade. Thus, gint
YY is

the minimal noise in Y . This limit is attained if the fluctuations of

X decay much faster than those of Y : lX&lY ; then Y can only

track the mean of X rather than its fluctuations. As we shall see

below, negative feedback between the levels of X and Y can

reduce noise below gint
YY .

Eqn. (8) also shows another interesting effect. Even at a high

average level of Y , such that its intrinsic noise is low, its global

noise can be high nonetheless as a result of noise propagation. The

(global) noise in Y is then dictated by the noise in the intermediate

of its controlling level, i.e. in X . For instance, because X occurs as

a low copy number molecule. Alternatively, the noise in X can be

amplified, i.e. when the reaction (at the level of Y ) that is directly

sensitive to X has a high control coefficient on the steady-state

copy number of Y . A high control coefficient is not a necessary

condition for significant noise propagation as it still depends on the

time scale separation between X and Y ; if lX&lY , noise

propagation is reduced.

In the linear hierarchical network treated above, extrinsic noise

was shown to be equal to rY
X gXY (Eqn. 9). When Y is controlled by

multiple factors, extrinsic noise is given by the sum over the

covariance terms with all controlling factors multiplied with the

response coefficient,

gextr
Y ~

X
all inputs

rY
Xi

gXiY
ð10Þ

The covariance factors gXiY
contain local response coefficients,

time-scales and an intrinsic noise term (cf. Eqn. 9). In this way,

‘‘noisy’’ parameter influences can be introduced into linear noise

approximation. Swain et al. [36] derived a more general approach

to extrinsic noise in gene expression. Recently, Rocco [37] has

extended metabolic control analysis to incorporate the effect of

fluctuating parameters on the summation and connectivity

theorems for control coefficients. A more general approach to

parameter sensitivity analysis of stochastic systems (with a discrete

state space) was carried out by Plyasunov and Arkin [38]. They

have developed an approach that can be embedded straightfor-

wardly in the Gillespie algorithm. Equation 10 assumes that the

external noise of different sources is completely uncorrelated. If

this is not the case, but the noise is for instance generated by a

network with unknown dynamics then this system may force the

network of interest to display emergent dynamics [39–41].

The influence of feedback on noise propagation
The previous section established that noise in molecule copy

numbers is modulated by other network components through

noise transmission. How is noise influenced by feedback between

levels? One would expect that feedback introduces two conse-

Noise Management by Molecular Networks
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quences for noise propagation. It causes the intrinsic noise of a

particular molecule, say X , to loop through the network to return

to X -possibly via multiple loops each having different molecular

components and time scales. In addition, all the other molecules

that X receives information from will act as noise sources

transmitting noise to X . Inspired by this intuition, much of the

general effect of feedback on noise can be understood using a

simple extension of the model we considered above. More

complicated cases will be considered in subsequent sections.

We extend the network treated in the previous section with a

regulatory effect of Y onto either the producing or consuming

reaction of X (Figure 2C). The net effect is the appearance of a

new interaction quantified by the local response coefficient rX
Y .

The extrinsic noise term of Y changes from Eqn. 9 into (its

intrinsic noise remains unaltered, see Eqn. (6)),

gextr
Y ~rY

X gXY ~
rY

X

� �2

1{rY
X rX

Y

lY

lX zlY

gint
X z

rY
X rX

Y

1{rY
X rX

Y

lX

lX zlY

gint
Y ð11Þ

The first term captures the transmission of noise from X to Y

modulated by the feedback loop (rY
X rX

Y ), which occurs in the

denominator. The second term describes the noise reverberation

along the feedback loop, e.g. the attenuation or amplification

(depending on the sign of the feedback loop) of intrinsic noise of Y

through the feedback. The strength of the feedback is given by

rY
X rX

Y . If the interaction from Y onto the level of X is removed, i.e.

rX
Y is set to zero, this equation reduces to Eqn. 9.

In case of positive feedback, the feedback strength rY
X rX

Y is

limited to values below 1 as otherwise a saddle-node bifurcation

Figure 2. Two-level cascades with feedback regulation. A transcription-translation (A) and signal transduction two-level network (B), each can
be reduced to the generic scheme shown in (C), using the model reduction explained in Figure 1. Figure D shows that ultrasensitive system
responses, i.e. RY

X v1, (the RY
X value is indicated by the numbers in the plot) for the network displayed in (C) are accompanied by minimal noise in

case of positive feedback regulation (rX
Y w0). (E) Time scale separation can reduce noise in the network displayed in (C) in the case of negative

feedback, (rX
Y v0, its values are indicated as numbers).

doi:10.1371/journal.pcbi.1000506.g002

Noise Management by Molecular Networks

PLoS Computational Biology | www.ploscompbiol.org 6 September 2009 | Volume 5 | Issue 9 | e1000506



occurs. Positive feedback always increases noise above intrinsic

noise alone, as both terms are positive in Eqn. 11. When we

consider the following simplification: rX
Y ~rY

X ~r, 0vrv1 and

gint
XX ~gint

YY ~gint, gextr
XX is given by

gextr
XX ~

r2

1{r2
gint ð12Þ

Under this condition, global noise terms would simplify to

g~ 1zr2
�

1{r2
� �� �

gint. If r&1 the noise becomes much higher

than 1. It can be shown that this condition coincides with the

determinant of the Jacobian matrix to become zero, which indicates

that the system operates close to a saddle node bifurcation. In the

next section, we will consider negative feedback.

Negative feedback: conditions for noise reduction and a
trade off

If feedback is negative, the first term on the right-hand side of

Eqn. 11 is positive and the second term negative. Noise is reduced

by the extrinsic factor, through the feedback loop, provided the

second term dominates in magnitude. This is the case under the

following conditions for the time scales: lYj j% lXj j, i.e. the time

scale of the dynamics of Y , should be much longer than for the

dynamics of X . Consequently, Y responds too slowly to be able to

track the fluctuations in X . If this is not the case, i.e. when Y
responds faster than X , the first term dominates and negative

feedback enhances the noise of Y . This is shown numerically in

Figure 2E. Under those conditions, the opposite phenomenon

occurs: the noise in X will now be small; as X now responds too

slowly and can not track the fluctuations in Y ! Interestingly, these

conditions show that integral feedback controllers might not be

optimal if low numbers of molecules are involved. Since integral

feedback controllers require feedback with slow dynamics they will

bring about large noise. In other words, reduction of noise in one

molecule through a feedback loop through another molecule will

increase the noise in the latter molecule.

An additional possibility to reduce noise arises when the

feedback is strong, but the feedback strength is not equally

distributed: rY
X%rX

Y , i.e. when X responds very sensitively to Y ,

but Y only weakly to X . Under these conditions the second term

may become large. This result points to a possible design for noise

reduction: the negative feedback should be such that an allosteric

interaction should run from Y onto the synthesis or degradation

reaction of X and not vice versa if the noise in Y is to be reduced

by feedback. This may contribute to noise reduction at the protein

level as translation depends linearly on mRNA levels whereas

transcription can depend on transcription factor concentrations in

a strongly nonlinear fashion.

The extrinsic noise equation for X is the symmetrical

counterpart of Eqn. 11. Noise reduction in Y occurs if

rY
X lY gX v{rX

Y lX gY then the second factor in Eqn. 11 domi-

nates. This condition is exactly the condition for noise increase in

X ! Thus, there exists a trade off: the noise reduction in Y occurs at

the expense of a noise increase in X .

Optimal positive feedback design for ultrasensitivity
The terms, rX

Y

�
1{rX

Y rY
X

� �
and rY

X

�
1{rX

Y rY
X

� �
, in equation (11)

are examples of internal global response coefficients, respectively

denoted by the global response of X upon a change in Y , RX
Y , and

vice versa, RY
X . These are central expressions in modular response

analysis and portray network-level responses [24,26]. Each gives a

systemic change in the steady-state value of an output with respect

to a perturbation in another state variable, which can be expressed

in terms of strengths of interactions between state variables. The

resulting expressions always contain strengths of interaction paths

and loops in the network, such as rX
Y rY

X [24].

The relation between global response coefficients and noise

propagation analysis can be used to understand trade-offs between

the responsiveness of a network, either at the network-level or at

the level of single interactions, and its noise characteristics.

Hornung and Barkai [42] recently reported that responsive

networks have reduced noise if they are controlled by a positive

feedback. This counter-intuitive observation can be understood

using the present framework. Substituting the global response

coefficient in Eqn. 11 yields:

gextr
Y ~RY

X

rY
X lY gint

X zrX
Y lX gint

Y

lX zlY

ð13Þ

In order to yield a positive global response coefficients, the

cascade amplification rY
X needs to be positive. The strength of

cascade amplification for a given global response coefficient RY
X

and a given feedback strength can be determined by:

rY
X ~

RY
X

1zRY
X rX

Y

ð14Þ

Therefore, extrinsic noise in Y is given by:

gextr
Y ~

RY
X

� �2

1zRY
X rX

Y

lY

lX zlY

gint
X zRY

X rX
Y

lX

lX zlY

gint
Y ð15Þ

If timescales and copy numbers of Y and X are equal, for all

ultrasensitive systems, i.e. where RY
X w1, lowest noise can be

obtained by positive feedback, i.e. rX
Y w1. Examples are displayed

in Figure 2D. However, note that the resulting network-level noise

under those conditions is still larger than the intrinsic noise alone.

Therefore, negative feedback is a much more potent noise

attenuator for systems not requiring highly sensitive signal

transmission.

Noise transmission in a three-level cascade with and
without feedback

Three-level cascade networks arise often in molecular networks,

e.g. in signaling (e.g. MAPK) and gene networks [43] (Figure 3).

Cascade design is the basal organization of hierarchical networks

involving transcription, translation and protein-function networks.

We shall now extend the two-level cascade design analyzed in the

previous section to a three-level design. The noise in the level of

the output intermediate Z of a linear three-level cascade without

feedback is given by,

g2
Z~gintr

Z z rZ
Y

� �2 lZ

lY zlZ

gintr
Y z rZ

Y

� �2
rY

X

� �2

lY lZ lX zlY zlZð Þ
lX zlYð Þ lX zlZð Þ lY zlZð Þ g

intr
X

ð16Þ

Comparison with Eqn. 9 shows that an additional term appears

when a third level is introduced. This term (the last) captures the
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noise transmission from X to Z as relayed by Y . This term would

be negligible if: (i) X would be held fixed, (ii) X would be a very

fast responding variable, i.e. if lX&lY and lX&lZ , or (iii) when

Y is insensitive to X , rY
X&0. The time scaling term converges to 1

if lX?0 (X is a slow responder) and to 0 if Y or Z would be a slow

responder - they can not track the noise in their input.

Ultra-sensitive interactions between communicating levels, i.e.

rY
X w1 and rZ

Y w1, tend to increase the noise transmission along

the cascade. This effect can be counteracted by time-scale

separation between the levels; noise reduction occurs if

lX vlY vlZ. Again this corresponds to intuition. Insightful and

theoretical analysis of such systems for varying cascade lengths has

been carried out by Thattai & Van Oudenaarden [44]. The

experimental analysis of Pedraza & Van Oudenaarden [14]

provides a seminal example of noise propagation in cascades.

Equation 16 shows another interesting aspect of noise propagation

in hierarchical networks: noise and signal sensitivity can be tuned

independently. Multiplication of the rate equations of synthesis and

degradation of Y with a factor a would lead to an proportional

change in lY and the steady state flux through Y . The steady state

level of Y , rX
Y and rY

X would remain unchanged. This indicates that

the cascade response RZ
S ~rZ

Y rY
X rX

S would be unaffected by such a

change in the time scale of Y . An increase in the time scale of Y
would however affect noise transmission along the cascade.

Therefore, molecular networks can evolve signal sensitivity and

transmission independently of noise management. This result is

independent of the presence of feedback loops (see below).

We will now incorporate a negative feedback from Z onto the

synthesis term of X . The response coefficient of Z with respect to

S becomes in this case,

RZ
S ~

rZ
Y rY

X rX
S

1{rZ
Y rY

X rX
Z

ð17Þ

The effect of the complete feedback loop is through the

denominator term. The strength of the feedback loop is captured

by the product of local response coefficients, rZ
Y rY

X rX
Z . We will now

illustrate with numerical simulations that the noise propagation

can be affected qualitatively by the effect of the feedback loop as

well as by the time scale separation with the cascade whilst the

response coefficient RZ
S is invariant. The results are summarized in

Table 1. They indicate that negative feedback can enhance or

reduce noise depending on the extent of time scale separation.

When the feedback is faster than X , the noise in X is lowest as it

can track the fluctuations in its regulator Z. As Z is now the fastest

responding molecule it will track the fluctuations in the level of Y
and become noisy. X has most noise when the feedback loop is

slow. In other words, the reduction of noise in one intermediate

through a negative feedback increases the noise of the faster

intermediates in the feedback loop.

If the dynamics of Y and Z are much faster than that of X , they

can be considered at a quasi-steady state relative to X . In this

limit, the system dynamics can be captured solely in terms of X . In

this reduced model, X inhibits its own synthesis directly; no

additional noise is introduced by Y and Z and the full potential of

negative feedback as noise corrector for X becomes apparent. In

this quasi-steady state limit, the minimal noise in X for this

network parametrization corresponds to (compare to Eqn. 6),

gXX ~
{uS

SnX T
1

LuS

LSnX T z LuS

LSnZT
LSnZT
LSnY T

LSnY T
LSnX T { Lud

LSnX T

1

SnX T

~
TDISS

TFLUC

1

SnX T
1

1{rX
Z rZ

Y rY
X

ð18Þ

The last factor in this equation captures the reduction of noise in

X by the fast negative feedback. It is positive for negative feedback

Figure 3. A three level cascade with a feedback and a
feedforward loop. Feed-back (A) and feed-forward (B) regulation
occur frequently in signaling networks, and in metabolic regulation
through changes in enzyme induced by altered transcriptional and
translational activities.
doi:10.1371/journal.pcbi.1000506.g003

Table 1. Simulations of the influences of negative feedback regulation and time scale separation on noise in the intermediates of
a three-level cascade.

Negative feedback Time scale of Y & Z Noise (X/Y/Z) Explanation

absent same as X 0.25/0.38/0.47 noise propagation

present same as X 0.34/0.34/0.34 symmetric case

present faster than X 0.11/0.28/0.46 feedback corrects noise in X

present slower than X 0.40/0.37/0.14 feedback corrects noise in Z

Faster (or slower) than X indicates that the synthesis and degradation rate constants of Y and Z where 10 and 100 times higher (or lower) than those of X, respectively.
For all steady states, all molecules have the same copy number, and fluxes. The sensitivities (local response coefficients) do not depend on the chosen time scales for X ,
Y , and Z (see main text). The kinetic descriptions follow mass action, e.g. kz

Y X and k{
Y Y for the synthesis and degradation of Y , resp., except for the synthesis of X ,

which was modelled as kz
X

�
1zZð Þ. The statistics derive from at least 1:5:106 steps in the Gillespie algorithm.

doi:10.1371/journal.pcbi.1000506.t001
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and reduces the noise more for stronger feedback. In this

parameter regime, X is also robust with respect to parameter

changes (e.g. when parameter p directly effects the level of X ,

RX
p ~rX

p

.
1{rZ

Y rY
X rX

Z

� �
is small). Given the kinetic parameters of

the subsystem for X , the fast feedback exerting its influence

through its feedback strength (gain) rZ
Y rY

X , can now be designed to

have a high enough gain to act as noise corrector. These results

should be interpreted with some caution as they may seem to

imply that zero noise is possible. Using less coarse-grained

descriptions, it can be shown that diffusion and information

theory set fundamental limits to minimal noise levels ([45,46])

The incorporation of a feedforward loop in the three-level

cascade affects the noise transmission in yet another manner. Such

a design is shown in Figure 3. The noise in the copy number of the

output of this system is given by,

gZZ~gintr
ZZz rZ

X

� �2 lZ

lZzlX

gintr
XX z rZ

Y

� �2 lZ

lZzlY

gintr
YY

z rZ
Y

� �2
rY

X

� �2 lY lZ lX zlY zlZð Þ
lX zlYð Þ lX zlZð Þ lY zlZð Þ g

intr
XX

z2rZ
X rZ

Y rY
X

lY lZ lX zlY zlZð Þ
lX zlYð Þ lX zlZð Þ lY zlZð Þ g

intr
XX

ð19Þ

In this equation, the final term has an interpretation we have

not encountered yet. It captures the synergistic effect of the two

paths that run from X to Z. The net response coefficients of these

paths, i.e. rZ
X and rZ

Y rY
X , appear as products. In case of a negative

feedforward loop the final term becomes negative, which would

reduce the noise in Z.

Discussion

In this paper, we presented a conceptual and mathematical

framework that gives insight into noise management by molecular

networks. Intrinsic noise in the copy number of a molecule was

shown to derive from the fluctuations in the birth (synthesis) and

death (degradation) rates of that molecule. The noise that a

molecule exhibits in a network equals the sum of its intrinsic noise

and an additional extrinsic noise component. The extrinsic noise

component arises from molecular networking. Modular response

analysis and hierarchical control analysis exploit the hierarchical

design of most signaling networks and of transcription and

translation cascades and are each extensions of metabolic control

analysis [22–24,26,31]. This work presented a merger of noise and

response analysis. We have focussed solely on hierarchical

networks composed out of levels even though the methods

outlined in this paper can be straightforwardly generalized to

non-hierarchical networks.

Where on the one hand our methodology is innovative because

of its tight link with metabolic and hierarchical control analysis it is

similar, on the other hand, to the approaches developed by

Paulson [9,12]. The two approaches both derive from linear noise

approximation (LNA) as an approach to estimate noise in

molecular networks. Paulsson’s reformulation of LNA offers a

description in terms of concepts that draw on analogies from

physics whereas we take a more control-centric perspective. Our

approach makes many of the results within metabolic control

analysis, e.g. dealing with cascades, feedback, ultrasensitivity, and

robustness, applicable to the analysis of noise propagation.

Another such link with control theory is apparent in the frequency

domain approach to the analysis of noise [47,48] and control [49].

Negative autoregulation (NAR; Figure 2) accelerates the

response of small gene networks, e.g. through a transcription

regulator inhibiting it’s own transcription [43]. For the NARz

and NAR{ motifs to have the same steady state flux a higher

synthesis rate in NARz cells is needed to compensate for the

inhibition by the negative feedback at steady state. The

consequential reduction in time scale enables a faster dissipation

of fluctuations and makes this network design more noise resistant

(evident from Eqs. 6 & 11, and discussed in the accompanying

sections). The noise of NAR motifs has been analyzed experi-

mentally using synthetic gene circuits [3,13,50–52].

Besides NAR other mechanisms have been shown to reduce

noise levels, i.e. dimerization of transcription factors [53],

polycistronic mRNA [54], regulated protein degradation [55],

and DNA looping [56]. Swain studied two variants of negative

autoregulation in transcription and translation and showed that

post-transcriptional regulation is a more potent noise reducing

mechanism than post-translational regulation [54]. These studies

are typically theoretical studies and experiments have yet to be

performed to investigate whether these mechanisms influence

noise management in particular cases and to significant extents.

Some of these proposed mechanisms for noise reduction rely on

stoichiometric constraints besides regulatory influences. The

approach discussed in this work only considered regulatory

influences. When comparing the hierarchical system in Figure 2

with the network ?X?Y? where X and Y have a stoichiometric

and regulatory coupling and taking the kinetics the same, i.e. for the

hierarchical case the rate of X degradation and Y synthesis both

equal k2X , the difference between the noise in Y between the two

systems corresponds to g2
Y ,hier{g2

Y ,stoich~
1

SnY T
k2

k2zk3
. This

indicates that the reduced correlation between molecule copy

numbers in hierarchical networks, due to the absence of

stoichiometric relations, increases noise.

Levine and Hwa [33] have considered noise in metabolic

networks where the coupling between molecules is via mass flow

and, in addition, possibly (allosteric) effector interactions. They

found for metabolic networks driven by a product-independent

flux, a pump, and composed out of enzymes, which are only

sensitive to their substrate concentration, that the noise in a

metabolite is independent of all other metabolites. They found that

this result is fairly robust to alterations in pathway design and

enzyme kinetics. This result is related to the concept of slave

enzyme as defined in metabolic control analysis. Enzymes that are

only sensitive to their substrates have been termed slave enzymes

[35]. The steady-state concentration of any metabolite in a linear

pathway composed out slave enzyme is then only determined by

the pump speed and the kinetic properties of the consuming

enzyme, irregardless of the number of enzymes in the pathway

[35]. Changes in their concentrations can then only be brought

about by a change in the pump speed or consuming enzyme level.

Levine and Hwa [33] showed that the noise in a slave metabolite

levels is also robust to the properties of other enzymes except for

those of the consuming enzyme. How noise in enzyme levels

brings about noise in metabolic flux is largely unexplored. We

think that this is an important topic perhaps more important than

noise in metabolite levels as they are typically large. Noise in

metabolism is then much more likely to occur through noise in

protein levels as their copy numbers tend to be smaller than

metabolite levels and they can suffer from bursts [57].

Many experiments have shown the occurrence of transcription

bursts [5,57–61]. In prokaryotes, these have been shown to

enhance adaptation potential [59]. Occasional fluctuations in the

binding of repressors at the operators of repressed operons have
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been shown to cause bursty mRNA synthesis [57,59,60]. Hereby,

some cells within an isogenic population have an adaptive

advantage if the corresponding environmental change occurs

purely by chance [59,62]. The origin of bursts in eukaryotic

transcription is most likely different and related to an interplay

between transcription factor, and chromatin remodeling dynamics

[58,61]. LNA has been extended to incorporate bursts [5,63] and

indicates that bursts strongly enhance noise. Singh and Hespanha

[64] were able to express the noise in protein level as function of

the burst size and its variance. They show that noise increases with

increasing burst and analyzed under which conditions noise can be

reduced through auto-regulatory negative feedback (see also

Friedman, Cai and Xie [65]). They find that negative feedback

can both enhance and reduce noise. When transcription occurs in

bursts, the waiting times for consecutive mRNAs become non-

exponentially distributed and even doubly exponential [60,66,67].

A general stochastic theory for molecular networks that incorpo-

rates bursts and birth and death processes having non-exponential

waiting time distributions is currently lacking. Such a theory,

should offer deeper understanding of the constraints imposed by

the stochastic nature of single cells as well as of potential benefits.

At present, approximate stochastic theories, such as the one

presented in this work, apply to Markov systems where all events

are assumed to have a memoryless (exponential) waiting time

distribution. This Markov assumption can be valid even if

processes have non-exponential waiting distributions provided

they do not function in synchrony and many process copies

function simultaneously [67]. On the other hand, phenomena such

as epigenetics, and cell heterogeneity that is inheritable, without us

knowing of the determining molecular factor, suggests that

extensions of the theory to non-Markovian situations might be

useful.

Materials and Methods

All calculations were performed using Mathematica. Notebooks

of the calculations are available as supplementary material:

Protocol S1 contains calculations for Fig. 1 D+E, Protocol S2

contains calculations for Figure 2D, Protocol S3 contains

calculations for Figure 2E, and Protocol S4 contains calculations

for Table 1.

Supporting Information

Protocol S1 Calculations for Figure 1

Found at: doi:10.1371/journal.pcbi.1000506.s001 (0.30 MB GZ)

Protocol S2 Calculations for Figure 2D

Found at: doi:10.1371/journal.pcbi.1000506.s002 (0.01 MB GZ)

Protocol S3 Calculations for Figure 2E

Found at: doi:10.1371/journal.pcbi.1000506.s003 (0.01 MB GZ)

Protocol S4 Calculations for Table 1

Found at: doi:10.1371/journal.pcbi.1000506.s004 (0.12 MB GZ)

Acknowledgments

We thank Maciej Dobrzynski, Douwe Molenaar and Johan Paulsson for

insightful discussions.

Author Contributions

Conceived and designed the experiments: FJB NB. Wrote the paper: FJB

NB HVW.

References

1. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression
in a single cell. Science 297: 1183–1186.

2. Rosenfeld N, Young JW, Alon U, Swain PS, Elowitz MB (2005) Gene regulation

at the single-cell level. Science 307: 1962–1065.

3. Hooshangi S, Thiberge S, Weiss R (2005) Ultrasensitivity and noise propagation

in a synthetic transcriptional cascade. Proc Natl Acad Sci USA 102: 3581–3586.

4. Newman JRS, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, et al. (2006)
Single-cell proteomic analysis of S. cerevisiae reveals the architecture of

biological noise. Nature 441: 840–846.

5. Bar-Even A, Paulsson J, Maheshri N, Carmi M, O’Shea E, et al. (2006) Noise in

protein expression scales with natural protein abundance. Nat Genet 38:
636–643.

6. Rosenfeld N (2005) Gene regulation at the single-cell level. Science 307:

1962–1965.

7. Kaern M, Elston TC, Blake WJ, Collins JJ (2005) Stochasticity in gene
expression: from theories to phenotypes. Nat Rev Genet 6: 451–464.

8. Kaufmann B, Vanoudenaarden A (2007) Stochastic gene expression: from single

molecules to the proteome. Current Opinion in Genetics & Development 17:

107–112.

9. Paulsson J (2004) Summing up the noise in gene networks. Nature 427: 415–418.

10. Maheshri N, O’Shea EK (2007) Living with noisy genes: how cells function
reliably with inherent variability in gene expression. Annu Rev Biophys Biomol

Struct 36: 413–434.

11. Elf J, Ehrenberg M (2003) Fast evaluation of fluctuations in biochemical

networks with the linear noise approximation. Genome Res 13: 2475–2484.

12. Paulsson J (2005) Models of stochastic gene expression. Physics of Life Reviews
2: 157–175.

13. Hooshangi S, Weiss R (2006) The effect of negative feedback on noise

propagation in transcriptional gene networks. Chaos 16: 26108.

14. Pedraza JM, van Oudenaarden A (2005) Noise propagation in gene networks.
Science 307: 1965–1969.

15. Kacser H, Burns J (1973) The control of flux. Symp Soc Exp Biol 27: 65–104.

16. Goldbeter A, Koshland DE (1981) An amplified sensitivity arising from covalent
modification in biological systems. Proc Natl Acad Sci USA 78: 6840–6844.

17. Reder C (1988) Metabolic control theory: a structural approach. J Theor Biol

135: 175–201.

18. Westerhoff H, Dam KV (1987) Thermodynamics and control of biological free-
energy transduction. Elsevier.

19. Heinrich R, Schuster S (1996) The regulation of cellular systems. Springer.

20. Alon U (2006) Introduction to systems biology. Chapman and Hall/CRC.

21. Savageau M (1976) Biochemical systems analysis: A study of function and design
in molecular biology. Addison Wesley Longman Publishing Co.

22. Hofmeyr JH, Westerhoff HV (2001) Building the cellular puzzle: control in

multi-level reaction networks. J Theor Biol 208: 261–285.

23. Kahn D, Westerhoff HV (1991) Control theory of regulatory cascades. J Theor

Biol 153: 255–285.

24. Bruggeman FJ, Westerhoff HV, Hoek JB, Kholodenko BN (2002) Modular
response analysis of cellular regulatory networks. J Theor Biol 218: 507–520.

25. Bruggeman FJ, Snoep JL, Westerhoff HV (2008) Control, responses and

modularity of cellular regulatory networks: a control analysis perspective. IET

Syst Biol 2: 397–410.

26. Kholodenko BN, Hoek JB, Westerhoff HV, Brown GC (1997) Quantification of
information transfer via cellular signal transduction pathways. FEBS Lett 414:

430–434.
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