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José M. Peregrı́n-Alvarez1,2*, Xuejian Xiong1, Chong Su1, John Parkinson1,3,4*

1 Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada, 2 Department of Molecular Biology and Biochemistry, University of

Malaga, Malaga, Spain, 3 Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada, 4 Department of Molecular Genetics, University of Toronto,

Toronto, Ontario, Canada

Abstract

Escherichia coli serves as an excellent model for the study of fundamental cellular processes such as metabolism, signalling
and gene expression. Understanding the function and organization of proteins within these processes is an important step
towards a ‘systems’ view of E. coli. Integrating experimental and computational interaction data, we present a reliable
network of 3,989 functional interactions between 1,941 E. coli proteins (,45% of its proteome). These were combined with
a recently generated set of 3,888 high-quality physical interactions between 918 proteins and clustered to reveal 316
discrete modules. In addition to known protein complexes (e.g., RNA and DNA polymerases), we identified modules that
represent biochemical pathways (e.g., nitrate regulation and cell wall biosynthesis) as well as batteries of functionally and
evolutionarily related processes. To aid the interpretation of modular relationships, several case examples are presented,
including both well characterized and novel biochemical systems. Together these data provide a global view of the modular
organization of the E. coli proteome and yield unique insights into structural and evolutionary relationships in bacterial
networks.
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Introduction

Escherichia coli is the leading model bacterium. Due to its ease of

culture and genetic manipulation, it has proven extremely useful

for the study of basic biological processes including signalling,

metabolism and gene expression [1,2]. Furthermore, E. coli serves

as a major model for the study of bacterial pathogenesis [3]. In

consequence, a considerable body of knowledge has been collated

for E. coli. First sequenced in 1996, over half of its genes have now

been experimentally characterized [2,4]. In addition, through

decades of painstaking biochemical studies a variety of metabolic,

signalling and regulatory pathways have been assembled [2,5,6].

However, despite the impressive nature of the available data,

details of the organization and co-ordination of proteins within

and across cellular processes in E. coli is still far from complete,

precluding a global ‘systems’ view of the E. coli proteome.

To date a variety of methods have been developed and

systematically applied to derive large scale networks of protein-

protein interactions (PPIs) for a variety of organisms. These range

from the experimental: e.g. co-immunoprecipitation (co-IP), yeast-

two-hybrid (Y2H) screens and tandem affinity purification (TAP)

coupled with mass spectrometry [7–12]; to the theoretical: e.g.

genome context methods and co-expression data [13–15].

Exploiting the topological properties of these networks, clustering

algorithms have subsequently allowed proteins to be organized

into functional modules such as protein complexes or signalling

pathways [11,16]. Integration of additional datasets such as

comparative and functional genomics data are further providing

insights into how these modules and their components are co-

ordinated or how they may have evolved [11,17]. For example,

clustering of phylogenetic profiles in the context of metabolic

networks have identified evolutionary conserved functional entities

[18].

While a number of genome scale protein-protein interaction

(PPI) datasets have been generated for yeast [7,8,10,11,19,20],

similar datasets for E. coli are more modest. These include two

datasets of physical interactions generated through TAP [9,21]

and several datasets of functional interactions derived through

genome context methods, gene co-expression analyses and

literature surveys [13–15,22]. Note that throughout, we use the

term functional interactions, to represent proteins that may be

involved in a common biological process but do not necessarily

physically interact. A recurring challenge in the analysis of PPI

datasets has been the discrimination of physiologically meaningful

interactions (true positives) from those that arise as methodological

artefacts (false positives) [23,24]. To address this challenge

integrative methods, such as the use of Bayesian classifiers, have

been applied to identify those interactions which are more reliable

[20,25,26]. More recently three large scale PPI datasets have been

generated for E. coli based mainly on genome context methods

[15,27,28]. While these datasets provide extensive coverage, such

coverage may compromise the quality of interactions.
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Here we build on these previous studies by integrating several

experimental and computational interaction datasets to recon-

struct an extensive network of functional interactions for E coli with

an equivalent accuracy to that obtained for small scale (e.g. co-IP)

experiments. We combine this set of functional interactions with a

recently generated set of physical interactions generated through

reciprocal TAP [27] to yield a single global network of over 7,600

high quality protein interactions representing over half of the

proteins in E. coli. Through the application of a graph clustering

algorithm we systematically organize these data into discrete

functional modules to provide, to the best of our knowledge, the

first large scale view of the modular organization of a bacterial (as

opposed to eukaryotic) proteome. Due to the fundamental role of

E. coli in basic and biomedical research, the findings presented in

this study are expected to find significant and wide scale impact.

Results/Discussion

A high quality network of functional interactions for E.
coli

Adopting a Bayesian framework, we constructed a high quality

network of protein interactions for E. coli through the integration

of interaction data from seven sets of computational predictions

and three sets of experimentally verified interactions that include

both large scale pull down and small scale assays (Fig. 1A and

Table S1). Each dataset was assigned a log likelihood score (LLS)

calculated from its performance relative to a gold standard set of

functional annotations (see methods). Here we used EcoCyc [5]

functional categories. Datasets with higher frequencies of inter-

acting proteins that share a common functional category are

assigned higher LLS’s (indicating a higher confidence dataset).

Other gold standard sets of functional annotations based on

Clusters of Orthologous Genes (COGs) [29]; the Kyoto Encyclo-

pedia of Genes and Genomes (KEGG) [30]; and Gene Ontology

(GO) [31] terms were found to give comparable results (data not

shown). Based on an analysis of dataset overlap (see Text S1 -

Generation of the functional network and Fig. S1), we merged two highly

redundant datasets and adopted a weighted sum scheme [32] to

avoid potential biases due to data dependencies (Fig. S1E).

Integration of the datasets resulted in the scoring of 58,844 non-

redundant functional linkages involving 4,149 (,97%) E. coli

proteins (Fig. 1B). Small-scale assays represent the most accurate

datasets and were used to define a score cut-off for including

interactions within our final dataset. The final high confidence

network (hereafter referred to as the ‘functional’ network) contains

3,989 non-redundant linkages for 1,941 E. coli genes (,45% of the

E. coli proteome – Table S2). To assess the performance of the

network reconstruction, we adopted a five-fold cross-validation

scheme to predict membership of COG functional categories,

using a label propagation method [33]. Comparisons of these

predictions with previously assigned COG functional annotations

revealed relatively high values of precision - TP/(TP+FP) - and

recall – TP/(TP+FN) - (Fig. 1C). Of 19 functional categories, 15

had a precision in excess of 0.5 and 11 had a recall in excess of 0.5.

Interactions involving proteins involved in cell motility (COG

category N) demonstrated the best performance in terms of

precision and recall (0.97 and 0.96 respectively). While interactions

involving proteins involved in transcription (COG categories K)

had among the lowest values (0.36 and 0.28 respectively) reflecting

the tendency of these proteins to interact with and mediate a

diverse range of cellular functions. Consistent with similar studies

[27,28,32], we make the assumption that links between proteins

from the same functional group are correct, while those that occur

between different functional groups are incorrect. This assumption

is supported by the large frequency of interactions derived from

small scale assays, involving proteins annotated with the same

COG or EcoCyc functional categories (Fig. S1F).

Applying the same cross-validation approach, we found that our

functional network significantly out performs three previously

published networks of E. coli functional interactions [15,27,28]

(Fig. S2). Compared to these other datasets, our functional

network demonstrated improved recall across all COG categories.

Furthermore, the functional network provides the highest values of

precision for eight of 19 COG categories and provides the next

best value of precision for an additional eight categories. Finally,

based on area under the receiver operating curve AUROC values,

our functional network out performs the other datasets in 10 of 19

COG categories. For more discussion of how this network

improves over previous analyses see Text S1 - Comparisons with

other datasets.

A combined network of functional and physical
interactions yields novel insights into functional
relationships

Recently a large scale PPI network consisting of 3,888

interactions derived for 918 proteins was generated for E. coli

based on TAP [27] (Table S2). Since genome context methods

were used to validate these interactions, it was not appropriate to

include them as an additional dataset in our integration exercise.

Instead, due to the reported high quality of these data we simply

merged the ‘Hu et al. TAP’ dataset with our functional network to

create a single ‘combined’ network of 7,613 interactions between

2,283 proteins. Graph analyses of all three networks (functional,

Hu et al. TAP and combined) reveal the typical scale free properties

associated with biological networks (Fig. S3). Comparisons of

global topological metrics show how the significance cut-off

impacts network node degree and shortest path lengths in the E.

coli functional network. However, even accounting for differences

in node degree, functional networks display higher eccentricities

and betweenness values than their experimental counterparts,

derived through the use of TAP (Fig. 1D). This is likely related to

Author Summary

Genes and their protein products do not operate in
isolation, but form components of highly interconnected
biological systems. Identifying the connections between
components is therefore critical to understanding how
these processes are organized and operate. E. coli is the
leading model bacterium; however despite its importance
in biological and medical discovery, an accurate atlas of
these interactions is still lacking. On the other hand,
several computational and experimental procedures have
been applied on a high-throughput basis to provide
collections of interaction data of varying quality and
coverage. Using a sophisticated mathematical framework,
we have combined and benchmarked these data to create
a single, highly reliable set of interactions that encom-
passes almost 50% of the E. coli proteome. Organizing
these data on the basis of their interactions, we identify
groups of proteins representing functionally coordinated
modules such as molecular machines (e.g., the flagellum)
and biochemical pathways. Finally through examining
the organization of E. coli interactions in the context
of evolution, we propose a new model of bacterial
network evolution that accounts for the integration of
foreign genes acquired through horizontal gene transfer
mechanisms.

Modular Organization of the E. coli Proteome
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Figure 1. Generation of the global E. coli functional network. A: Schematic overview of the generation of the E. coli functional network, its
integration with the Hu et al. TAP dataset and prediction of functional modules. The number of interactions associated with each of the nine datasets
are provided. B: Datasets and network accuracy. The cumulative log likelihood score (LLS) was obtained from comparison with EcoCyc functional
categories and provides a measure of accuracy associated with functional linkages. The relative contribution of each of the nine datasets to the LLS
for each linkage is indicated. For the derivation of the definitive ‘functional’ network, we applied a threshold based on the LLS obtained for the small
scale assays. Note this threshold exceeds the maximum contribution from any other single dataset. C: To assess the performance of the functional
interactions we measured the precision, recall and area under the receiver operating characteristic curve (AUROC) across each COG functional
category, for both the functional network and for a set of 100 randomly generated networks that possessed the same topology as the functional
network [81] (see Text S1 - Generation of random networks). Colours are consistent with the colours provided by the COG website (http://www.ncbi.
nlm.nih.gov/COG/grace/uni.html). D: Network statistics for five E. coli networks, three comparable networks for S. cerevisiae and a randomly
generated network with equivalent properties to the combined network (number of nodes and interactions but not topology). ‘E. coli combined’,
‘functional’ and ‘Hu et al., TAP’ networks are described in the main text. ‘E. coil extended’ is the initial set of 58,844 interactions obtained prior to
applying a threshold cut-off. ‘S. cerevisiae functional’ and ‘experimental’ datasets were derived from [32] and [23] respectively. The ‘E. coli Hu et al. TAP
(adjusted)’ and ‘S. cerevisiae experimental (adjusted)’ datasets were generated by randomly removing connections until their average node degrees
were similar to the equivalent functional networks. E: Overlap of the functional network with three experimentally derived networks and a set of
random networks. ‘Hu et al. TAP’ refers to the complete Hu et al. TAP dataset. ‘Filtered’ refers to the Hu et al. TAP network in which we removed
interactions that also featured in the large scale TAP dataset and were included in the functional network. ‘Pull Down’ refers to the large scale pull
down dataset [21], removing direct interactions that were included in the functional dataset. ‘Random: same topology’ refers to the average values of
100 random networks created with the same number of nodes and interactions as the ‘‘Filtered dataset’’ [81] (see Text S1 - Generation of random
networks). ‘Direct’ indicates that the interaction is preserved between the two networks. Numbers indicate the distance of proteins in the functional
network compared with those that directly interact in each of the other three networks. Error bars are negligible and are not shown for clarity.
F: Interactions between COG functional categories. Numbers indicate the total number of interactions between each pair of COG functional
categories. Colours represent Z-score deviations from the expected number of interactions. For further information see Text S1 - Network analyses in
the context of COG functional categories.
doi:10.1371/journal.pcbi.1000523.g001

Modular Organization of the E. coli Proteome
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the tendency of TAP to identify interactions between common

members of complexes that may not directly interact.

While the Hu et al. TAP and functional datasets share 557

proteins, only 241 (6%) of their interactions were common. When

we consider indirect interactions within the functional network, we

find that the overlap increases to 502 (13%) and 966 (25%) for

path distances of two and three respectively – significantly greater

than for randomly generated networks (Fig. 1E). This increase in

overlap between the datasets arises as a consequence of the TAP

approach identifying proteins through indirect interactions.

Indeed, when we take into account these indirect interactions,

we note that the overlap between the functional and Hu et al. TAP

datasets is relatively high compared to previous analyses

comparing the overlap between different interaction datasets

[34,35].

Functional relationships within the combined network
The availability of a large network of well annotated genes

facilitates the study of the topological properties both within and

between different COG functional categories (Fig. S4). For

example, proteins from COG category J (translation, ribosomal

structure and biogenesis) and L (replication, recombination and

repair) tend to be highly connected (high node degree), perhaps

reflecting their tendency to occur in complexes, and central to the

global network (high betweenness values) indicating their funda-

mental role to E. coli. On the other hand, while proteins from

COG category N (cell motility) tend to be highly connected, they

have low betweenness values but strikingly, high node and mutual

clustering coefficients. This suggests that these proteins form highly

integrated systems that operate in relative isolation to the rest of

the network (e.g. flagella see below). Analysis of topological

relationships between different COG categories (Figs. 1F & S5) are

similarly revealing of functional relationships. For example,

proteins from in COG categories D, M, O and U (Cell cycle

control, cell division, chromosome partitioning; Cell wall/

membrane/envelope/biogenesis; posttranslational modification,

protein turnover and chaperones; and intracellular trafficking,

secretion and vesicular transport respectively), all share high

numbers of connections. This may reflect the need to tightly

coordinate these processes for purposes of cell growth and division.

Conversely, proteins from COG categories E, G and P (amino

acid, carbohydrate and ion transport and metabolism respectively)

are not highly connected and are also more distant (high shortest

path lengths) to other COG categories, suggesting that these

processes operate as functionally distinct modules within the global

network.

Organization of the combined network into functional
modules

An emerging paradigm from the analysis of protein interaction

networks is the tendency for protein activity to be coordinated

through distinct functional modules. Applying the Markov cluster

algorithm (MCL) [36] to the combined network, we identified 316

modules composed of three or more proteins (together with 243

two component clusters and 33 singletons – Fig. 2A and Table S3).

209 (66%) of the predicted modules (containing three or more

proteins) possessed a high proportion (. = 50%) of common COG

functional annotations (Fig. 2B and Table S3) and hence likely

correspond with known functional modules such as protein

complexes and biochemical pathways (see next section). Con-

versely we identified three modules that could be defined as novel.

Finally 16 modules were composed of proteins with non-

overlapping COG categories (ignoring the uninformative COG

categories R, S or -). The heterogeneous nature of these modules,

suggest that they may represent novel linking modules intercon-

necting different functional processes. Compared to the functional

network, modules derived from the Hu et al. TAP network were

more functionally heterogeneous, with only 39% of the predicted

modules (containing three or more proteins) possessed a high

proportion (. = 50%) of common COG functional annotations

(Figs. 2B, S6 & S7 and Table S3). These differences are further

exemplified by the higher proportion of inter-module:intra-

module interactions observed in the Hu et al. TAP network

(2,329:845 for the Hu et al. TAP network; 1,247:2,107 for the

functional network). This may reflect the tendency for TAP

derived PPI data to include indirect interactions. From Fig. 2A we

note the presence of a highly interconnected core of modules

comprised predominantly of proteins derived from the Hu et al.

TAP dataset. For the most part these are also linked through

experimentally derived interactions. Modules derived mainly from

the functional network are either isolated or tend to group into

smaller discrete clusters of functionally related modules. Notewor-

thy, the networks presented here were functionally more

homogeneous than a set of modules previously predicted from a

network of functional interactions generated by Hu and colleagues

[27] (Fig. 2B). The heterogeneous nature of this latter dataset

reflects the high proportion of inter-module:intra-module interac-

tions (36,640:19,043) that likely impact the resolution of the

modules (see Text S1 - Comparisons with other datasets).

Within the E. coli proteome, 1293 (,30%) proteins have either

not been assigned a COG functional category or assigned an

uninformative category (S - ‘function unknown’ or R - ‘general

function prediction only’). The organization of proteins into

functional modules provides a valuable resource for further studies

aimed at elucidating the functions of these poorly characterized

proteins. For example from Fig. 3C below, we might infer that the

uncharacterized protein yehB (annotated as a putative outer membrane

protein) is involved in pili assembly. Interestingly, initial studies

inferring functional annotations on the basis of common

annotations within defined modules was found to be more

accurate than one based solely on direct neighbour interactions

(Fig. S6C and Text S1 - Prediction of functional annotations for unknown

genes).

Modules represent protein complexes, biochemical
pathways and batteries of functionally and evolutionary
related processes

While modules generated solely from physical interaction data

are known to represent protein complexes [11,19], those derived

from functional interaction data may have other biological

interpretations. Within the E. coli interactome, as well as known

protein complexes (e.g. the 30S and 50S ribosomal subunits, RNA

and DNA polymerases), we identified modules that represented

biochemical pathways (e.g. nitrate regulation and cell wall

biosynthesis) as well as batteries of functionally and evolutionary

related processes. To illustrate the types of relationships that are

associated with modules generated from mainly functional

interaction data, we present several case examples of modules

representing both well characterized and novel biochemical

systems (Figs. 3 & 4). In these detailed views, interactions with

different levels of confidence are presented. In general we find that

proteins with interactions of lowest confidence scores are indicative

of a general functional association (i.e. the protein forms part of the

complex/pathway but its precise role is ambiguous). On the other

hand, interactions with higher confidence scores may reflect closer

functional relationships that can serve as a focus for more detailed

investigation.

Modular Organization of the E. coli Proteome
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Figure 2. Organization of the combined E. coli protein-protein interaction network into functional modules. A: Graphical overview of
316 interconnected functional modules. Each pie chart represents an individual functional module, its relative size indicating the number of proteins
in the module (only modules with 3 or more proteins are shown). The colours of each slice indicate the proportion of proteins found in functional
modules predicted by either the functional, Hu et al. TAP or combined networks. Module borders are coloured if .60% of their members are
associated with a single COG category (white otherwise). Edges represent Hu et al. TAP and/or functional interactions linking pairs of modules. Edge
colours indicate the relative contribution of each network in the interaction. Edge thickness indicates the number of interactions between each
module pair. B: Functional overlap of modules generated for the three networks presented in this study together with a previously published set of
modules generated from a functional network (Hu et al. GC [27]) and 100 sets of modules generated by randomly swapping component genes
between the modules generated from the combined network. Module overlap was determined through common membership of COG functional
categories of their constituent proteins. Novel modules are defined as those in which component proteins are either not assigned a COG category or
assigned the generic COG categories, S (‘Function unknown’) or R (‘General function prediction only’).
doi:10.1371/journal.pcbi.1000523.g002

Modular Organization of the E. coli Proteome
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Figure 3. Examples of functional modules I. A: Chemotaxis and flagella assembly. (i) Within the combined network, components of chemotaxis
and flagella assembly are organized within two distinct modules (3 and 15). Nodes are coloured according to their organization as defined by KEGG
(see below); width of edges linking nodes indicate confidence associated with interactions. (ii) Map representing KEGG defined relationships
associated with the chemotaxis pathway. (iii) Schematic of the structural organization of components of the flagella as defined by KEGG. B: Leucine,
isoleucine and valine biosynthesis. (i) KEGG-based representation of Leucine, isoleucine and valine biosynthesis. (ii) Organization of components of
the pathway within the combined network. Colours of nodes reflect KEGG pathway organization; width of edges linking nodes indicate confidence
associated with interactions. C: Pili Assembly. (i) Two components of pili assembly are the outer membrane usher proteins and the pili chaperones.
Within the combined network, family members of these proteins are organized into two modules on the basis of common patterns of interactions (21
and 35). Note that no member of either module interacts with a component from the same module. (ii) Linear representation of the operon
organization of pili assembly proteins within the E. coli. Colours of nodes and genes in operons reflect functional roles (see inset).
doi:10.1371/journal.pcbi.1000523.g003

Modular Organization of the E. coli Proteome

PLoS Computational Biology | www.ploscompbiol.org 6 October 2009 | Volume 5 | Issue 10 | e1000523



Figure 4. Examples of functional modules II. A: ABC transporters. Within the combined network, a number of modules were identified as
containing components of ABC transporters, presented are a select 12, organized into substrate binding, permease and ATP-binding components as
defined by KEGG. Colours of nodes indicate module membership (white nodes represent components that were not associated with one of the 316
modules). Colours of links represent type of supporting evidence (GP = genome proximity; RS = Rosetta stone; PP = phylogenetic profiles;
LT = literature curation). B: Cell Wall Biosynthesis and Cell Division. (i) Subnetwork of 10 defined modules containing proteins associated with cell all
biosynthesis and cell division. Nodes are coloured according to module membership. The larger background ovals indicate groups of proteins with
common functional roles. (ii–v) Schematics illustrating the organization and operation of components during cell division. FtsZ is recruited to the site
of cell division under the control of the minCDE, and subsequently recruits ftsA and zipA (ii). FtsK mediates the localization of components of TopoIV
(parCE) required for chromosome partitioning, and is dependant on ftsA and zipA (iii). Further recruitment of additional cell division proteins –
ftsBILNQW - (iv) is followed by the localization of cell wall biosynthetic machinery which includes members of the peptidoglycan biosynthesis
pathway – murCDEFGY (v). Inclusion of secA interactions may be related to the fact that both secA and ftsZ both bind tightly to the inner membrane
in the presence of MgCl2 [82].
doi:10.1371/journal.pcbi.1000523.g004

Modular Organization of the E. coli Proteome
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Chemotaxis and flagella assembly. Fig. 3A shows the

interactions between modules 3 and 15 (Table S3) consisting of

proteins involved in flagella biosynthesis and chemotaxis

respectively. Within the flagella, most of the interactions with

the strongest support (thick purple and red lines) are between

components of the motor and the rod, ring and hook structures.

Further investigation reveals that unlike the interactions with lower

confidence scores, these interactions are additionally supported by

phylogenetic profiling evidence, suggesting that these structures

are co-inherited as distinct evolutionary units, consistent with a

previous study that defined a core set of flagella genes [37]. The

interactions with the strongest evidence involved fliFGMN and

reflect experimental studies targeting the structure of the switch

complex [38,39]. Within the chemotaxis module, those

interactions with the strongest support follow established

pathways. For example the methyl-accepting chemoreceptor

proteins (MCPs), tsr and tar, have strongest interactions with

cheW, consistent with its role coupling MCPs to cheA [40].

Furthermore, interactions between chemotaxis and the flagella are

organized through cheY which is known to control the direction of

the flagella motor [41].

Leucine, isoleucine and valine biosynthesis. An example

of a metabolic pathway is provided by modules 45, 66 and 203

which together comprise proteins involved in leucine, isoleucine

and valine biosynthesis (Fig. 3B). Comparisons between the

interactions involved in these modules with the KEGG defined

pathway reveal that while leuABCD (organized as part of module

66) form a functional module associated with a branch of the

pathway, other KEGG pathway relationships correlate less well

with the interaction data (Fig. 3B). For example, there is strong

evidence for functional links between ilvA and ilvD, and ilvC and

leuC which do not appear close in the pathway. Compared to

interactions with weaker evidence, these interactions are

additionally supported by their conserved co-expression. This

might suggest that these proteins play major roles in regulating

substrate flux within the pathway. Interactions involving ilvBHIN

reflect the formation of two different acetolactate synthases which

demonstrate differential expression and activities: ilvB and ilvN

form acetolactate synthase I, while ilvH and ilvI form acetolactate

synthase III.

Pili biosynthesis. Modules 21 and 35 (Fig. 3C) comprise

proteins from families of pili assembly proteins i.e. chaperones and

outer membrane usher proteins respectively. The modules are

defined on the basis of common inter-module interactions with

components of the other module and interestingly, lack intra-

module interactions, i.e. each component of module 21 has a

similar pattern of interactions with components of module 35 and

vice versa. Subsequently, the MCL algorithm has placed

components with the similar patterns of interaction into the

same cluster. These linkages are based on genome proximity and

phylogenetic profiling methods. Their subsequent clustering into

two distinct modules, correlates with their membership in two

discrete gene families [42]. Pili assembly proteins form part of a set

of related operons that include structural subunits that form

mature pili [43]. While we might expect these structural subunits

to form similar modules, their greater sequence diversity (as

exemplified by their division into separate gene families) precludes

the detection of their interactions via genome proximity and

phylogenetic profiling methods. The grouping of assembly

proteins represents a novel modular class reflecting a battery of

functionally interchangeable elements, which in the case of these

proteins allow the bacterial cell to attach to a variety of different

surfaces important for colonization of host tissues in pathogenic

strains [44].

ABC transporters. ABC transport systems are typically

composed of three types of subunits: an extracellular substrate

binding subunit; an intracellular ATP-binding subunit and a

membrane incorporated permease [45]. The division of these

related proteins into several modules (e.g. modules 7, 16, 19, 22, 23,

32, 42, 61, 176, 253, 267 and 308 - Fig. 4A) reflects both functional

and evolutionary relationships. For example, components involved

in seven nickel and peptide transport systems are associated with

three modules. Interactions between the ATP-binding components

and the permeases of the peptide/nickel and amino acid

transporters are mostly supported through genome proximity and

Rosetta stone methods. This is consistent with reports that gene

fusion between permease and ATP-binding domains is a common

feature of the ABC family [46] (albeit apparently restricted to these

classes of transporters). As for the pili assembly proteins, the large

number of shared interactions between the permeases and the ATP-

and substrate-binding components is related to a high degree of

sequence homology [46]. The relative isolation of other subsystems

within this network (e.g. the D-xylose transporter), is a consequence

of their relatively specialized functional roles and more distant

evolutionary relationships.

Cell wall biosynthesis/cell division. In addition to

inferring evolutionary relationships, inter-module interactions

can also illuminate potential mechanisms of core cellular

processes such as cell wall biogenesis and cell division (Fig. 4B)

[47]. For example, cell division begins with the assembly of ftsZ

into a ring structure followed by the recruitment of ftsA and zipA.

This process is controlled by the Min system (via minC), dicB (also

via minC) and sulA. Next, ftsK is co-localized which mediates the

further assembly of additional cell division proteins: ftsBILNQW.

In addition, ftsK plays an important role in chromosome

partitioning including the decatenation of newly replicated

chromosomes by TopoIV (which is composed of parC and

parE) [48]. Cell wall biogenesis involving peptidoglycan

biosynthesis is thought to occur at the site of cell division

[49,50]. The modular organization of the proteins in the

peptidoglycan biosynthesis pathway with the cell division

proteins, suggest that their recruitment may be mediated by ftsI

and/or ftsW which possess strongest evidence of interaction.

Novel modules. In addition to well characterized systems, we

also identified modules comprised of proteins which have not been

assigned to an EcoCyc functional category (Table S4). A notable

example is module 102, composed of five proteins: sspA; sspB; yraP;

yrbD and ybaT. sspA is a global regulator that has been associated

with acid resistance [51], while sspB is a ribosome associated protein

that enhances the degradation of incomplete peptides when protein

synthesis is stalled [52]. Little is known about yraP except that it is

predicted to reside in the periplasm. The latter two proteins are

putative transporters: ybaT is a member of the APC superfamily

and its expression has been found to increase in response to acid

stress [53]; while yrbD is a predicted ABC-type organic solvent

transporter. Together these annotations suggest that these proteins

form part of a stress response module. Further elucidation of their

functions may emerge through focusing on their roles under

exposure to acid and/or organic solvents.

Evolution of the combined network and the integration
of genes acquired through lateral gene transfer

The availability of a large scale interaction map for E. coli

provides a valuable resource for exploring the evolution of protein

interaction networks in bacteria. Consistent with previous studies in

yeast and a smaller network derived for E. coli [9,11], essential and/

or highly conserved proteins are more highly connected and occupy

more central roles within the combined network compared to non-
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essential and poorly conserved proteins (Fig. S8). Proteins from large

gene families (.10 members) were also more highly connected and

centric to the network (Fig. S9A). However, it should be noted that

the number of connections associated with members of large gene

families may be inflated due to the fact that they often possess

similar phylogenetic profiles (one of the features used for generating

the functional network). Nonetheless we also note that for each

network, from 25–35% of genes from the same gene family have a

shortest path length of two, indicating a common interactor.

Together these findings highlight the role of conserved and essential

proteins in coordinating cellular processes and support a model of

preferential attachment in which duplicated proteins tend to

interact with the partner of their paralog [54–57].

A unique facet of bacterial evolution is their ability to readily

acquire new genes through lateral gene transfer events (LGT). Of

359 previously identified LGT genes [58], only 130 (36%) were

identified within the combined network. On the whole proteins

derived from these genes were poorly connected and found at the

periphery of the network (Fig. S9B). For example, of the 130 LGT

derived proteins in the network, 63 (48%) had a betweenness value

of 0, i.e. they are connected to only one other protein, compared to

673 out of 2,173 (31%) for non-LGT proteins (x2 = 17.26,

p,0.0001, Chi-Square test). Similar results were obtained for both

the Hu et al. TAP and the functional networks. These results suggests

that LGT derived proteins largely contribute to PPI network

evolution through the addition of peripheral functions, perhaps in

response to changed environments [59]. For example, the

peripheral (betweenness = 0) protein gadX is a regulator of two

isoforms of glutamate decarboxylase which operate in several amino

acid metabolic pathways. The predicted origin of gadX in E. coli

through LGT suggests a recently acquired role in the network

linking pH sensing with differential expression of these decarbox-

ylases which are known to play a major role in acid resistance [60].

It is worth noting that the finding that LGT genes tend to occupy

the periphery of networks, highlights a novel property that could be

exploited for improving LGT detection methods.

Comparing shortest path lengths, we found a subset of LGT

proteins that associate with other LGT proteins, although this

appears to be a property of the functionally derived interactions

rather than the Hu et al. TAP derived interactions (Fig. S9B). We

identified a series of seven LGT specific subnetworks consisting of

three or more interconnected LGT proteins with an additional

nine other pairs of interacting LGT proteins (Fig. 5). In many

cases, LGT genes associated with the same subnetwork were found

in close genomic proximity, possessed similar phylogenetic profiles

and were also organized within the same functional module

(Figs. 4B and 5A), suggesting a mode of lateral evolution in which

functional units may be co-inherited through discrete transfer

events. For example, fourteen genes involved in phosphonate

uptake and transport are organized into a single operon [61] and

grouped into four functional modules, including module 62 which

contains phnGHIJM. To examine the role of LGT in modular

organization, we present two detailed examples involving

hydrogenase and iron transport systems respectively.

The E. coli genome encodes four hydrogenases (Hyd1-4): Hyd1

and Hyd2 are isoenzymes involved in hydrogen uptake, while Hyd3

and Hyd4 perform the reverse reaction, although the physiological

role of Hyd4 is not clear [62]. Hyd3 is encoded by hycBCDEFGHI,

of which hycBCDEG are predicted to derive through LGT. Only

three proteins associated with Hyd3 - hycEFG - are present within

the combined network (Fig. 5C). Together these are organized in a

single operon and form part of module 31 along with components of

Hyd4 and NADH:ubiquinone oxidoreductase, reflecting common

sequence similarity relationships between the three systems [63].

Linking Hyd3 subunits to components of Hyd1 and 2, are a variety

of proteins required for the maturation of the active hydrogenase

enzymes, including hypBCDEF and slyD [62]. The emerging

picture suggests that the putative acquisition of many components of

Hyd3 via LGT and their integration into the network as a functional

entity was facilitated by the presence of existing maturation proteins

which were originally associated with Hyd1 and 2.

Enterobactin is a siderophore, produced by E. coli which is

secreted by E coli and used to sequester and import iron and has

been implicated in host invasion [64]. Evolution of metabolic

pathways often involves the use of pre-existing metabolic

precursors (note for example the links between enzymes from

other amino acid pathways with those involved in tryptophan

biosynthesis Fig. 5D). The synthesis of enterobactin requires

chorismate produced by the enzyme trpD as a precursor and

involves five enzymes: entABCEF. Of these, the first four are

putative LGT genes organized in a single operon along with three

of the four subunits (fepB, fepD, fepG) of the ABC transporter

used to import ferric-enterobactin in a tonB-dependent process.

Given a source of chorismate, the acquisition of these genes as a

discrete functional module, provides the host bacterium with the

ability to synthesise, secrete and import enterobactin. As an

interesting aside, related genes in the pathway: entD, entF, fepA,

fepC and fes, are also located in the same genomic proximity but

were not predicted to have derived from LGTs. Finally it is worth

noting the presence of two additional ABC-based iron transport

systems within this subnetwork: fhuABCDE and fecABCD,

responsible for the uptake of iron via hydroxamate and dicitrate

respectively. While the fhu-based transporter appears native to E.

coli, the fec-based system is another LGT acquired system. The

interactions between the permease subunits fecCD and fepGD

reflects their close evolutionary relationships and highlights the

need for most bacteria to evolve and maintain a diverse battery of

iron uptake systems as they attempt to compete with other

microbial organisms for this relatively limited resource [65].

Conclusions
Here we have combined a novel functional network with a

recently generated experimental network to provide a global view of

the modular organization of proteins in E. coli. The identification of

functionally coherent modules, their interactions and the emergence

of ‘neighbourhoods’ of interconnected modules represent a major

step towards a deeper understanding of how biological processes are

organized and operate. In an attempt to understand how the

network may have arisen, we examined the role of gene family

expansions and lateral gene transfer events on the generation of the

network. From these analyses, we propose an amended model of

network evolution (Fig. 6) based on preferential attachment as

previously suggested [55]. In this new model, we suggest that the

bacterial network gains interactions either through the duplication

of existing genes, or through the acquisition of novel genes from

LGT events. From the preferential attachment model and

consistent with our analysis of gene family relationships we note

that gene duplication events result in preferential growth at the core

of the network. On the other hand, perhaps due to their potential to

disrupt essential interactions that are enriched in the core of the

network, the acquisition of new interactions through LGT events

occurs mainly at the network periphery. Instead, the evolution of the

network through LGT events at the network periphery might be

associated with contingency genes allowing the bacteria to adapt to

new ecological niches. It should be noted that the LGT derived

proteins used in this study were detected mainly by their

composition properties and may therefore be biased towards more

recent transfers [58]. It cannot therefore be discounted that proteins
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Figure 5. Organization of laterally transferred interactions. A: Organization of LGT-derived proteins within the combined network. Each pie
chart indicates a single protein, with the coloured arcs reflecting its phylogenetic profile (see inset key). The colour at the centre of each pie chart
indicates module membership. Large coloured ovals grouping proteins define gene neighbourhoods (each gene is within 2000 bp of at least one
other gene). Colours of links represent type of supporting evidence (GP = genome proximity; RS = Rosetta stone; PP = phylogenetic profiles;
LT = literature curation; PD = pull down). The embedded colour key indicates the breakdown of taxonomic groups used to construct the phylogenetic
profiles – numbers indicate the number of genomes associated with each group. B: Organization of LGT genes with the E. coli genome. The outer
circle indicates the location of LGT genes. Grey lines indicate LGT genes not identified within our network. Coloured lines extending into the center
indicate LGT genes identified within our network, organized into gene neighbourhoods. Coloured circles indicate the relationship between the gene
neighbourhoods and their organization within the network shown in A. C: Network organization of proteins involved in hydrogenase biosynthesis.
Two proteins associated with hydrogenase 3, hycE and hycG are thought to derive through LGT and are highlighted. Also present in the combined
network are proteins associated with: hydrogenase 1 (hyaABDEF); hydrogenase 2 (hybCDFO); hydrogenase 4 (hyfBDFGI); hydrogenase maturation
(hypBCDEF and slyD); and NADH:ubiquinone biosynthesis (nuoBCEFGHILMN). D: Network organization of proteins involved in enterobactin synthesis
and related processes. Again proteins thought to derive through LGT and are highlighted. Also shown are components of the tryptophan
biosynthetic pathway responsible for production of the chorismate precursor of enterobactin (trpABCDE); and components of two other related iron
transport systems – fhuABCDE and fecABCD, which uptake iron via hydroxamate and dicitrate respectively.
doi:10.1371/journal.pcbi.1000523.g005
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derived through older LGT events that are less easily recognized,

may have become integrated into the network, potentially

developing into core components of the network.

Previous studies of PPI networks, have shown that many

functional modules tend to be conserved over evolution [66,67].

More recently, studies of protein complexes evolution suggest

that protein complexes form early in evolution and evolve as

coherent units [68] and that duplication of self-interacting

proteins play a key role in their formation [69]. Here we expand

on these ideas by suggesting that at least in bacteria, LGT events

resulting in the simultaneous acquisition of several functionally

related genes may also contribute to the formation of a modular

network structure.

To our knowledge, this network represents the most compre-

hensive and accurate gene network reconstruction in E. coli that

not only provide insights into the evolution and organization of

bacterial protein interaction networks, but may be usefully

exploited to help understand the molecular basis of pathogenesis.

Furthermore, the identification of groups of proteins organized

into discrete functional modules will assist the design and

construction of artificial biological systems and hence provide a

valuable contribution to the emerging field of synthetic biology

[70,71]. To allow researchers to freely download explore these

datasets a publicly available web tool has been developed - http://

www.compsysbio.org/bacteriome/ [72].

Finally, it is important to note that the network presented here

represents only 45% of the E. coli proteome. While the coverage of

the network will improve as additional datasets become available,

we would nonetheless encourage researchers, interested in genes

not contained within this dataset, to explore the other previously

published datasets outlined in this paper. Links to these datasets

are also provided on our project website.

Methods

Sources of data
Datasets to derive the functional network included seven

computational (C) and three experimental (E) datasets: Phyloge-

netic profiles (C) [14]; Rosetta stone (C) [14]; Gene neighbourhood

(C) [14]; Gene clusters (C) [14]; Literature curated (C) [22];

Interologs of H. pylori (C) [12,73]; Conserved coexpression (C) [13];

Large scale TAP [9] (E) and Small scale assays (E) from DIP

[74,75]; and Large scale pull down (E) [21]. Numbers of proteins

and interactions associated with each dataset are presented in

Figure 6. Amended model of the evolution of the E. coli interaction network. From an ancestral network, new interactions are acquired
either through the duplication of existing genes (blue nodes) or the acquisition of novel genes through lateral gene transfer events (LGT – red nodes).
The preferential attachment model suggests that duplicated genes are more likely to be located at the core of the network (genes associated with
large gene families are more highly connected and more central to the network). On the other hand we find that LGT derived proteins tend to be
more peripheral and/or integrated as a discrete module perhaps because they are less liable to disrupt essential functions associated with the
network core.
doi:10.1371/journal.pcbi.1000523.g006

Modular Organization of the E. coli Proteome

PLoS Computational Biology | www.ploscompbiol.org 11 October 2009 | Volume 5 | Issue 10 | e1000523



Table S1, along with a breakdown of the experimental methods

used to derive the small scale assay dataset. Each dataset assumed

a bait:prey (‘‘spoke’’) model of interaction (as opposed to a

‘‘matrix’’ model, in which each component of a complex is

assumed interact with all other components of the complex). Due

to the high level of overlap between the Gene neighbourhood and

Gene clusters datasets, they were combined into a single set of

interactions termed Gene proximity. In order to test the correct

assignment of functional linkages we used four different bench-

mark sets: EcoCyC [5], the Clusters of Orthologous Group (COG)

[29], the Kyoto-based KEGG [76], and the Gene Ontology (GO)

annotation database [31]. Our analyses also incorporated a

recently generated large scale TAP-derived network (designated

Hu et al. TAP) containing 3,888 interactions between 918 proteins

[77]. This dataset also assumes a spoke model of interaction. Due

to the high quality and coverage of this data set which has also

been subjected to validation through a similar data integration

process, it was not included in the generation of the functional

network. Instead the two networks (Hu et al. TAP and functional)

were merged into a single combined network featuring 7,613

interactions between 2,283 proteins. Lists of essential and non-

essential proteins were derived from Zhang and co-workers [78].

For further details on these datasets see Text S1 - Methods.

A probabilistic method for integrating functional
genomics data

To derive a high quality dataset of functional interactions,

information from the seven computational and three experimen-

tally derived datasets were integrated within a Bayesian frame-

work. The scoring scheme used in this study derives from Bayesian

statistics and is similar to that used by Lee and co-workers [32], in

which each input data set, either experimentally or computation-

ally derived, adds some evidence that a pair of genes are

functionally linked. Each experimental and computational data

set is evaluated for its ability to reconstruct known pathways by

measuring log likelihood scores (LLS) representing the likelihood

that a pair of genes are functionally linked.

LLS~ln
P LjEð Þ=*P LjEð Þ

P Lð Þ=*P(L)

P(L|E)/,P(L|E) represents the posterior odds ratio, where

P(L|E) represents the frequency of interactions (L) in a dataset

(E) between proteins participating in the same functional category

(as defined by EcoCyc); ,P(L|E) represents the frequency of L in

E participating in different functional categories. P(L)/,P(L)

represents the prior odds ratio, where P(L) represents the frequency

of interactions between all E. coli proteins participating in the same

functional category; and ,P(L) represents the frequency of

interactions between all E. coli proteins participating in different

functional categories. Higher values of LLS indicate more

confident interactions associated with the dataset.

To derive a score associated with a functional interaction, we

integrate the LLS’s from each dataset in which that interaction is

found. To examine potential biases that may arise from data

dependencies we applied a weighted sum scoring scheme [32] to

derive a final score S associated with each interaction:

S~
Xn

i~1

LLSi

D(i{1)

where LLSi represents the LLS for the functional interaction from

dataset i (ordered by descending magnitude of the n log likelihood

scores for the given interaction); D is a free parameter representing

the relative degree of dependency between various datasets; and n

is the number of datasets containing the interaction. Here we

examined values of D from 1 to ‘ and found that D = 1 gave the

best performance in terms of accuracy (LLS) and coverage,

suggesting that the datasets were independent (Figure S1E). Hence

in this study, the final score for a functional interaction was simply

derived from the sum of LLS’s of all datasets in which the

interaction was found.

Finally a cut-off based on the LLS derived from the small scale

experimental dataset was used to define a high confidence set of

functional interactions (Fig. 1B).

Assessment of the performance of functional interactions
To assess functional interactions we used a previously published

label propagation method using a threshold cut-off . = 0.5 [33]

with five-fold cross-validation based on COG category assign-

ments. We derived values for precision (true positives/(true

positives+false positives)), recall (true positives/(true positives+false

negatives)) and area under receiver operator characteristic curve

(AUROC) from 100 replicate samplings.

Network analyses
Network statistics were derived using in house perl scripts and

the two software packages: Pajek (http://vlado.fmf.uni-lj.si/pub/

networks/pajek/) and tYNA (http://tyna.gersteinlab.org/). The

global network view was generated using an in-house Java based

applet. Other network views were generated using Cytoscape

(http://www.cytoscape.org/). The genome ideogram was

generated using the Circos software (http://mkweb.bcgsc.ca/

circos/?home).

Functional modules were predicted using the Markov clustering

algorithm [36], testing several inflation parameters and using

values that provided the best overlap of the computed clusters with

COG functional categories (Fig. S6). Note the average % overlap

in COG categories across modules derived from the combined

network was found to only vary between ,56–59%. Hence, even

without optimization, there is a high proportion of clusters with

common COG terms.

Conservation analyses
For each E. coli sequence, a BLASTP [79] search was performed

against each of 199 different organism genome data sets derived

from the COGENT database [80] (Table S5). Homologs for each

protein were determined based on a raw bit score threshold of 50.

These homologs were used to generate the phylogenetic profiles

presented in Fig. 5A. For additional conservation analyses, two sets

of conservation were defined. The first consists of three categories:

conserved (homologs in more than 100 genomes - 932 proteins in

the combined network); medium conserved (homologs in at least

25 genomes – 539 proteins); and non conserved (homologs in less

than 25 genomes – 553 proteins). The second set consists of eight

categories: E. coli specific (no detectable homologs outside E. coli–

21 proteins in the combined network); gammaproteobacterial

specific (no detectable homologs outside gammaproteobacteria –

121 proteins); proteobacterial specific (no detectable homologs

outside proteobacteria – 129 proteins); and proteins with

detectable homologs to 1–5 different groups of prokaryotes

(Cyanobacteria, Spirochaetes, Firmicutes/Actinobacteria, ‘Other

bacterial groups’ and Archaea – Table S5) as defined by the NCBI

taxonomy resource (http://www.ncbi.nlm.nih.gov/Taxonomy/

taxonomyhome.html/) – 110, 186, 249, 433 and 822 proteins

associated with 1,2,3,4 and 5 groups respectively. We considered a
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functional interaction to be preserved in a genome if both

interacting proteins have detectable homologues.

Expanded descriptions of network generation and analyses are

provided in the supplementary files - Text S1, Figures S1, S2, S3,

S4, S5, S6, S7, S8, and S9, and Tables S1, S2, S3, S4, S5, and S6.

Supporting Information

Text S1 Supplementary Information

Found at: doi:10.1371/journal.pcbi.1000523.s001 (0.07 MB PDF)

Figure S1 Dataset integration and functional overlap. (A and B)

Overlap between the data sets used for inferring functional

interactions. In an initial approach ten methods were integrated

via a Bayesian framework to predict functional interactions. (A)

shows the percentage of these interactions supported by one method

that are also supported by each of the nine other methods. In the

definitive approach used to derive the ‘functional network’

described here, we combined the gene cluster and gene neighbour-

hood data sets into a single non-redundant set (genome proximity).

The data sets were then reanalyzed to predict 3989 interactions

between 1941 proteins. The graphic in (B) shows the percentage of

these new interactions supported by one method that are also

supported by each of the other eight methods. Background colour

scales from the highest level of overlap (red) to the lowest (blue).

TAP = Tandem Affinity Purification; CO = Conserved Co-expres-

sion; PD = Pull Down experiments; RS = Rosetta Stone; LT = Li-

terature mining; SS = Small Scale experiments; PP = Phylogenetic

profiles; GC = Gene Cluster; GN = Gene Neighbourhood;

GP = Genome Proximity (see above); and IN = Interologs (see

supplemental methods for sources of data). Number of functional

linkages inferred by each method is given in brackets. (C) Number of

interactions in the functional network supported by one method that

are also supported by each of the eight other methods. Background

colour scales from the highest values (red) to the lowest (blue). (D)

Breakdown of the number of methods used to support each of the

3989 interactions in the functional network. Note the 158

interactions supported by a single method were derived from the

small scale assays that did not have any extra supporting evidence.

(E) To examine potential biases that may arise from data

dependencies we applied a weighted sum scoring scheme [33] to

derive a final score S associated with each interaction (see methods

in main text). D is a free parameter representing the relative degree

of dependency between various datasets. Here we found that D = 1

gave the best performance in terms of accuracy (LLS) and coverage

for our functional network, suggesting that the datasets used in this

study were independent. (F) Network accuracy for four networks:

the functional network; a network derived from small scale assays

and two randomly generated networks (the ‘shuffled’ network was

created by randomly reassigning interactions within the functional

network, the ‘random’ network was created by randomly selecting

an equivalent number of proteins from the E. coli proteome and

randomly assigning an equivalent number of interactions). The bars

represent the percentage of interactions in each network in which

both proteins share the same functional category assigned by either

COG or EcoCyc [19,20]. Error bars indicate standard deviation for

30 replicate random or shuffled networks (Text S1 - Methods).

Found at: doi:10.1371/journal.pcbi.1000523.s002 (0.46 MB PDF)

Figure S2 Comparison of the functional network to three

previously published functional networks. (A) Overlap of interac-

tions derived from four E. coli functional interaction datasets:

Functional (this study); String [4]; Hu et al., GC [5]; and

Yellaboina [2]. Numbers in brackets indicate the total number of

interactions associated with the dataset. (B) Sample precision-recall

curves for four selected COG categories. Precision/Recall values

were obtained using the five fold cross-validation method of

assigning COG categories based on label propagation described in

the main text. Different values of precision and recall were

generated from increasing the threshold cutoff for label propaga-

tion from 0 to 1. (C–E) Measures of performance for the four

functional datasets: (C) Area under the receiver operating

characteristic curve (AUROC = sensitivity vs. (1-specificity)); (D)

Recall; and (E) Precision. To maintain consistency across all COG

categories, for graphs D and E (summarizing differences in Recall

and Precision) we used a single threshold cutoff for label

propagation of 0.5. Points and error bars represent the means

and standard deviations obtained from 100 replicates. The

functional network presented in this study significantly out

performs the other three datasets in terms of improved recall

across all COG categories. Furthermore, it provides the highest

values of precision for 8 COG categories and the next best value of

precision for an additional eight categories. Finally, in terms of

AUROC values, our functional network out performs all three

other datasets in 10 of 19 COG categories.

Found at: doi:10.1371/journal.pcbi.1000523.s003 (1.58 MB PDF)

Figure S3 Scale free behavior of the networks. Node degree

distributions of the four networks (combined, Hu et al. TAP, high-

and low-confidence functional networks) presented in the paper.

Each graph is a log-log plot of the number of interactions (k) for

each protein as a function of frequency (p(k)). Each network

demonstrates scale free behavior as shown by the linear

relationships within each graph.

Found at: doi:10.1371/journal.pcbi.1000523.s004 (0.38 MB PDF)

Figure S4 Distribution of topology measures for different COG

functional categories within the combined network. (A) Distribu-

tion of betweenness values for each COG functional category. (B)

Distribution of shortest path length between two proteins in the

network calculated both for proteins from the same COG category

and for proteins to other COG categories. (C) Distribution of node

clustering coefficients for each COG functional category. (D)

Distribution of mutual clustering coefficients for interactions

involving both proteins from the same COG category and for

proteins from different COG categories. (E) Distribution of node

degrees for each COG category. Descriptions of COG category

codes are provided in (E).

Found at: doi:10.1371/journal.pcbi.1000523.s005 (1.76 MB PDF)

Figure S5 Topological relationships of COG functional catego-

ries within the three derived networks. (A) Number of interactions in

the Hu et al. TAP and functional network between each pair of

COG categories. Each combination of COG categories is coloured

according to the significance (Z-score) of enrichment (red) or

depletion (blue) of interactions compared with values obtained from

100 randomly generated networks. (B) Shortest path length between

COG categories in the combined, Hu et al. TAP and functional

networks. COG category combinations are coloured by the

deviation of their shortest path length from the average for the

network (red = enrichment, blue = depletion). COG category codes

for (A and B) as shown in (C). ‘multi’ = proteins assigned to multiple

COG categories. (C) Description of COG functional categories and

numbers of proteins in each category associated with each network.

Colours were obtained from the COG website (http://www.ncbi.

nlm.nih.gov/COG/).

Found at: doi:10.1371/journal.pcbi.1000523.s006 (2.33 MB PDF)

Figure S6 Performance of the MCL algorithm on module

prediction. (A) Bars represent the average percentage of overlap in

COG categories within module predictions at different MCL
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inflation values for the Hu et al. TAP, functional and combined

networks. The percentage of overlap for each module was

obtained by considering only the most abundant COG category

in the module. (B) Size distribution of modules. Values represent

the distribution of module sizes (log scale) for the Hu et al. TAP,

functional and combined networks. The average for 100 random

networks of similar size to the combined network are also shown.

Lines of best fit and correlation coefficients (R-squared) are

indicated for each data set. Note the relative steepness of the line

associated with the random network compared with the other

three networks. (C) Accuracy of functional network to predict

correct COG annotations for two network-based methods:

‘neighbour linkage’ and ‘functional module’ using a leave-one-

out cross-validation procedure (see Text S1 - Methods). Bars

indicate the frequency of correct COG assignment. Two measures

of stringency were employed: high stringency indicates that the

majority of interaction partners/module members had the same

COG category; low stringency indicates that any of the interaction

partners/module members had the same COG category. In both

cases correct COG assignment additionally required at least 20%

of the interaction partners/module members to have the same

COG category. Due to the difference in module size distributions

(B), only the neighbour linkage method was applied to random and

shuffled networks of equal size to the functional network. Error

bars indicate standard deviation for 30 replicate random/shuffled

controls.

Found at: doi:10.1371/journal.pcbi.1000523.s007 (0.37 MB PDF)

Figure S7 Networks of predicted functional modules. Each

graph indicates a network of predicted modules for the combined,

Hu et al. TAP and functional networks. Each pie chart shows the

proportion of proteins associated with each COG functional

category (see inset for colour key). The size of the pie chart

indicates the number of proteins associated with each module.

Links between modules indicate interactions between proteins in

different module. Note the greater functional heterogeneity

associated with the Hu et al. TAP modules compared with the

functionally derived modules.

Found at: doi:10.1371/journal.pcbi.1000523.s008 (0.99 MB PDF)

Figure S8 Network properties associated with gene conservation

and essentiality. (A and B) Graphs comparing network properties

(node degree and betweenness centrality) with a protein’s

essentiality (A) and conservation (B). Conserved proteins are

defined as those with homologs in more than 100 genomes (of

199), medium conserved proteins are defined as those with

homologs in 25 to 100 genomes and non conserved proteins are

defined as those with homologs in less than 25 genomes. Lists of

genomes are provided in Table S5. Descriptions of how network

metrics are calculated are provided in Text S1 - Methods. For

each graph, results are provided for both the high quality (HQ)

combined network (2,283 proteins, 7,613 interactions) and a lower

quality (LQ) network consisting of the extended network of

functional interactions together with the Hu et al. TAP network

(4,190 proteins, 60,241 interactions). The inclusion of the low

quality network in these analyses which reveal similar trends to the

high quality network demonstrates that our results are not

influenced by the large number of false negatives associated with

the high confidence network. Also shown are results for a random

network constructed with the same proteins and topology as the

combined network [27] (see Suppl. methods). (C) Relationship

between protein essentiality, hub-non hub interactions and

shortest path lengths. Hubs are defined as proteins with more

than 10 interactions; non-hubs are defined as proteins with less

than three interactions. Again, results for a random network

constructed with the same proteins and topology as the combined

network are also shown. (D) Relationship between the node

degree, betweenness centrality and node clustering coefficient of a

protein and its degree of conservation within prokaryotes. Each

protein in the combined network is assigned one of eight

conservation categories: E. coli specific; gammaproteobacterial

specific; proteobacterial specific; and 1–5 other prokaryotic groups

(see Text S1 - Methods).

Found at: doi:10.1371/journal.pcbi.1000523.s009 (0.75 MB PDF)

Figure S9 Network properties associated with gene family

membership and laterally transferred genes. (A) Graphs compar-

ing network properties (node degree, betweenness centrality and

shortest path length) with gene family membership for the three

networks. For the graphs relating betweenness centrality and

shortest path lengths for the combined network, also included are

the results from 100 ‘random’ networks sharing the same degree

distribution as the combined network. The bottom graph indicates

the frequency of proteins that interact (according to the combined

network) with different numbers of proteins from the same family.

Protein families were obtained with reference to the COGENT++
database [33]. (B) Graphs comparing network properties (be-

tweenness centrality and shortest path length) with the origin of a

protein (LGT versus non-LGT) for the three networks presented in

this study. For each network, LGT genes tend to have lower values

of betweenness indicating their peripheral position within the

respective networks. The two tailed distribution of shortest path

lengths observed for the functional network, highlights the finding

that a proportion of LGT genes within this network, occur within

discrete interconnected modules.

Found at: doi:10.1371/journal.pcbi.1000523.s010 (0.70 MB PDF)

Table S1 Sources of data used to derive the functional network.

This table lists the number of proteins and interactions associated

with each dataset. Also presented is a breakdown of the number

and type of experiments associated with the small scale assay

dataset.

Found at: doi:10.1371/journal.pcbi.1000523.s011 (0.02 MB XLS)

Table S2 List of interactions used to derive the combined

network. The functional and Hu et al. TAP networks were

combined into a single network. Locus ids, gene names, COG

categories (‘‘-’’ indicates no COG assignment) and description of

gene products were obtained from the COG database [20]. ‘LLS’

refers to the likelihood scores obtained from the functional

network. ‘Confidence scores’ refers to scores obtained for the Hu

et al. TAP network [33]. The presence of LLS and Confidence

scores for the same interaction indicates that the interaction was

detected by both methods, otherwise the interaction was identified

in only a single data set. COG category codes are provided in

Fig. 1C.

Found at: doi:10.1371/journal.pcbi.1000523.s012 (2.20 MB XLS)

Table S3 Functional module predictions for the combined,

functional and Hu et al. TAP networks. Functional modules were

predicted by using the MCL algorithm (see Methods). Locus ids,

gene names, COGs categories (‘‘-’’ if there is not COG assigment)

and annotation description were obtained from the COGs

database [20]. COG category codes are provided in Fig. 1C.

EcoCyc annotations were obtained from the EcoCyc database

resource [19].

Found at: doi:10.1371/journal.pcbi.1000523.s013 (0.70 MB

DOC)

Table S4 Enrichment of COG functional categories in modules

derived from the three networks. Functional modules were

predicted using the MCL algorithm (see Methods). For each
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module the major COG category was determined as the category

assigned to the most proteins in that module, the % of proteins

annotated with the major COG category is indicated. Module size

indicates the number of proteins associated with the functional

module. P-values were calculated based on expectation using 10000

random modules of equal size. * = p-value ,0.1; ** = p-value

,0.01; *** = p-value ,0.001.

Found at: doi:10.1371/journal.pcbi.1000523.s014 (0.09 MB XLS)

Table S5 List of genomes used for comparative analyses. List of

full sequenced genomes analysed in the study obtained from the

COGENT database [33]. Species are ordered by major

taxonomic groups (Archaea; Bacteria; Eukaryota) and are also

coloured by minor taxonomic groups. For each species its

COGENT id and the number of sequences associated with the

genome are given.

Found at: doi:10.1371/journal.pcbi.1000523.s015 (0.06 MB XLS)

Table S6 Enrichment of essential proteins in modules derived

from the combined network. Functional modules were predicted

using the MCL algorithm (see Methods). Module annotation was

provided if the overlap of COG categories among the module

components was more than 60%, otherwise the module was

assigned the COG code – ‘S’ (unknown). COG category codes are

provided in Fig. 1C. Size represents the number of components

within the module. E/NE(%) represent the percentage of essential/

non essential components within the module. 42 essential functional

modules were predicted at p-value ,0.1. P-values were calculated

based on expectation using 10000 random modules of equal size.

* = p-value ,0.1; ** = p-value ,0.01; *** = p-value ,0.001.

Found at: doi:10.1371/journal.pcbi.1000523.s016 (0.06 MB XLS)
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