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Abstract

The mechanism for cortical folding pattern formation is not fully understood. Current models represent scenarios that
describe pattern formation through local interactions, and one recent model is the intermediate progenitor model. The
intermediate progenitor (IP) model describes a local chemically driven scenario, where an increase in intermediate
progenitor cells in the subventricular zone correlates to gyral formation. Here we present a mathematical model that uses
features of the IP model and further captures global characteristics of cortical pattern formation. A prolate spheroidal
surface is used to approximate the ventricular zone. Prolate spheroidal harmonics are applied to a Turing reaction-diffusion
system, providing a chemically based framework for cortical folding. Our model reveals a direct correlation between pattern
formation and the size and shape of the lateral ventricle. Additionally, placement and directionality of sulci and the
relationship between domain scaling and cortical pattern elaboration are explained. The significance of this model is that it
elucidates the consistency of cortical patterns among individuals within a species and addresses inter-species variability
based on global characteristics and provides a critical piece to the puzzle of cortical pattern formation.
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Introduction

Cerebral cortical patterns have fascinated scientists for centuries

with their beauty and complexity. Numerous groups relate

malformations in sulcal patterns to different diseases in humans,

such as autism [1] and attention deficit/hyperactivity disorder

(ADHD) [2]. Though many advances have occurred in cortical

development and sulcogenesis, the understanding of how sulci

form and what factors determine the placement of sulci is still

limited. The cerebral cortex across species displays a variety of

shapes and sizes and also wide array of sulcal patterning. Studying

the evolutionary development of sulcal patterns might provide

clues about the cortical development taking place in humans.

A major advance in determining how these sulcal patterns form

was the introduction of the axonal tension hypothesis [3]. This

hypothesis describes a mechanically-based scenario where axonal

tension, created by developing corticocortical connections in

strongly interconnected regions, pulls together gyral walls and

creates a folding pattern. This hypothesis furthered the concept

that variability between folding patterns among individuals is

genetically driven, not just the consequence of random mechanical

buckling from a confined cortex. Other mechanochemical models

have also been proposed to explain morphogenesis in the central

nervous system [4].

Recently, it has been suggested that a cortical pattern can arise

based on regional patterns of intermediate progenitor (IP) cells in

the subventricular zone (SVZ) [5]. The intermediate progenitor

model, which builds upon the intermediate progenitor cell

hypothesis [6], states that during the development of the cortex

certain radial glial cells in the ventricular zone (VZ) are activated

to create IP cells that travel to the SVZ. These IP cells amplify the

amount of neurons created in a given radial column. Furthermore,

a subset of IP cells creates a local amplification of neurons in upper

cortical layers surrounded by areas of non-amplification, resulting

in a wedge shape in the cortex. This wedge shape is representative

of a gyrus. This new hypothesis is still being debated [7,8] and,

if correct, could be a scenario for chemically-based pattern

formation in the cortex.

Here, a relatively simple and, we believe, elegant chemically-

driven mathematical model is proposed to explain how IP cell

subsets are distributed spatially and temporally in the developing

cortex. Our model, which we call the Global Intermediate

Progenitor (GIP) model, uses a Turing reaction-diffusion system

[9] containing an activator and inhibitor on a prolate spheroidal

surface to determine regional areas of activation of the production

of IP cells. The GIP model allows determination of the placement

of the initial sulci underlying observed complex cortical patterns. It

also demonstrates that the initial folds of the arising sulcal pattern

are governed by the global shape of the lateral ventricle. The

dependency on the global shape provides a critical piece to the

puzzle of cortical development.

Model

In the Intermediate Progenitor Model, sulci occur based on the

distribution of IP cells during cortical development. Mutations of

Pax6, Ngn2, and Id4 have been shown to increase the production of

IP cells in mice [10]. Thus it is not unreasonable to assume that

there is an activator and inhibitor located in the VZ controlling the

production of IP cells.
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We assume an activator and inhibitor are travelling throughout

the VZ, which is located in the lateral wall of the lateral ventricle.

The lateral ventricle is a c-shaped cavity located in both

hemispheres of the cerebral cortex [11] as shown in Figure 1.

The proposed GIP model approximates the shape of the lateral

ventricle with a prolate spheroid and the VZ with a prolate

spheroidal surface. This allows the capture of key domain shape

characteristics (the eccentricity of the lateral ventricle) with the

focal distance ( f ) of a prolate spheroid.

Also, there are multiple discrete time intervals where the

distribution of the reactants determines the creation of IP cells.

These time intervals represent the temporal windows [5] for the

production of neurons in the upper cortical layers. This

assumption allows for the layering of multiple patterns to form

based on distributions of an activator and inhibitor.

Reaction-Diffusion System
The patterns created by Turing reaction-diffusion systems have

been used to describe pattern formation in numerous biological

systems [12]. Though biological Turing patterns have not been

proven as rigorously as chemical Turing patterns [13], recent

results [14] give supporting evidence of Turing patterns formation

in a biological setting. A Turing system is a reaction-diffusion

system, given by

Ut~dd+2UzF (U ,V )

and
ð1aÞ

Vt~d+2VzG(U ,V ), ð1bÞ

containing an activator (U) and an inhibitor (V) that are diffusing

throughout their domain and interacting with each other as

described by the reaction kinetics (F and G). The reaction kinetics

chosen for the GIP model are from the Barrio-Varea-Maini

(BVM) [15] system given by

ut~dd+2uzau 1{r1v2
� �

zv 1{r2uð Þ,

and
ð2aÞ

vt~d+2vzbv 1z
ar1

b
uv

� �
zu czr2vð Þ ð2bÞ

where (u, v) = (U2U0, V2V0) and (U0, V0) is the steady state. Not

much is known about the possible interactions between u and v

that regulate the production of IP cells. Hence the BVM system is

ideal because the kinetic equations do not assume any prior

knowledge of how the reactants (activator and inhibitor) interact

and instead takes a phenomenological approach. These kinetics

(Equations 2a,b) also provide control over the amount of linear (a
and c for u; and b for v), quadratic (r2), and cubic (r1) interactions.

The diffusivity ratio and domain scaling are given by d and d,

respectively. Key aspects of the system that determine what

pattern will arise include the ratio of the diffusivities of the

activator and inhibitor, domain scale and shape, and quadratic

versus cubic terms in the kinetic reactions [12,16].

In order to analyze the nonlinear BVM system, the kinetics are

approximated linearly by expanding them in a Taylor series around

the steady state and neglecting higher order terms resulting in

ut

vt

� �
~Dd+2

u

v

� �
zA

u

v

� �
where D~

d 0

0 1

� �
and A~

Fu Fv

Gu Gv

� �
(0,0)

: ð3Þ

Solutions of Equation 3 are of the form (u, v) = TT(t)XX(xx). The

temporal solution is TT(t) = el(k2)t, where l(k2) is the temporal

eigenvalue. The spatial solution solves the Helmholtz Equation

(=2X+k2X = 0) in the given domain where k2 is the spatial

eigenvalue.

Turing patterns have been studied in depth in 1D [12], 2D [17],

and spherical domains [18]. In all these domains, the solution to

the domain’s associated eigenvalue problem can predict which

pattern will form. For a spherical domain, the eigenvalue solution

yields k2 = n(n+1)/r2, where n is the spherical harmonic index and r

is the radius. An increase in k2, which depends on domain scaling

when diffusion coefficients are held constant, results in an increase

in n and changes the predicted Turing pattern. Here, we derive a

formula that predicts the Turing pattern observed on a prolate

spheroidal surface which represents the SVZ.

Prolate Spheroidal Surface
A prolate spheroid is created by rotating an ellipse about its

major axis. It has a focal distance f ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2{b2
p

, where a and b are

the major and minor axes, respectively. Spheroidal coordinates are

expressed as (j, g, Q) where j is the radial term; g = cos h, where h
is the asymptotic angle with respect to the major axis; and Q is the

rotation term.

Figure 1. Approximation of lateral ventricle with prolate
spheroid. A. Position of lateral ventricle with respect to cerebral
cortex. B. The shape of the lateral ventricle can be approximated with a
prolate spheroid. The poles of the anterior and inferior horns map to
the north and south poles of the prolate spheroid, respectively.
doi:10.1371/journal.pcbi.1000524.g001

Author Summary

The size and shape of the cerebral cortex varies across
species. The cortical folding pattern also varies from a
smooth surface where no pattern is visible, as observed in
the common treeshrew (Tupaia glis) and Eastern mole
(Scalopus aquaticus), to an intricate labyrinthine pattern, as
observed in humans. One current model, the intermediate
progenitor model, describes the creation of a fold through
local interactions in the ventricular zone which surrounds
the lateral ventricle. Here we extend the local scenario
described in the intermediate progenitor model to include
global characteristics that differ between species. We
approximate the lateral ventricle with a prolate spheroid
and examine how patterns on a spheroidal surface change
based on size and eccentricity. Our model reveals a direct
correlation between pattern formation and lateral ventric-
ular size and shape. This model’s significance is that it
elucidates the consistency of cortical patterns among
individuals within a species and addresses inter-species
variability based on global characteristics, such as size and
shape of the lateral ventricle, and provides a critical piece
to the puzzle of cortical pattern formation.

Global Intermediate Progenitor Model
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To predict which pattern will emerge, the Helmholtz equation

is expanded with respect to the prolate spheroidal coordinate

system [19] resulting in

L
Lj

j2{1
� � L

Lj
z

L
Lg

1{g2
� � L

Lg
z

j2{g2

j2{1
� �

1{g2ð Þ
L2

Lw2
zc2 j2{g2

� �" #
X~0, ð4Þ

where c~
1

2
k:f . Because the Helmholtz equation (=2X+k2X = 0)

is separable in prolate spheroidal coordinates, we rewrite XX in

terms of XX = R(c,j)S(c,g)W(Q), such that S(c,g), R(c,j), and W(Q)

satisfy

d

dg
1{g2
� � d

dg
S c,gð Þ

� �
z r{c2g2{

m2

1{g2

� �
S c,gð Þ~0, ð5Þ

d

dj
j2{1
� � d

dj
R c,jð Þ

� �
{ r{c2j2z

m2

j2{1

� �
R c,jð Þ~0, and ð6Þ

W’’zm2W~0 ð7Þ

where m and r are separation constants. Since multiple, discrete

values of r are possible for a given m and r is also dependant on c,

the notation will be rmn(c).

Because our domain is a prolate spheroidal surface, the radially-

invariant solution is needed (i.e.
dR

dj
~0). In order for Equation 6

to hold, rmn cð Þ{c2j2z
m2

j2{1
must equal zero for a nontrivial

solution. This results in

k2~
4

f 2j2
0

rmn

1

2
k:f

� �
z

m2

j2
0{1

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Amn

, ð8Þ

where j0 is the spheroidal radius of the shell that conserves a

surface area of 4p (comparable to the surface area of a unit

sphere).

The significance of the formula in Equation 8 is that it relates a

given domain size (controlled by k2) and domain shape (the

eccentricity of the prolate spheroid controlled by f) to the arising

pattern. To demonstrate this formula’s ability to predict pattern

formation, the system (Equations 2a, b) is discretized similar to that

of a sphere [18]. A forward-Euler finite difference scheme is used

and u and v are discretized such that u(g, Q) = (21+h1dg, h2dQ)

where h1 = 0,..,34, and h2 = 0,..,68. The continuity with respect to

g around the north and south poles is maintained as described in

[18] and periodic boundary conditions are used for Q. In

Figure 2A, Amn is plotted for n = 0,..,7 and m = 0,.., n. Numerous

simulations were executed and two are shown here. The first

simulation (Figures 2B and 2C) corresponds to k2 = 30. When

k2 = 30 (asterisk in middle) is plotted on the Amn vs. k graph

(Figure 2A), k2 corresponds with A35 and predicts a (3, 5) pattern

that agrees with the numerical simulation (Figures 2B and 2C).

The second simulation corresponds to k2 = 60 (Figure 2D and 2E)

and when plotted (top right asterisk) on the Amn vs. k graph,

predicts a (7, 7) pattern that is observed in the numerical

simulation.

Results

A few key observations will be addressed. Qualitatively, as the

domain scaling (i.e., k2) increases, the resulting pattern becomes

more elaborate. This result correlates with observations that relate

the surface area of the VZ (or size of the founding radial glial cell

population) to cortical surface area and hence, to the elaboration

of the cortical pattern. The elaboration spans from no pattern

observed for smaller surface areas of the VZ (and smaller-scaled

cortices) to elaborate patterns observed for larger surface areas of

the VZ (and larger cortices) [20].

Figure 2. Computer modeling verification of spheroidal mode equation (Equation (8)). A. Graph of Amn for n = 0, .., 7 (different colors) and
m = 0, .., n (different linestyles, beginning with m = 0 on the bottom and m = n on top) with f = 1. The black asterisks indicate k2 = Amn = 30 (middle
asterisk) and 60 (top right). The asterisk for k2 = 30 corresponds to A35 predicting the pattern (3,5), whereas the asterisk for k2 = 60 predicts the pattern
(7,7). Discretizations of Equations 1a,b corresponding to k2 = 30 and 60, as shown in Figures B–E agree with these predictions. B. Results of
discretization of Equations 1a,b for d= 0.013 (corresponding to k2 = 30), a= 0.899, b= 20.91, c= 20.899, D = 0.5319, r1 = 3.5, and r2 = 0. C. Projection of
B onto a prolate spheroid (f = 1) such that top (bottom) edge of B maps to the north (south) pole of the spheroid. D. and E. Same as B and C except
d= 0.0065 (corresponding to k2 = 60).
doi:10.1371/journal.pcbi.1000524.g002

Global Intermediate Progenitor Model
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Sectorial and Transverse Sulci
The model presented here addresses the directionality of the

initial sulci formed. In order to use the predictive power of the

proposed prolate spheroidal harmonic system, sulci need to be

formulated in terms of prolate spheroidal harmonics. Since the

initial sulcal formations mimic stripes, only the prolate spheroidal

harmonics resulting in striped patterns were studied. In order to

form a sulcus, the gyral banks on either side of the sulcus need to

be created. In terms of the production of IP cells, the areas on

either side of the sulcus will need to be ‘activated’ while the area of

the sulcus is ‘not activated’ (see Figure 3B and 3E).

The two sulcal directions considered are sectorial and

transverse. Sectorial sulci extend in the direction from the frontal

lobe around the Sylvian fissure to the temporal lobe. This

represents the direction of the major axis of the prolate spheroid

approximating the lateral ventricle as shown in Figure 3A. The

alignment of sulcal pits (deepest part of sulcus) along the major axis

of the lateral ventricle in the human has been shown [21]. In terms

of spheroidal harmonics, the pattern of IP cells needed to create

sectorial sulci is (m, n) = (1,1) for 1 sulcus (Figure 3C), (2,2) for 2

sulci, and so forth. Transverse sulci form in the direction of rings

around the VZ as shown in Figure 3D. This direction corresponds

to (0,2) for 1 sulcus (Figure 3F), (0,4) for 2 sulci, and so forth. In

each species displaying a cortical pattern, a number of sectorial

sulci (or sulcal pits) are observed. The exact number of sectorial

sulci is not the focus here. Of interest, rather, are the occurrence of

a transverse sulcus, the transition from transverse to sectorial sulci,

and the role of lateral ventricular eccentricity.

For f = 3 (Figure 4A), as the domain scaling (k2) increases, A11 is

reached first, followed sequentially by A02 and A04. This sequence

corresponds to a sectorial sulcus forming first. If the focal distance

is increased, e.g. if f = 4 (Figure 4B), there is a shift in the Amn

curves and, as k2 increases, A02 will now occur before A11. This

results in a transverse sulcus forming before the first sectorial

sulcus. A further increase in focal distance to f = 6 (Figure 4C)

again shifts the Amn curves, so that A04 now occurs before A11. Two

transverse sulci will now form before a sectorial sulcus is created.

These scenarios illustrate how focal distance plays a role in

determining the order of pattern formation.

Discussion

The GIP model illustrates how sulcal placement and direction-

ality is related to changes in focal distance. In order to determine

the effect of changes in focal distance on cortical pattern

formation, the evolutionary development of cortical patterns was

examined. The lateral ventricle is a c-shaped cavity with an

anterior horn that extends into the frontal lobe of the hemisphere

and an inferior pole that enters the temporal lobe [11]. During the

critical stages of brain development the volume of the lateral

ventricle increases [22] which also increases the surface area of the

lateral ventricle (i.e. k2 increases) . Also, as species have evolved the

neocortex has expanded, resulting in major evolutionary advances

[23]. As the frontal and temporal lobes expand, the lateral

ventricle extends into the lobes increasing the lateral ventricular

eccentricity resulting in changes in the cortical pattern obtained.

For example, overlaying an evolutionary ladder on the scenarios

described in Figure 3 implies that the cortices of species on the

lower rungs of the evolutionary ladder, such as the cat, do not

display transverse sulci before the formation of sectorial sulci

(Figures 4A and 5A). Following this evolutionary ladder, at some

Figure 3. Determination of prolate spheroidal harmonic needed to form a sectorial and a transverse sulcus. A. A prolate spheroid
containing one sectorial sulcus. B. A crossection of Figure A displaying the necessary pattern for a sectorial sulcus to develop. Plus signs indicate
areas of activation of the creation of IP cells, whereas negative signs denote nonactivation. C. Spheroidal harmonic (1,1) which matches the pattern
needed for a sectorial sulcus to develop. The top (bottom) edge maps to the north (south) pole and the left and right edges connect. D. A prolate
spheroid containing one transverse sulcus. E. A crossection of Figure D displaying the necessary pattern for a transverse sulcus to develop. Plus signs
indicate areas of activation of the creation of IP cells, whereas negative signs denote nonactivation. F. Spheroidal harmonic (0,2) which matches the
pattern needed for a transverse sulcus to develop.
doi:10.1371/journal.pcbi.1000524.g003

Global Intermediate Progenitor Model
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point the first transverse sulcus appears, as shown in Figure 4B.

This second stage is representative of the formation of the

calcarine sulcus in species such as the lemur (Figure 5B). Further

along the evolutionary ladder, the second transverse sulcus

appears (Figure 4C). This is representative of the central sulcus

found in higher order primates such as the human (Figure 5C).

For humans, this predicted ordering of sulcal formation

correlates well with what has been observed during development

through the examination of naturally aborted fetuses [24] and

MRI study on preterm infants [25]. The first sulci to appear are

the anterior calcarine and central sulcus which are in the

transverse direction (blue lines in Figure 5C). This is followed by

the formation of the superior and inferior frontal sulci, superior

and inferior temporal sulci, the intraparietal sulcus and the

cingulated sulcus; all which form in the sectorial direction (red

lines in Figure 5C).

The GIP model also provides a plausible explanation for the

development of the central sulcus. Lemurs and humans are both

members of the primate order. The lemur is of the suborder

prosimian, which is the most primitive of the primates [26]. Most

prosimians can be distinguished from anthropoids, the higher

primates, by the absence of the central sulcus [26]. Therefore, this

model links evolutionary development, through the lateral

ventricular eccentricity, to the development of the central sulcus.

The GIP model is a theoretical model that builds upon the ideas

of the IP model. One argument that has been presented against

the intermediate progenitor model is that an ‘‘elaborately

choreographed set of developmental instructions [regulating the

production of IP cells] would be required to account for the

tremendous complexity of human cortical convolutions’’ [7]. The

beauty of the GIP model is that it provides an uncomplicated

approach that relates to a biologically plausible mechanism of

pattern formation. It uses chemical morphogens that may be

governed by specific genes to control IP cell production, resulting

in the ability to predict the placement and directionality of sulcal

pattern formation.

The GIP model reveals the role that the global shape of the

lateral ventricle has on the positioning of the initial sulci during

cortical development. This model explains the development of the

initial folds, particularly how two transerve sulci can form before

any sectorial sulci in the human. There are many sulci, such as the

precentral and postcentral sulcus, that form after this event which

are not in the scope of this present work. Also, we believe the

Sylvian fissure is formed by the c-shape of the lateral ventricle,

which is not applicable to the model.

Lateral ventricular shape, or shape of any nontrivial object, is

not easy to quantify. The GIP model approximates the lateral

ventricle with a prolate spheroid allowing the capture of key shape

Figure 5. Predicted development of folds in cortices of 3 species. The sulcal patterns produced based on the lateral ventricular geometry
shown in Figure 1, and the resulting bifurcations shown in Figure 4. The top row shows the formation of transverse sulci (red curve in B
corresponding to the pattern A02, magenta curves in C corresponding to A04). The bottom row shows the subsequent creation of a certain number of
sectorial sulci (blue curves) for A: cat, B: lemur, C: human.
doi:10.1371/journal.pcbi.1000524.g005

Figure 4. Bifurcations occurring between sectorial and transverse curves. A. An illustration of the scenario of order A11, A02, A04, which
occurs for fixed focal distances up to 3.7. B. Scenario of order A02, A11, A04, which occurs for focal distances 3.7 to 5.6. C. Scenario of order A02, A04, A11,
which occurs for focal distances 5.6 to 6.9.
doi:10.1371/journal.pcbi.1000524.g004

Global Intermediate Progenitor Model
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characteristics in one parameter, the focal distance ( f ). This

approximation also gives the resulting patterns in terms of prolate

spheroidal harmonics which contain an order based on the prolate

spheroidal indices, m and n. The Helmholtz equation could also be

solved on a given triangulated mesh representing the lateral

ventricle resulting in a set of eigenvalues and eigenfunctions. The

eigenfunction whose associated eigenvalue produces diffusion-

driven instability would be the predicted pattern formed. A

drawback of this latter approach occurs when comparing

predicted patterns from different triangulated meshes. Since each

mesh has its own parameterization there is no way of knowing

which shape characteristic is responsible for the change in pattern

formation.

Although changes in the volume of the lateral ventricle in

humans during the developmental stages are documented [22],

quantified data on the size and shape of the lateral ventricle during

these critical stages is lacking. Further investigations into the size

and shape of the lateral ventricle during developmental stages

across species are needed. Such parameters could then be

incorporated into the GIP model to test its cortical patterning

predictions for specific species.

Also, further investigations into how the production of IP cells is

regulated (i.e. how the activator and inhibitor interact) would

enhance this model. Several genes (Pax6, Ngn2, and Id4) have been

shown to modulate the production of IP cells in mice [10]. Further

studies into how this modulation occurs, and if this modulation

changes evolutionarily, could be incorporated into the reaction

kinetics in the GIP model enhancing the cortical patterning

predictions.

In conclusion, this chemically-based mathematical model (the

global intermediate progenitor (GIP) model) extends the interme-

diate progenitor model [5], which describes local phenomena, to

encapsulate global characteristics. In doing so, the GIP model

shows how the global shape of the lateral ventricle, which drives

the shape of the VZ, plays a key role in cortical pattern

development. This model is able to capture changes in VZ shape

along with the complementary role of domain scaling in only two

parameters: 1) the focal distance of the prolate spheroid

approximating the lateral ventricle, and 2) k2, which is dependent

on domain scaling, as given by the formula in Equation 8. The

model also has the ability to predict why the cortex of certain

species may have little or no folding, and it accounts for the order

and directionality of the sulci formed in different species. We

consider this model a first step toward a chemically driven and

mathematically predictive explanation of cortical folding develop-

ment across species.
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