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Abstract

Pathogens have evolved diverse strategies to maximize their transmission fitness. Here we investigate these strategies for
directly transmitted pathogens using mathematical models of disease pathogenesis and transmission, modeling fitness as a
function of within- and between-host pathogen dynamics. The within-host model includes realistic constraints on pathogen
replication via resource depletion and cross-immunity between pathogen strains. We find three distinct types of infection
emerge as maxima in the fitness landscape, each characterized by particular within-host dynamics, host population contact
network structure, and transmission mode. These three infection types are associated with distinct non-overlapping ranges
of levels of antigenic diversity, and well-defined patterns of within-host dynamics and between-host transmissibility. Fitness,
quantified by the basic reproduction number, also falls within distinct ranges for each infection type. Every type is optimal
for certain contact structures over a range of contact rates. Sexually transmitted infections and childhood diseases are
identified as exemplar types for low and high contact rates, respectively. This work generates a plausible mechanistic
hypothesis for the observed tradeoff between pathogen transmissibility and antigenic diversity, and shows how different
classes of pathogens arise evolutionarily as fitness optima for different contact network structures and host contact rates.
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Introduction

There are two major principles by which pathogens avoid their

elimination: escaping the host immune response via antigenic

variation or immune evasion, or transmission to a new immuno-

logically naive host. Directly transmitted pathogens which cause

chronic diseases, such as many sexually transmitted infections

(STIs), tend to rely more on the former, while many acute infections,

for instance measles, rely more on high transmissibility. Indeed

pathogens such as measles show very little antigenic diversity, with

immune responses being strongly cross-reactive between strains.

There are then those pathogens which have intermediate levels of

both immune escape and transmissibility — such as influenza,

rhinovirus and RSV (here referred to as FLIs — flu-like infections).

The evolutionary success of directly transmitted pathogens can

also be seen to depend on the nature, frequency and structure of

contacts between hosts. Infections transmitted to a small number

of hosts (per time unit and infected individual) via intense contact

(e.g., via fluids) are usually caused by pathogens of high antigenic

diversity and long duration of infection, while those transmitted

via casual contact (e.g., via aerosol) with a large number of hosts

may typically have lower diversity and much shorter durations of

infection. While many of the evolutionary constraints are different

[1,2], vector-borne infections typically fall in the former of these

two classes [3,4]. The relationship between so-called infection and

transmission modes with respect to substitution rates of RNA

viruses has been investigated in [5].

It is straightforward to explain the long duration of infection

and consequent antigenic diversity of sexually transmitted or

blood-borne infections: the frequency of relevant contacts between

hosts is low, meaning infection needs to be extended to ensure the

reproduction number (the number of secondary cases per primary

case [6]) exceeds one. However, many childhood diseases (ChDs)

— at least those caused by RNA viruses — would also seem to

have the genetic potential to prolong their survival within one host

via by generating antigenic variants. The fact this is not observed is

much harder to explain. At its root are the tradeoffs between

maximizing between-host transmissibility and within-host duration

of infection, and these are what we focus on exploring in this

paper.

The molecular genetic basis of transmissibility is still poorly

understood for most pathogens. However, all other things being

equal, the level of pathogen shedding by a host (whatever route is

relevant) must be positively correlated with infectiousness. A first-

pass analysis might therefore postulate that overall transmissibility

(as quantified by the basic reproduction number, R0) might be

proportional to the total number of pathogen copies produced

during an infection — the cumulative pathogen load. Past work

using a simple model of the interaction between a replicating

pathogens and adaptive host immune responses examine what rate

of antigenic diversification within the host would maximize

cumulative pathogen load [7]. This showed that the combination

of resource-induced (whether nutrients or target cells) limits on

peak pathogen replication rates and an ever more competent

PLoS Computational Biology | www.ploscompbiol.org 1 October 2009 | Volume 5 | Issue 10 | e1000536



immune response mean that the optimal strategy is not to diversify

as rapidly as possible, but instead to adopt an intermediate rate of

diversification. In addition, there are further tradeoffs associated

with high mutation rates — the ultimate being the error

catastrophe associated with error rates in genome replication

which exceed those seen in RNA viruses [8–11].

However, the assumption that transmission fitness (as quantified

by R0) is linearly proportion to total pathogen load is clearly naı̈ve.

The instantaneous hazard of infection for a susceptible host in

contact with an infected host at a point in time may indeed be

linearly related to pathogen load at that time, but going from this

assumption to a calculation of the overall reproduction number is

far more complex than simply calculating the area under the

pathogen load curve. Integrating a hazard over the finite time of

contact gives an exponential dependence between the probability of

infection q and pathogen load v, i.e., q!1{ exp ({v=vT ). Such an

expression fits experimental data [12] on the relationship between

HIV viral load and transmission rates well (cf. Fig. 1). This means

the parameter vT represents a pathogen load threshold below which

the probability of infection declines rapidly, and above which it

rapidly saturates to some maximal value. Hence vT can be thought

of as the characteristic pathogen load required for transmission —

though it is not a true minimum infectious dose — there is a finite

probability of infection for v%vT , but that probability decays

exponentially fast with reducing v.

A key insight (and assumption) of the work presented here is that

while we might expect pathogens to be able to evolve to reduce (or

increase) vT , there are fundamental physical constraints imposed

by transmission routes on the minimum value of vT attainable. An

STI might have a minimum value of vT approaching a single

pathogen particle (e.g. virion) but, for respiratory infections, the

much lower proportion of all pathogen particles emitted from a

host, which have any chance of contacting epithelial tissues of a

susceptible host (even conditioning on a susceptible host being in

the near vicinity of the infected individual), necessarily means that

vT must be orders of magnitude larger for such pathogens.

We will show that there is a critical value of vT above and below

which two different sets of pathogen types are evolutionarily

favored (in terms of having maximal R0). Within each set, the

particular type which has maximal R0 will be seen to depend on

the local structure of the contact network between hosts.

Our approach is to construct a model of within-host pathogen

dynamics which incorporates adaptive host immunity and antigenic

diversification. The key output from this model is how pathogen

load varies through time during an infection. We then calculate the

basic reproduction number, R0, for that infection assuming a

particular local contact network structure and frequency of contacts.

The within-host model developed here is an extension of a model

studied earlier by one of us [7]. Our work builds on a range of past

work examining the tradeoffs between within-host replication and

persistence, antigenic variation and between-host transmission

success, initiated by [13], and followed by [14,15], which first

include immune response and explore cross-immunity. More recent

studies, to mention a few, investigate pathogen evolution under

limited resources [16], include virulence [17], consider the

immunological response in more detail [18], examine the impact

of between-host contact structure on pathogen evolution [19,20],

and explore host-pathogen co-evolution [21,22].

We use R0 as our fitness measure for determining evolutionarily

optimal phenotypic strategies. We do not explicitly model

competition between pathogen strains with different phenotypes

co-circulating in a host population, since for infinite populations, R0

has been shown to be the fitness measure which determines the

outcome of such competition [23]. This holds even when comparing

strains with different rates of antigenic diversification — if the strain

with lower R0 induces no long-lived immunity in the host (giving

SIS dynamics) and the higher R0 strain induces life-long immunity,

(giving SIR dynamics) the higher R0 strain will still always

(eventually) outcompete the lower R0 strain. There are limitations

to the use of R0 as a fitness measure (further considered in the

Discussion) — for instance, in situations where strains interact

asymmetrically via cross-immunity, or when populations are small

and stochastic extinction is significant. In addition, while we take

Figure 1. Risk of HIV-1 transmission as a function of viral load,
using data from [12]. The maximal risk, which corresponds to 11.8
per 100 person-years, is normalized to 1, and the viral load in 10 liters of
plasma plotted. Data points (blue polygon) are compared with the
least-squares best fit of the infectiousness model given in the text
(green); cf. (7). The viral load vT , fitted by the data, indicates the order of
magnitude needed for a substantial probability of transmission — this
is the load of pathogen referred to as infectiousness threshold (gray).
doi:10.1371/journal.pcbi.1000536.g001

Author Summary

Infectious diseases vary widely in how they affect those
who get infected and how they are transmitted. As an
example, the duration of a single infection can range from
days to years, while transmission can occur via the
respiratory route, water or sexual contact. Measles and
HIV are contrasting examples—both are caused by RNA
viruses, but one is a genetically diverse, lethal sexually
transmitted infection (STI) while the other is a relatively
mild respiratory childhood disease with low antigenic
diversity. We investigate why the most transmissible
respiratory diseases such as measles and rubella are
antigenically static, meaning immunity is lifelong, while
other diseases—such as influenza, or the sexually trans-
mitted diseases—seem to trade transmissibility for the
ability to generate multiple diverse strains so as to evade
host immunity. We use mathematical models of disease
progression and evolution within the infected host
coupled with models of transmission between hosts to
explore how transmission modes, host contact rates and
network structure determine antigenic diversity, infec-
tiousness and duration of infection. In doing so, we classify
infections into three types—measles-like (high transmissi-
bility, but antigenically static), flu-like (lower transmissibil-
ity, but more antigenically diverse), and STI-like (very
antigenically diverse, long lived infection, but low overall
transmissibility).

Antigenic Diversity
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account of local (egocentric) network structure in defining R0 in our

analysis, large-scale network structure might also affect the

determinants of evolutionary fitness. However, we feel these

limitations are outweighed for an initial analysis by the analytical

and computational tractability afforded by use of a relatively simple

transmission measure, and the consequent ability not to rely on

unintuitive large-scale simulations.

We do not explicitly consider how a pathogen could evolve its

biological characteristics to maximize transmission fitness (i.e. the

evolutionary trajectory a pathogen would take through parameter

space). There are undoubtedly many constraints on the possible

paths which pathogens can take [24], however, and exploring how

these affect, for instance, pathogen adaptation to a new host

species, will be an important topic for future work.

Results

Within-host dynamics
The multi-strain model used extends past work [7] by adding

cross-immunity between strains (see Methods for details). The

infection within one host starts with a single strain, with further

strains arising through random mutation. All strains compete for

resources (e.g. target cells) to replicate. Immune responses to

strains are assumed to be predominantly strain-specific, albeit with

a degree of cross-immunity, the strength of which decays with the

genetic distance between strains. Pathogen replication depletes

resource, and independently from immunity, limits to pathogen

growth are set by the replenishment rate of resource. This quantity

only determines the short-term dynamics of the model whereas

immunity is also responsible for the long-term behavior.

The dynamics of the model is characterized by an initial period

of exponential growth of the pathogen load, which eventually

slows due to immune responses and resource limitations. One

observes a latency period and an initial peak. Pathogen load then

declines exponentially. If the trough load of a pathogen strain

drops below a threshold level we assume the pathogen is

eliminated from the host (to avoid persistence at unrealistically

low, fractional, loads). However if a novel strain emerges before

the seed strain goes extinct, pathogen load can recover, so long as

there is sufficient resource available and cross-immunity is not too

strong — leading to a second, albeit lower peak in pathogen load.

Further peaks in pathogen load can occur via the same

mechanism. The rate at which new strains arise is the most

important determinant of the number of pathogen load peaks seen

and thus the overall duration of infection. Less intuitively, this rate

also determines the size of the initial peak (discussed below).

Since mutation is modeled stochastically, we average over

multiple realizations (e.g. Fig. 2A,B) of the model to calculate an

average pathogen load distribution over time (Fig. 2C). The

average distribution consists of a first latency period, a large initial

peak, a second latency period and possibly an irregular oscillating

part of low pathogen load. The point at which the viral load

vanishes determines the duration of infection.

We systematically calculate average pathogen load curves from

the within-host model for wide ranges of two biological parameters:

the antigenic mutation rate d (i.e., the rate of mutations which lead

Figure 2. Within-host model dynamics. Graphs show pathogen load [red], specific immunity [blue], resource [green], number of strains [black]
and corresponding mean values plotted over time — for individual hosts in (A,B,D) and average hosts in (C,E,F), respectively. (A) and (B) show two
different model realizations for the same parameters of antigenic mutation proportion d~10{6 and replication rate r~8=day, defining type A
infections, cf. the Methods section and Fig. 3. One observes extremely different durations of infection — reaching from a few days up to one year. (C)
shows the corresponding average behavior over 100 realizations, characterized by low pathogen loads at large times. Determined by mean load
values, this infection type corresponds to intermediate and low mean durations of infection — much shorter than the approached maximum of one
year. This is also reflected by the mean strain number, which reaches a maximum of 10 at the initial load peak, drops down to almost zero and rises
again slowly to values of about 1 for a few months. (D) and (E) show the pathogen dynamics specific to type B infections with d~10{3 and r~3=day,
for individual and average hosts, respectively. The mean values of load and strain number coincide with the individual values, which confirms long
durations and high strain numbers as characteristic trait of this infection type. (F) illustrates type C infections through average curves (over 100 runs)
at d~10{9 and r~3=day; mean and individual values coincide almost identically as the average strain number is close to 1.
doi:10.1371/journal.pcbi.1000536.g002
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to antigenically novel strains) and the pathogen replication rate r.

These two parameters span what we call pathogen parameter space, in

which evolutionarily favored pathogens are represented by points

that are associated with maximal fitness values.

From the discussion in the introduction, we can immediately

identify the cumulative pathogen load and duration of infection as

epidemiologically relevant quantities. Fig. 3A,B show these as a

function of the parameters d and r. In addition, Fig. 3C shows a

quantity — interpolating between the two former — evaluated only

for the initial period of the infection (utilizing the expression relevant

for transmission, i.e.,btt(1{ exp (bvv=vT )), quantified at the initial peakbtt
of the pathogen load bvv). We will see below that all the surfaces shown

in Fig. 3A–C crudely represent fitness surfaces associated with three

distinct pathogen types. The plots in Fig. 2 show the corresponding

within-host dynamics for the different pathogen types.

The within-host dynamics generate a tradeoff between initial

peak pathogen load and antigenic diversity: high initial peak load

corresponds to low diversity and vice-versa (see Methods for more

details). This tradeoff has implications for transmission, giving an

enhanced spread of pathogens of low antigenic diversity during the

initial peak of pathogen load. This effect explains the emergence of

(ChD-like) infections with short durations of infection within our

model framework (Fig. 3C vs. 3F). Long durations of infections

(Fig. 3B) are also obtained, as expected, for pathogens with greater

antigenic variation.

The between-host model
To calculate the reproduction number (i.e., the pathogen

fitness), we model a dynamic contact network in the neighborhood

of one initially infected host. The profiles of pathogen load over

time obtained from the within-host model then determine the

infectiousness of the infected host to its neighbors. (We utilize the

mean-load profiles averaged over individual hosts.) Epidemiolog-

ical dynamics are determined by 4 parameters. Two of these relate

to properties of the transmission route: the infectiousness

parameter vT and the contact rate between hosts a. Together

these define a two-dimensional parameter space we term

transmission space. The other two define properties of the contact

network between hosts: the replacement rate of neighbors v and

the cliquishness/clustering of the network w (i.e., the proportion of

pairs of contacts of a host who are also contacts of each other).

These two parameters define what we term contact space.

We build a model (cf. Methods) incorporating these 4

parameters (plus implicitly the within-host pathogen space

parameters) to calculate the number of first generation infections

from an infected individual in an entirely susceptible population.

Varying the 4 parameters of transmission and contact space, we

obtain three different classes of fitness landscapes over pathogen

space — as represented by Fig. 3D–F. The maxima of each

landscape differ with respect to their antigenic mutation rate (and

hence the resulting level of antigenic diversity) and within-host

pathogen replication rate. By changing the contact rate and

keeping the other transmission as well as the contact space

parameters fixed, one can shift between these classes. In general (as

shown further below), low, intermediate, and high contact rates

induce moderate, high, and low antigenic diversity, respectively, as

evolutionarily favored outcomes (represented by the locations of

the fitness maximum in Fig. 3D–F).

Figure 3. Qualitative relationship between between-host R0 and within-host dynamics as a function of parameters governing
within-host antigenic diversity d and replication rate r. (A) the cumulative pathogen load Sv ; (B) the duration of infection D; (C) a combination
of the latter two at the initial load-peak (relevant for transmission, i.e., t̂t(1{ exp (v̂v=vT )), quantified at the 1st peak t̂t of the pathogen load v̂v, cf. (6)).
The reproduction number R0 is calculated for a transmission network with (D) low [a~0:1=day], (E) intermediate [a~1=day], (F) high contact rates
[a~10=day], where network parameters and infectiousness and are utilized that allow for ChDs (i.e., N~20, c~0:2, w~0:75, v~0:001, and vT~108).
Within-host parameter values are set to default values as given in the Methods section. The shapes of the surfaces and the locations of the maximums
are similar for the upper and lower row, i.e., for (A) and (D), (B) and (E), (C) and (F). The three distinct pairs of locations of the maxima correspond to
our infection-type classification — representing FLIs, STIs, ChDs, respectively.
doi:10.1371/journal.pcbi.1000536.g003
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Infection types
There are clear similarities between the three classes of fitness

landscapes (Fig. 3D–F) and the different within-host infection

characteristics plotted in Fig. 3A–C. Low contact rates induce

landscapes that resemble the cumulative pathogen load, interme-

diate contact rates give landscapes resembling the the duration of

infection surface, and high contact rates map onto the surface of

Fig. 3C which characterizes the relative importance of the initial

peak in the pathogen load profile. We classify the optima of these 3

classes of fitness landscape infection types, labeling them A, B, and

C, respectively.

Varying the infectiousness parameter vT can also move the

fitness landscape between these types — as vT?0 (the STI limit;

i.e., q?1, R0?D), the fitness landscape becomes more similar to

the duration of infection surface (Fig 3B), while for vT?? (the

FLIs limit; i.e., q?v, R0?Sv), it becomes more similar to the

cumulative pathogen load surface (Fig. 3A); cf. (7) and (6). It is

important to note that both of these limits involve substantial

antigenic diversity — where transmission fitness is dominated by

cumulative pathogen load (infection type A), while moderate

antigenic diversity is seen, and when infection duration dominates

fitness (infection type B), high antigenic diversity is selected for.

Neither maps on to the special case of infection type C (Fig. 3F) in

which optimal transmission fitness is achieved by a set of

parameters giving very low antigenic diversity (in essence a single

strain). For low antigenic diversity to be optimal, it is necessary for

fitness to be dominated by the peak pathogen load achieved during

primary infection (i.e., the first peak of pathogen load).

Varying the transmission and contact space parameters more

systematically, one can map out the regions of parameter space for

which particular infection types are optimal (Fig. 4). This shows

how the emergence of pathogens of different types depends on the

properties of the between-host contact network. Pathogens with

low antigenic diversity (and thus short infectious periods) are

favored by high network cliquishness (i.e., when an individual’s

contacts are contacts of each other — as is the case for household

and school contacts), and the rate of turnover of network

neighbors is low (again the case for household and school

contacts).

So far we have assumed only the pathogen space parameters (d
and r) can change during pathogen evolution. Now we examine

making the infectiousness threshold vT a parameter which can

evolve under selection — albeit with constraints on its lower

bound set by the transmission route of the pathogen concerned.

Fig. 5 shows the results as a function of contact rate a for two

different choices of contact space parameters and lower bounds on

the infectiousness threshold parameter, suitable for a respiratory

pathogen and an STI respectively. Reproduction numbers (Fig. 5B)

lie in the expected range, and the three regimes of antigenic

diversity corresponding to the types A/B/C) can be found in the

evolutionarily optimal values of d (Fig. 5A,C). Note that only type

A and type C diversity is seen for the respiratory pathogen

Figure 4. Evolutionarily optimal antigenic diversity as a function of epidemiological contact rate a and the infectiousness vT .
Different plots show results for different choices of between-host contact network, as defined by the replacement rate of network neighbors v
[horizontal] and the cliquishness w [vertical]. For each set of parameters, pathogen space parameters are tuned to give optimal transmission fitness
(R0). The color indicates the degree of antigenic diversity (represented by the value of d giving maximal R0) seen for the evolutionarily optimal point
in pathogen space [blue = low diversity, red = high diversity]. Blue represents single strain ChD-like type C pathogens, which are not present for low
network cliquishness and high replacement rates (bottom right quadrant). Green represents intermediate antigenic diversity type A pathogens, while
orange and red represent high antigenic diversity type B pathogens — the arrows indicate the critical infectiousness threshold vcrit

T ~106:2 . Maximum
transmission probability per contact assumed to be c~0:2, with network neighborhood size of N~20 (typical of ChDs).
doi:10.1371/journal.pcbi.1000536.g004
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parameter choices, while only type B is seen for the STI parameter

set. Indeed for the STI parameter set, the evolutionary stable state

is independent of the contact rate, and is determined by vT

evolving to its minimum value.

As expected, the evolutionary optimal value of the infectiousness

parameter (Fig. 5B) is always close to the minimal attainable value,

except in the type C pathogen regime (where cliquishness is

necessary; cf. Fig. 4). The reason for the deviation from the

minimum value lies in a reduced local network saturation, which is

characteristic for type C: concentrating infectiousness over the

shortest possible time period (and consequently lengthening the

latent period) shortens the overlap between generations of

infections, and this reduces the chance that the secondary cases

of an index case infect remaining susceptible contacts of the index

(before the index can infect them). The effect (which yields an

enlarged susceptible number S in (6)) is minor, however — the

difference in R0 between the optimal value of vT and the

minimum bound set for a pathogen type is typically very small.

The evolutionarily optimal replication rate r is always low for

STI-like contact parameters (giving type B pathogens), reflecting

the need for long-lived infections, but shows greater variability for

respiratory pathogen parameter regimes (Fig. 5D) — being high in

the type A regime, but low for type C. The latter result reflects a

tradeoff between height of the initial peak in pathogen load and

length of the latent period — longer latency, as explained above,

can increase the number of direct infections caused by an index

case by reducing the overlap between generations of infection.

Only higher (minimal) infectiousness values vT — realistic for

ChDs utilizing the respiratory transmission route — increase the

optimal replication rate for type C infections (cf. Text S1, Sect.

B.2). Note that these results are consistent with a recently

formulated hypothesis on tradeoffs between reproductive rate

and antigenic mutability [25], proposing a reciprocal relationship

between these two (pathogen space) parameters in real-world

infections.

Re-examining Fig. 4, it is clear that type A infections (green

areas) only exist when the infectiousness parameter vT exceeds

some minimum value (indicated on the graphs in Fig. 4 with an

arrow). In the absence of constraints, selection for maximal

transmissibility will clearly cause vT to evolve towards 0. Hence

the effect of constraints on imposing a lower bound on vT has a

critical effect on what range of pathogen types are expected. We

define the value of the lower bound on infectiousness below which

infection type A is no longer found the critical infectiousness threshold.

Evolutionary dynamics show a phase transition at this point, as

can be seen in Fig. 6 which maps the areas of contact parameter

space for which different infection types are seen for choices of the

lower bound on vT just above and below the critical point vcrit
T .

As discussed already, the transmission route is likely to be the

most important determinant of the lower bound on vT , with STIs

and other non-airborne pathogens, including those requiring a

vector, being likely to achieve a much lower value of vT than

Figure 5. Evolutionarily optimal pathogen parameters as a function of the epidemiological contact rate, a (in units of day-1). For each
value of a, the infectiousness threshold vT , within-host replication r, and antigenic diversity d, are tuned to maximize the reproduction number R0 .
(A) R0 [colored areas indicate the infection type according to the corresponding d value, and R0w1]; (B) vT — subject to minimum bound vmin

T ; (C)
antigenic variation rate d; (D) replication rate r. Three sets of results [colored curves] are shown, for network parameters typical of STIs [red], FLIs
[green], and ChDs [blue]. The following parameters were used: vmin

T ~106 , N~2, c~0:6, w~0:1, for STIs; vmin
T ~108 , N~5, c~0:1, w~0:75, for FLIs;

vmin
T ~109 , N~20, c~0:2, w~0:75, for ChDs; and v~0:01 in all three cases. (We only examine the corresponding biologically realistic regimes of a,

discretized as indicated by dots.) The results demonstrate how the infections of our type-classification outcompete each other for different host-
contact rates.
doi:10.1371/journal.pcbi.1000536.g005
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respiratory pathogens (as assumed in Fig. 5). This is clear if one

views vT as quantifying how much shed pathogen is typically

wasted to achieve a single infectious contact. We therefore

speculate that the critical infectiousness threshold may have a

significant biological effect, with STIs — and also vector-borne

infections — being within the sub-critical domain (Fig. 6B), and

with ChDs and FLIs — not necessarily relying on a respiratory

transmission route — being super-critical (Fig. 6A). Within the

super-critical regime, the presence of low-diversity ChD-like type

C infections depends less on the precise value of the critical

infectiousness threshold and more on the contact rate and contact

parameters. Infections of type C occur in contact networks with

high cliquishness and low replacement rates — but not in the

opposite case (cf. presence of blue areas in Figs. 4 and 5A). Vector-

borne infections (representing contact networks of large neighbor-

hood sizes N or high replacement rates v, and cliquishness w not

playing a role) are thus excluded to be type C. At first sight they

seem to be type A, because of large reproduction numbers. Large

R0, however, can also be the result of large neighborhood sizes or

high replacement rates — immediate from (6) and (8). The

quantity being important in this context is the lower bound on

possible infectiousness values, which is small (i.e., sub-critical,

vmin
T vvcrit

T ) — this identifies vector-borne infections as type B.

Discussion

The work in this paper was motivated by a desire to understand

why the most transmissible human pathogens — archetypal

childhood diseases such as measles and rubella — show

remarkably little antigenic variation, while less transmissible

diseases — such as influenza (and many other respiratory viruses)

and sexually transmitted diseases show substantial diversity.

Addressing this question requires consideration of how evolvable

parameters governing the natural history of infection within a host

affect the transmission characteristics of a pathogen in the host

population.

We developed a relatively simple multi-strain model of the

within-host dynamics of infection. Pathogen particle consume

resource to replicate, and their replication is inhibited by a

dynamically modeled immune response with two components:

strain-specific immunity, and cross-immunity. Cross-immunity

was assumed to be the key fitness cost of antigenic diversity within

the host; the benefit is a much enhanced duration of infection (and

thus transmission). Pathogens which have a low rate of generating

new antigenic variants are cleared from the host much faster than

those with a high rate of antigenic diversification, but also

maximize the initial peak level of parasite load reached prior to

clearance (cf. Methods).

The second evolvable within-host parameter we considered was

the within-host pathogen replication rate. Given the resource-

dependent model of replication assumed, this has a more limited

effect than in some models, but can set the timescale for pathogen

load to initially peak and thus determine the effective latent period

of the disease.

At the between-host level, we assume a simple relationship

between pathogen load and infectiousness which has been shown

to be appropriate to model HIV transmissibility [12], and

incorporates the concept of a soft threshold level of pathogen

load needed for a substantial level of transmissibility, vT . As argued

above, this parameter is perhaps best viewed as the amount of

excreted pathogen which is wasted to achieve an infectious

contact. For a perfect pathogen, the value could correspond to a

single pathogen particle, but in reality the physics of transmission

will typically mean vT is much higher. We have considered vT to

be an evolvable parameter, but introduced the concept of

minimum possible value of vT which is transmission route specific

— being intrinsically much higher for respiratory pathogens

(where transmission occurs via virus filling a three-dimensional

volume around the infected individual), and potentially much

lower for sexually transmitted diseases where transmission occurs

over a two-dimensional contact surface.

The final element we incorporate into the framework developed

is contact between hosts, assumed to occur at some rate a, within a

contact network of hosts with a certain mean neighborhood size N
and cliquishness w. We derive a simple model to calculate the

reproduction number of a single infected host in this network

allowing for local saturation effects in the network caused by

clustering. It is the network-specific reproduction number we have

used as our overall measure of pathogen fitness, and examine what

within- and between-host pathogen characteristics maximize

Figure 6. Evolutionarily favored infection types as a function of contact network parameters. (A) results for a lower bound on vT of 106:3

[super-critical, vcrit
T ~106:2]; (B) results for a lower bound on vT of 106 [sub-critical]. The colors represent which combinations of infection types can

exist for particular values of contact space parameters: ABC [white], AB [yellow], BC [purple], B [red]. Exactly which infection type is evolutionarily
optimal is then determined by the contact rate a (cf. Fig. 5A).
doi:10.1371/journal.pcbi.1000536.g006
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fitness for different types of transmission route and host contact

network.

Putting these elements together, we found that optimizing

reproductive fitness in this way leads to well-defined infection types

A, B, C, as contact rates (and reproductive numbers) increase (cf.

Fig. 5). Type A and B both represent infections with low R0, with

A being influenza-like and B mapping more to sexually

transmitted diseases. When contact rates are very low, only one

of these two types is evolutionary stable, with the stable type being

determined by the assumed minimum infectiousness threshold.

The latter serves as an order parameter and determines the mode

of transmission. Consistently, type A corresponds to a high

minimum infectiousness threshold whereas type B results from a

low minimum threshold. The change of the transmission mode as

a function of transmission threshold is phase transition-like.

Infection type C represents childhood diseases with the highest

values of R0. This regime is not possible for small network

neighborhood sizes or low values of cliquishness (i.e. random

networks). It relies on the existence of large, persistent and highly

clustered contact neighborhoods. In this context, maximizing the

number of secondary infections (and thus overall fitness) requires a

pathogen strain able to (a) infect as many of the index host’s

contacts as possible in as short a possible time, and (b) minimize

the extent to which generations of infections overlap. The latter

constraint is a result of the network clustering — if secondary cases

become infectious while the index case is still infectious, they may

deplete susceptible from the contact neighborhood before the

index case has the chance to infect them. A latent period of the

same or longer duration as the infectious period results in more

discrete generations and maximizes the reproduction number of

the index case. The need for a long latent period results in the

evolutionary optimal value of the within-host replication rate r,

being relatively low for type C pathogens.

The limited antigenic diversity and short infectious periods of

type C pathogens are determined by the higher infectiousness

threshold and the consequent need to maximize the peak

pathogen load attained early in infection. When contact rates

are high, the increase in duration of infection resulting from higher

rates of antigenic diversity is insufficient to compensate for the

reduction in peak pathogen load (and therefore infectiousness)

caused by cross-immunity being generated against multiple

pathogen strains simultaneously. A single strain pathogen

generating a single immune response is able to generate a larger

primary infection peak — though at the cost of being unable to

sustain infection further.

It is encouraging to see that the classification of infection types

our model predicts closely corresponds to many of the pathogen

regimes identified in other work [24]. However, our focus has been

slightly different from that work, which focused more on the effect

of different intensities of cross-immunity on between host

phylodynamics. In contrast, we have focused more on examining

how differences in transmission routes and contact rates (a)

determine pathogen characteristics — though the influence of

different levels of cross-immunity could be explored in future

work.

Furthermore, it is interesting to note that in the context of our

model only the concept of a minimal infectiousness threshold —

introduced to characterize transmission modes — is necessary to

explain the findings of [25] on tradeoffs between reproductive rate

and antigenic mutability. Reference to the host’s age is not needed

here.

The key limitation of our analysis is our highly simplified

treatment of between-host transmission — namely using a

network-corrected reproduction number as our measure of strain

fitness. Doing so assumes evolutionary competition occurring in

infinite (non-evolving) host populations in infinite timescales. It

would clearly be substantially more realistic to explicitly simulate

the transmission process in a large host population. The

computational challenges are considerable — while large-scale

simulations of influenza A evolution and transmission have been

undertaken [7,26,27], these have not included within-host

dynamics, and have simulated evolution for decades rather than

millennia. Other work [20,28] has simulated the evolution of

pathogen strains on a contact network for longer time periods, but

only in very small (^10,000 hosts) populations, and without

modeling within-host dynamics.

However, continuing advances in computing performance

mean that it may now be feasible to explicit model multiple

strains evolving within hosts and being transmitted independently

in a large population. Such an approach would allow exploration

of the relationship between antigenic diversity (and cross-

immunity) within single hosts and strain dynamics at a population

level. Perhaps even more importantly, it would allow extinction

processes to be properly captured, while our current approach

implicitly assumes fixation probabilities to be 1 even when fitness

differences are marginal. Proper representation of finite popula-

tion sizes and extinction will also allow the evolutionary emergence

of childhood diseases (such as measles) as a function of early

urbanization to be modeled.

A second limitation is that we only consider a single, highly

simplified within-host model. Future work to test the sensitivity of

our results to the choice of within-host model would be valuable

(cf. Text S1, Sect. A, which investigates an extension of the model

here). That said, we would argue that the key qualitative feature of

our within-host model driving the evolutionary results is the

tradeoff — mediated by cross-immunity — between the maximum

value of parasite load attained in initial infection and the degree of

antigenic diversity (and thus duration of infection).

Also a conceptual simplification must be pointed out here: our

model assumes that mutations, controlled by d, directly affect

antigenicity. For real-world pathogens, however, the link between

genetic and antigenic change is less clear. Measles, for example,

has a mutation rate typical of RNA viruses [29], but its antigenic

diversity is low. Instead of mutation rate controlling antigenic

variability, a pathogen may evolve phenotypic robustness to

genetic change.

Further, we have not attempted to capture specialized strategies

pathogens have adopted for persistence within infected hosts, such

as use of refuges from immune responses (HSV) or hijacking the

immune system (HIV) — the model only reflects tradeoffs which

may have contributed to pathogens adopting the range of

persistence strategies seen in nature. An interesting addition to

future work would also be the incorporation of pathogen virulence

[30], which imposes an additional evolutionary constraint on

within-host replication rates.

A last area which is a clear priority for future research is the

relationship between within-host parasite load and infectiousness.

We have assumed a relationship which has some support in data

(Fig. 1), and indeed the HIV system is perhaps the best explored in

terms of the possible evolutionary tradeoffs inherent in maximizing

transmissibility [31]. Unfortunately, little comparable data is

available for other (especially respiratory) pathogens.

Methods

Within-host model
The within-host dynamics are simulated by the following system

of ordinary differential equations (see [7] for more details where
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this system is introduced without cross-reactive immunity):

dVi

dt
~(1{m)rV sat

i (v,c){yVi{sVi yi(X ) ð1Þ

dXi

dt
~j(x0{Xi)zfX sat

i (Vi) ð2Þ

dc

dt
~k(c0{c){

r

v1
vsat(v,c) ð3Þ

representing (1) the load of pathogen strain i§0, (2) the amount of

the adaptive immune response specific to strain i, and (3) the level

of resource which all strains need to replicate; the number of

equations, 1zn, corresponds to the number of strains present,

where v~
Xn

i~0
Vi denotes the total pathogen load. For viral

infections, for example, the load Vi is assumed to represents the

number of virions of strain i, the immunity variable Xi somehow

the amount of specific antigen (produced by B cells), and the

resource c target cells (e.g., epithelial cells for flu or T cells for

HIV) of maximal number c0.

Saturation effects, modifying linear dependency on Vi and Xi,

are modeled with the Hill function h(a,b)~1=(1za=b). The

resource limitations act via V sat
i (v,c)~Vi h(v,v1c), where, for large

loads (v&v1c), growth is limited by the maximal pathogen capacity

related with the resource, V sat
i *v

Vi

v
v1c; for small loads, the load is

independent of the resource, V sat
i &Vi. The adaptive immune

response is given by the growth term X sat
i (Vi)~h(g,Vi)Xi, which

increases in response to antigen quickly and reaches values

X sat
i (Vi)&Xi=2 at Vi&g. For larger pathogen loads, growth stops

slowly, limited by X sat
i *v Xi when Vi&g. The parameter g~105

represents the critical load above which immunity saturates. Its

value is chosen above the number of pathogen units v1 released

after one replication cycle per resource unit (see below).

Guided by values for RNA viruses, random mutations are assumed

to occur with probability m~0:1 per pathogen replication, which

happens at rate r. Only a proportion d of mutations generate new

antigenic variants. We assume that all mutations not leading to new

antigenic variants are deleterious. The emergence of new antigenic

variants is modeled stochastically, where a Poisson distribution with

expectation dmrSv(t) determines the number of mutant strains n at

time t, with Sv(t)~

ðt

0

v(s)ds denoting the cumulative load. While

back mutations are neglected in the equations above, they are taken

account of in the numerical calculations.

New antigenic variants i generated at time t induce a specific

immune response, Xi(t)~x0~1. This grows so long as Vi *
> g,

and declines for Vivg downwards, but never goes below x0.

These characteristics are determined by the structure of (2) and the

parameter choice fw2j, where f~0:8=day and j~0:3=day
define the base rates at which immunity is produced and declines,

respectively.

We assume 5 loci with 3 alleles at each. (These numbers are

small but sufficient for our analyses, cf. Text S1, Sect. C.) The

distance between strains, %ik, is defined as the number of loci at

which strains i and k differ. The immune-related clearance rate of

strain i is given by syi(X ), where yi(X )~
Xn

k~0
y(%ik)Xk and

y(%)~1{(1{x)% for %v1=(1{x) and 0 otherwise. Here

x~0:6ƒ1 is the degree of cross-immunity, and s~10{3=day is

the parameter governing homologous clearance rates.

Independent of immunity, pathogen is cleared at a rate

y~0:25=day (chosen smaller than 2=day *v (1{m)r; cf. (5)

below). Pathogen growth is limited by resource, where v1c defines

the saturation point. As pathogen grows at rate

rvsat~r
Xn

i~0
V sat

i , resource is consequently depleted at rate
r

v1

vsat. Resource is replenished at rate k~1=day, and its total is

modeled to never exceed c0~108 (chosen to represent a realistic

number of target cells and thus give realistic pathogen loads; cf.

Fig. 1 and the examples above).

The differential equations are solved using a Runge-Kutta

algorithm with the initial values V0(0)~v0~10, X0(0)~x0 and

c(0)~c0, starting with 1 strain. New antigenic variants are

generated potentially after each time step, each with initial

pathogen load Vi(t)~v1~103 (corresponding to 1 pathogen unit

infecting 1 resource unit) and specific immunity Xi(t)~1, if

generated stochastically at t. The infection ends once pathogen

load drops below the value v0 (which is assumed to be the

elimination threshold), or after 2 years (the latter cutoff being

chosen for computational simplicity).

The parameter values (essentially k, j and f) and the regions of

pathogen space (given by d and r) have been chosen to produce

load curves (with significant resource depletion at the load peak,

i.e.,
c

c0
&1=(1z

r

2k
) *v

1

2
) that resemble measles characteristics

(with latency periods of up to 10 days and significant pathogen

loads for similar periods; cf. Fig. 2F) for small antigenic variation

and small/intermediate reproduction rates. The duration of

infection is adjusted by the strength of immunity (i.e., s), with

the value used here selected to give infections of over 1 year

duration for maximal antigenic variation.

This model is minimally complex, incorporating only the

features essential to explain the tradeoff between transmissibility

and antigenic diversity. A more realistic model is examined in Text

S1, Sect. A. However, the key diversity-transmissibility tradeoff

arises as a simple consequence of within-host cross-reactive

immune responses raised to individual new strains and competi-

tion between strains for a common resource for replication, and is

relatively independent of the model-specific form of implementa-

tion of these mechanisms.

The essential within-host dynamics of our combined within/

between-host model is given by Eq. (1), which links pathogen

replication to two inhibitors — host immunity and resource

limitation. This equation quantifies the tradeoff for increasing

antigenic diversity (the pathogen’s survival strategy within the host)

— namely the smaller initial pathogen load peak seen in Fig. 3C

(and Fig. S1-2C in Text S1, Sect. B.1). The specific realizations for

the acquisition of immunity and the replenishment of resource

(modeled by Eqs. (2) and (3), respectively) are less important.

Let us consider the pathogen load dynamics soon after infection

with one initial strain. Our numerical simulations have shown that

the initial strain i~0 is much more prevalent (by orders of

magnitude) than mutant strains produced up to the first peak,

V0&Vmut~
Xn

i~1
Vi. This observation clarifies that resource

limitation (as one inhibitor of pathogen growth) cannot explain the

tradeoff discussed here — being of low prevalence, mutant strains

are unlikely to deplete resource to an extent which results in

significantly lower loads, and in any case all strains have the same

intrinsic replication rate and use the same resource. But the

specific immune response to mutant strains, provided it is partially

cross-reactive, is able to reduce both the load of the initial strain

and other strains, and can thus lower the total pathogen load. This

result is largely independent of model implementation and only

depends on the strain-specific immune response being generated at
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relatively low strain-specific pathogen loads, and being sufficiently

cross-reactive to slow overall growth of pathogen load.

This verbal argument can be formalized. For simplicity we

assume the load of the initial strain is a good approximation of the

total pathogen load at the initial peak, V0&V0zVmut~v. By

applying
dV0

dt
~0 as a condition for the initial peak, Eqn. (1) (with

i~0) then yields a relation for the initial peak load,

0~(1{m)rvsat{yv{w(n)v , ð4Þ

where w(n)~sX0zs
Xn

k~1
y(%0k)Xk defines the immune re-

sponse with respect to the strain number. Provided cross-reactive

immunity is implemented (i.e., y(%)w0 for some %w0, so that

w(n)ww(0)~sX0), the function n.w(n) is strictly increasing

(independently of how cross-immunity is defined via the strain-

distance weight function y and the parameter x). This is based on

the fact that, together with each newly generated strain kw0,

immunity Xk(t)wx0 is produced in a standardized way for the

time period up to the initial peak when load is increasing and

above a critical value, g. This is the case in any setting where

mutant strains have the same intrinsic replication kinetics as the

initial strain. In our model, immune production happens at rates

above f=2{j (and below f{j) as long as Vkwg, independently

of the concrete acquisition rule in (2); see the modifications (Eqs.

(S1-1,2)) and the corresponding result (Fig. S1-2C) in Text S1 for a

more realistic but also more complicated mechanism.

As a consequence of resource limitation (i.e., the reduced

growth vsat
vv), (4) yields

v~
(1{m)r

yzw(n)
{1

� �
v1c : ð5Þ

Due to the monotony of w(n), the function n.v given by (5) is

strictly decreasing. That means that the magnitude of the initial

peak v is inversely related to the number of (mutant) strains n
present. The result is independent of the specific functional form

used for resource depletion (in (1)) and replenishment (in (3)), as is

confirmed by considering the limit of large pathogen loads, where

vsat~v1c; the resulting peak height, v~
(1{m)r

yzw(n)
v1c, shows the

same monotonic dependence on w(n) as (5).

Finally, we examine what would happen if cross-immunity or

resource limitation were not implemented in the model. Without

cross-immunity, w(n)~w(0), and the initial peak v is thus

independent of the strain number n (cf. Fig. S1-2I in Text S1,

Sect. B.1). Without resource limitation, (4) degenerates, and the

initial peak load cannot be compared for different values of

antigenic variation.

Between-host model
As discussed in the text, we use the basic reproductive number

R0 of infected hosts as the measure of evolutionary fitness for

infectious diseases [23]. For infections of finite duration D,

R0~

ðD

0

S(t)q(t)dt , ð6Þ

where S denotes the number of susceptible hosts in the

neighborhood (of assumingly constant size N) of one initially

infected host, and q(t) is the transmission rate from the index case

at time t after infection. The pathogen-load dependence of the

transmission rate is modeled by

q~b(1{ exp ({v=vT )) , ð7Þ

where vT is the infectiousness threshold parameter and b~ac=N

Table 1. Table of parameters.

Parameter Description

c resource

c0 initial/max resource

D duration of infection

h Hill function, h(a,b)~1=(1za=b)

I infectives

N neighborhood size

n number of mutant strains

q transmission rate

R0 reproduction number

S susceptibles

v total pathogen load

v0 initial/min pathogen load

v1 pathogen units per resource unit

Vi load of strain i

V sat
i

saturated growth of pathogen,

V sat
i (v,c)~Vih(v,v1c)

vT infectiousness threshold (transmission
space)

x0 initial/min immunity

Xi specific immunity to strain i

X sat
i

saturated growth of immunity,

X sat
i (Vi)~h(g,Vi)Xi

y(%ik) cross-weight (over antigenic distance

between strains i and k)

yi cross-reactive immunity to strain i,

yi(X )~
Xn

k~0
y(%ik)Xk

a contact rate (transmission space)

b transmission coefficient

c probability of transmission

d antigenic variation (pathogen space)

f growth of immunity

g critical load for saturated immune
response

k replenishment of resource

m mutation rate

j decline of immunity

r replication rate (pathogen space)

s clearance rate of pathogen induced by
immunity

Sv cumulative pathogen load

w cliquishness (contact space)

x degree of cross-immunity

y clearance rate of pathogen

v replacement rate (contact space)

doi:10.1371/journal.pcbi.1000536.t001
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is the transmission coefficient, which critically depends on the

contact rate a. The parameter c is the transmission probability per

contact for a completely saturated pathogen load (v??), and lies

between 0 and 1. This functional form is consistent with data for

HIV (Fig. 1). The transmission dynamics in the entire susceptible

contact neighborhood of an index case are given by

dS

dt
~v(N{S){S qzwq � v(N{S){

dS

dt

� �� �
ð8Þ

where S(0)~N{1. This equation models a local dynamic

network (derived in the section below), where w defines the

transitivity or cliquishness of the network (proportion of neighbors

of a node who are neighbors of each other) and v the per-capita

rate at which hosts in the neighborhood of the index case are

replaced by new susceptible hosts. Here � represents convolution,

with (a � b)(t)~

ðD

0

a(t)b(t{t)dt. This expression corrects for the

depletion of the local contact neighborhood of the primary case by

individuals infected by the index case then infecting shared

contacts of the index before the index case herself does. Such local

saturation of the susceptible population is entirely a network effect

and vanishes for w?0.

It should be noted that the network dynamics are invariant for

wN~constant, bar a scaling of S by 1=w. Enlarging the

neighborhood size thus corresponds to effectively reducing

cliquishness. This relation allows for incorporating vector-borne

infections (characterized by large N) into our classification (as type

B infections; cf. end of the section Infection types). Although our

modeling framework has been designed for direct transmissions, it

can formally be applied to vector-borne infections assuming that

(due to relatively low w) the transmission delay through the vector

is less important.

Network model
Here we derive Eqn. (8) of our between-host model, which also

illustrates how the two parameters, w and v, characterize the host-

contact network on local and on global scales, respectively.

The transmission dynamic in an initially entire susceptible

contact neighborhood of one index case and fixed size, N~IzS,

can be reconstructed approximately in terms of average numbers

of infectives and susceptibles (I and S, resp.),

d

dt
I(T)~S(T) q(T)zw

ðT

0

d

dt
I(t)

� �
q(T{t)dt

� �
, ð9Þ

counting the (infinitesimal) number of new infections caused by the

index case at time TƒD. We have included direct infections and

secondary infections which, we assume, occur with likelihood wƒ1

in the contact neighborhood. The time delays, T{t, as reflected

by the transmission rates relevant for secondary infections,

correspond to primary infections at tƒT . The integral covers

the secondary infections caused by new infectives up to time T ,

respecting the changing transmission rates resulting from time-

dependent pathogen loads (cf. (7)).

Written exclusively in terms of susceptibles (while utilizing the

notion of convolution), (9) reads

dS

dt
~{S q{wq � dS

dt

� �
: ð10Þ

From here, Eqn. (8) is obtained by incorporating a constant

(global) flow of individuals (referring to the entire host population)

into the transmission model, quantified by the replacement rate v
of individuals in the considered neighborhood. This is readily

confirmed by the formal replacement (of the ordinary derivative

by a covariant version),

dS

dt
?

dS

dt
{vI , ð11Þ

which models the recruitment of new susceptibles in exchange for

old infectives.

Supporting Information

Text S1 In this appendix we present an extension of our within-

host model regarding the implementation of cross-immunity. We

include the acquisition of immunity from antigenically similar

strains and re-calculate Fig. 2 and relevant parts of Fig. 3. We

obtain very similar results compared to our original model by only

adjusting the strength of cross-immunity with respect to the

antigenic distance while keeping all other model parameters

unchanged. This demonstrates the robustness of our original

formulation, where cross-immunity is implemented in a more

simplified way. In the total absence of tradeoffs between cross-

immunity and peak pathogen load, we show that ChD-like

infections are excluded. We also illustrate the relation between

infectiousness and within-host replication for type C infections.

Supplementary to Fig. 3, we plot the cumulative strain number

over pathogen space. This allows us to identify infection-type B as

the only candidate where, due to our model limitations, exhaustion

of strains might impose an implicit artifactual limit on the duration

of an infection.

Found at: doi:10.1371/journal.pcbi.1000536.s001 (0.41 MB PDF)
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