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Abstract

Many pathogens associated with chronic infections evolve so rapidly that strains found late in an infection have little in
common with the initial strain. This raises questions at different levels of analysis because rapid within-host evolution affects
the course of an infection, but it can also affect the possibility for natural selection to act at the between-host level. We
present a nested approach that incorporates within-host evolutionary dynamics of a rapidly mutating virus (hepatitis C
virus) targeted by a cellular cross-reactive immune response, into an epidemiological perspective. The viral trait we follow is
the replication rate of the strain initiating the infection. We find that, even for rapidly evolving viruses, the replication rate of
the initial strain has a strong effect on the fitness of an infection. Moreover, infections caused by slowly replicating viruses
have the highest infection fitness (i.e., lead to more secondary infections), but strains with higher replication rates tend to
dominate within a host in the long-term. We also study the effect of cross-reactive immunity and viral mutation rate on
infection life history traits. For instance, because of the stochastic nature of our approach, we can identify factors affecting
the outcome of the infection (acute or chronic infections). Finally, we show that anti-viral treatments modify the value of the
optimal initial replication rate and that the timing of the treatment administration can have public health consequences due
to within-host evolution. Our results support the idea that natural selection can act on the replication rate of rapidly
evolving viruses at the between-host level. It also provides a mechanistic description of within-host constraints, such as
cross-reactive immunity, and shows how these constraints affect the infection fitness. This model raises questions that can
be tested experimentally and underlines the necessity to consider the evolution of quantitative traits to understand the
outcome and the fitness of an infection.
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Introduction

Rapidly mutating viruses, such as hepatitis C (HCV) and

Human immunodeficiency virus (HIV), are very successful at

surviving in their hosts because of their rapid evolutionary

dynamics, which allow them to evade the immune response.

Models have been developed in evolutionary epidemiology that

link within- and between-host dynamics [1–8]. One of the main

results of these so-called ‘nested models’ is to show that

intermediate replication rates maximise the fitness of an infection

(which is known in epidemiology as the R0 and corresponds to the

number of new infections caused by an infected host in a

susceptible population [9]). However, none of these models take

into account within-host evolution. Here, we allow for the

replication rate to evolve during the course of an infection and

derive the invasion fitness of a rapidly mutating pathogen. In this

study, we focus on the case of HCV.

Modelling within-host evolution
Most theoretical and experimental studies focus on the dynamics

of viral diversity during an infection (see e.g., [10–14]) or on

qualitative traits such as drug resistance [15–17]. Studies rarely

consider quantitative traits, even though viral replication seems to

provide an exception. Variable polymerase activities have been

observed during HCV infections along with the individual viral sub-

populations, both between infected individuals and within an

individual [18], which suggests that strain distribution in a given

host is characterised by a range of replication rates. Given the high

evolutionary rates of rapidly mutating viruses [19,20] and the

extreme selection pressure exerted by the immune response [15,21],

one can expect such quantitative traits to evolve during an infection.

Infections caused by a rapidly mutating virus exhibit high levels of

genetic diversity. Classical theory predicts that, in such a case, faster

replicating strains have the highest infection fitness because they

gather more resources before the end of the infection [22,23], which

has been confirmed experimentally (e.g., [24]). This ‘short-sighted’

evolution, with the subsequent selection of faster replicating strains,

has been proposed as a mechanism to explain HIV virulence [23].

Yet, not all strains have high replication rates and rapidly replicating

strains also kill their host quickly, thus potentially decreasing their

fitness at the between-host level [25–27].

Some within-host models study the evolutionary dynamics of

the replication rate during the course of an infection. A common

finding of such models is that the replication rate increases during
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the course of an infection, either because of resource competition

or because of apparent competition through the immune system

[28–30]. If within-host trade-offs are assumed, strains with

intermediate or low replication rates can take over the infection

[31–35].

Here, we focus on the fitness of a viral strategy at the between-

host level (i.e., how many new infections an infection can cause).

Bonhoeffer and Nowak [25] developed one of the few evolutionary

epidemiology models that includes within-host evolution of the

replication rate, however they simplified within-host processes to

the extreme by assuming that, within a host, a more virulent

mutant always instantaneously takes over the infection. Our model

describes the within-host dynamics, which allows us to follow the

evolution of the virus along with the changes in its environment

(i.e., the immune response).

Immune activation as a constraint
The immune system is known to be a major constraint on viral

evolution [21,36]. This underlines the importance of including

immune dynamics in within-host models [37,38]. Following [7],

we assume that immune activation depends on the overall viral

growth rate, i.e., the product of the viral replication rate and

density. The idea underlying this assumption is that increasing the

growth rate can be detrimental for the virus because it increases

immune pressure. An implication of such a trade-off is that a strain

with a lower growth rate can have higher infection fitness because

the infection lasts longer.

This assumption echoes the immunogenicity criterion formal-

ised by Pradeu and Carosella [39]: maintaining a continuity, in

terms of antigens (viral peptides recognised by the immune system)

present in the host, can be decisive for the pathogen to avoid

triggering an immune response. How can the replication rate

affect this continuity? Infected cells process and present antigenic

peptides, that are ‘pictures’ of the current intracellular state, to the

initial T-cell repertoire. Yewdell [40] argues that there is a clear

link between viral translation (i.e., the production of non-

endogenous proteins) and antigen presentation. The reason for

this is that rapidly degraded polypeptides (associated with rapid

translation) lead to a more efficient generation of major

histocompatibility complex (MHC) Class-I peptides, which are

then presented to cytotoxic T cells. This explains why infected cells

can be identified so rapidly: viral peptides have a higher chance to

be expressed than endogenous peptides because they are degraded

more rapidly than endogenous gene products [40]. Rapidly

replicating viruses could then be an easy target for the immune

system if they generate a larger pool of rapidly degraded

polypeptides. This is consistent with the fact that 2,000 to

10,000 copies of a protein are needed for successful processing and

presentation of MHC Class I peptides [41]. A few experimental

studies have also shown that increasing the viral replication rate

provides a wider and more abundant antigen presentation

[40,42,43]. One must admit that it is difficult to disentangle the

roles of variations in replication rates and variations in viral

density because the two are obviously linked [7]. Moreover, many

other factors such as the dose, the localisation and the duration of

antigen presence are also critical to immune activation [44].

Here, we develop a nested model that links within-host

evolutionary dynamics to the epidemiology. By explicitly describ-

ing the immune dynamics, the model takes into account the fact

that a viral strategy dominant early in an infection (e.g., replicating

slowly to escape the immune system) may be rare later in the

infection.

Results

We perform stochastic simulations with a model that describes

the within-host evolution of a viral strain undergoing mutation. In

our model, the immune response is assumed to be strain specific

and we account for cross-reactive immunity, i.e., the fact that

strains are recognised by more than one clone of lymphocytes.

Viral strains are identified by their replication rate and their

antigen value, the latter defining the extent to which the strain is

recognised by a given T-cell clone. We introduce between-host

dynamics by adding transmission events whose probabilities

depend on the viral load at a given time (see the Model section

and Table 1 for a description of the variables and parameters

used).

Figure 1 shows the outcome of two ‘typical’ stochastic

realisations of the within-host evolutionary dynamics performed

with default parameter values. The first result is that the exact

same parameter values can lead to a chronic (A, C and E) or an

acute (B, D and F) infection. Panel A shows that both the viral load

and the number of immune cells vary strongly during the early

phase of the infection, which is consistent with observations from

several chronic infections (e.g., [45]). Also, the increase in the

number of immune cells and infected cells occurs two weeks after

the beginning of the infection, which is in line with clinical

observations [46]. In chronic infections, the overall density of

immune cells increases slightly (Figure 1A), which is likely to be

linked with the increase in the average virus replication rate (see

below). Longitudinal analyses of cellular immune responses to

HCV in chimpanzees and humans, although limited to small

sample sizes, show that immune responses may persist during the

chronic phase and eventually stabilise to levels that depend on host

immunity and on the viral strain [47,48]. Panels C and D show

that diversity increases rapidly within a few days. In the case of

chronic infections (Figure 1C), diversity reaches a threshold. This

mutation-selection equilibrium is constrained by the fact that the

antigenic space is finite. Panels E and F show that there is also

diversity in viral replication rates and that, for these parameter

values, the average replication rate tends to increase during the

infection. This increase is a result of the apparent competition

generated by the cross-reactive immune response (see also [8]).

Author Summary

Rapidly mutating viruses, such as hepatitis C virus, can
escape host immunity by generating new strains that
avoid the immune system. Existing data support the idea
that such within-host evolution affects the outcome of the
infection. Few theoretical models address this question
and most follow viral diversity or qualitative traits, such as
drug resistance. Here, we study the evolution of two virus
quantitative traits—the replication rate and the ability to
be recognised by the immune response—during an
infection. We develop an epidemiological framework
where transmission events are driven by within-host
dynamics. We find that the replication rate of the virus
that initially infects the host has a strong influence on the
epidemiological success of the disease. Furthermore, we
show that the cross-reactive immune response is key to
determining the outcome of the infection (acute or
chronic). Finally, we show that the timing of the start of
an anti-viral treatment has a strong effect on viral
evolution, which impacts the efficiency of the treatment.
Our analysis suggests a new mechanism to explain
infection outcomes and proposes testable predictions that
can drive future experimental approaches.

HCV Evolution within and between Hosts
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Within-host evolutionary dynamics are expected to affect the

dynamics of disease transmission. On panels E and F, large blue

dots indicate strains that are transmitted following a stochastic

transmission event (see the Model section). Given their longer

duration, chronic infections lead to more transmission events than

acute infections. More importantly, viruses transmitted from

chronic infections tend to have higher replication rates due to

within-host evolution (Figures 1E, 1F and S2), which could affect

the epidemiological dynamics. In our approach, this effect will be

averaged because we do not model the timing of transmission

explicitly.

To get a more accurate picture of the evolutionary dynamics, we

performed multiple runs of simulations with different parameter

values. Table 2 summarises the effects we observe on infection life-

history traits when varying parameters or initial values. Results are

based on a linear fit using a multivariate linear model on the data we

obtain (see Text S1 for further details on the simulations and on the

statistical tests). Figure 2 shows the effect on infection life-history

traits of variations in the initial replication rate (on the horizontal

axis) and for different intensities of cross-reactive immunity (the

different curves). The case with default parameter values (used for

Figure 1) is shown with black filled circles.

Role of the initial replication rate
As described in the Model section, in order to show that natural

selection can act on the replication rate of the infecting strain at

the epidemiological level, we need to show that this trait affects

infection fitness and is heritable from one infection to the next. In

this subsection, we focus on the default case (in black in Figure 2).

We find that the initial replication rate (Q0) has a strong effect

on infection fitness, which is maximised for low replication rates

(Figure 2A). The fact that very low or high values of Q0 lead to low

fitness values is likely to be due to short duration of the infections

(Figure 2B). This is also clear from the statistically significant

correlations we observe between the infection fitness and the initial

replication rate (Table 2). Note that the value of Q0 maximising

the infection fitness depends on the base-line clearance term of

infected cells (dx, figure not shown). The correlation between Q0

and the average replication rate of transmitted strains (Figure 2C)

suggests that the trait is heritable. For low values of Q0, transmitted

values can be higher than Q0 (Figure 2C) because the trait evolves

for a longer time within the host (Figure 2B). Also, viral diversity

increases as the infection progresses (Figure 1C), implying that the

distribution of transmitted replication rates also changes over time

(see Figure S1). According to these results, predictions are more

complex to achieve for long-lasting infections and call for an

explicit epidemiological model based on the distribution of

transmitted strains resulting from the within-host dynamics.

Figure 2D shows that viral diversity near the end of the infection

is maximised for low replication rates, which is likely to be due to

an increased duration of the infection (Figure 2B). The density of

infected cells near the end of the infection also has a maximum

value for low replication rates (figure not shown). Finally, higher

initial replication rates always lead to higher final levels of immune

cells densities (Table 2). These results suggest that for low

replication rates, infections are long lasting (most of the simulations

end because the maximum time of 800 days is reached) whereas

for other values the infection is often cleared by the immune

response. Overall, the initial replication rate significantly influ-

ences the course of the infection.

Role of cross-reactive immunity
We model the variation in the breadth of the immune response

by varying the width (q) of the cross-reactive immunity function in

Table 1. List of the variables and parameters of the model.

Notation Description Value

xi Number of cells infected with viruses of strain i variable

yj Number of immune cells specific to strains with antigen Aj variable

n Number of viral strains variable

m Number of lymphocyte clones 20

Q i Replication rate of viral strain i (day21) 0:01, Wmax½ �c

Wmax Maximum replication rate (day{1) 4

Ai Antigen value of viruses of strain i variable

Rj Receptor value of lymphocytes of clone j variable

smax Maximum killing rate (day21 lymphocyte21) 10{5

cmax Maximum activation rate of lymphocytes (infected cells21) 10{5

q Breadth of immune cells specificity 0:1

m Virus mutation rate (per generation) 10{5

w Width of the distribution of replication rates 0:1

dx death rate of infected cells (day21) 0:2a,b

dy death rate of lymphocytes (day21) 0:05a,c

r Probability of transmission to another host (per generation) 0:005

g Probability of virulence, i.e. host death (per generation) 0

t1 Intensity of a virus-clearance treatment (day21) 0

t2 Intensity of a replication-blocking treatment (day21) 0

Ranges for parameter values for the death rates and for the killing rate are taken from a [82], b [51], c [42] and d [83].
doi:10.1371/journal.pcbi.1000565.t001

HCV Evolution within and between Hosts
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Figure 1. Within-host population dynamics and evolutionary dynamics for two ‘‘typical’’ simulation runs. With identical parameter
values, we can observe a chronic (A,C,E) or an acute (B, D, F) infection. A) and B) Population dynamics of infected cells (in black) and immune cells (in
red). C) and D) Diversity dynamics (Shannon index). E) and F) Evolutionary dynamics of the replication rate. Black dots indicate the replication rates
present at any time, the red line is the average replication rate for each time t, and the large blue dots show the replication rates of the strains that
are transmitted to another host after a transmission event. Here Q0~0:5. Other parameter values are default and given in Table 1.
doi:10.1371/journal.pcbi.1000565.g001

HCV Evolution within and between Hosts
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equations 2a and 2b (see the Model section). Increasing the width

(q) reduces infection fitness (Figure 2A and Table 2) and decreases

viral diversity near the end of the infection (Figure 2D). The

decrease in fitness seems to be due to a decrease in the duration of

the infection (Figure 2B). Increasing cross-reactive immunity (q)

also decreases the replication rate of transmitted strains

(Figure 2C). This result, which may seem counter-intuitive, is a

consequence of the stochastic nature of our simulations. Increasing

q increases the rate of immune activation, which limits the

opportunities for escape mutations and thus decreases the duration

of the infection (Figure 2B). In our model, however, the activation

rate of immune cells depends on the replication rate of the virus.

Therefore, an increase in immune pressure confers a strong

selective advantage to slow-replicating strains.

In the case of infections caused by a rapidly replicating strain

(high Q0), there are two scenarios: rapid clearance or rapid

evolution towards lower replication rates. The latter prolongs the

infection and the number of transmission events, thus decreasing

the average value of replication rates of transmitted strains. Unless

cross-reactive immunity is very high, diversity near the end of the

infection is maximised for low values of the initial replication rates

(Figure 2D). Overall, cross-reactive immunity significantly de-

creases infection fitness and within-host evolution, and alters the

strain composition and therefore the transmission dynamics.

Role of the mutation process
We model viral mutation as a stochastic process (see the Model

section and Text S1). A newly generated strain is identified by at least

one new trait value (its replication rate and/or its antigenic value). We

study the effect of the mutation process on infection life-history traits.

Overall, there is no substantial effect of the mutation rate (m) on viral

fitness, which has a maximum value for low values of the initial

replication rate (Figure 3A). However, increasing m tends to be slightly

deleterious in terms of infection fitness for strains with low Q0 because,

with high m, rapidly replicating mutants tend to appear earlier, which

decreases the duration of the infection. For high values of Q0, however,

increasing the viral mutation rate leads to an increase in viral fitness

because mutation rate increases the probability that an escape mutant

is generated before the first infecting strain is cleared. The mutation

rate also significantly correlates with the duration of the infection, the

final level of viral diversity and the average replication rate of

transmitted strains (see Table 2 and Supporting Figure S2).

Increasing the width (w) of the uniform distribution from which new

mutant replication rates are chosen decreases infection fitness and

increases both the duration of the infection and the initial replication

rate that maximises fitness (Figure 3B and Table 2). Also, increasing w
leads to a significant increase in average replication rate of transmitted

strains (Figure S2) and to a decrease in final viral diversity (Table 2).

Contrary to the mutation rate, increasing the width w does not increase

the probability that an escape mutation is generated by the initial

strain. However, for high values of w, rapidly-replicating mutants

appear early in the infection. Since these mutants are more adapted to

the apparent competition taking place at the within-host level (see the

Discussion), increasing w decreases the infection diversity and fitness for

low values of Q0. From a biological point of view, increasing the size of

the mutation step can be interpreted as the introduction of

recombination between unrelated strains. This process is rare for

HCV, but it has been shown to occur within some hosts [49].

Role of immune system activation and killing rates
Increasing the maximum T-cell activation rate (cmax ) improves

the immune response, therefore the consequences of an increase in

cmax are not surprising: it significantly decreases infection fitness

(Figure 3C), duration of the infection, final diversity and final total

viral load (Table 2). Also, the initial replication rate that maximises

infection fitness increases with cmax , which is consistent with

earlier models without within-host evolution [5]. For large values

of cmax infections tend to be very short and there is no heritability

of the trait (see Figure S2).

Increasing the maximum T-cell killing rate (smax ) also increases

the efficiency of the immune response but the evolutionary

response seems to differ with respect to variations of cmax

Table 2. Influence of model parameters and of the initial replication rate on infection life-history traits.

Parameters -----------
Traits

Initial replication
rate (QQ0)

Cross-reactive
immunity (q)

Maximum immune
activation rate (cmax )

Mutation
rate (m)

Mutation
width of QQ (w)

Maximum killing
rate (smax )

Treatment
intensity (t2)

Infection fitness Y&��� Y��� Y�� X� Y� X��� Y��

X&&���

Duration of the
infection (Log)

Y&��� Y��� Y��� X��� X��� X��� Y���

X&&���

Mean replication rate of
transmitted strains

X��� Y��� Y��� X��� X��� X��� Yn:s:

Final viral diversity Y&��� Y��� Y��� X��� Y��� X��� Y��

X&&���

Final number of
immune cells (Log)

X��� Y� Y� X� X��� Y��� Y���

Final number of i
nfected cells (Log)

X��� Yn:s:
Y��� Y� Y�� Xn:s:

Y���

We performed linear fits based on a multivariate linear model on the mean values of the traits as a function of 12 factors: 9 model parameters (q, m, smax , cmax , t1 , t2 , g,
w, r), the initial replication rate Q0 , the initial number of precursor of lymphocytes (y0), and the initial number of infected cells (x0). Further details about the statistical
tests are available in Text S1. Significance level a~0:01.
Significance test codes: ‘***’: 0:001; ‘**’: 0.01; ‘*’: 0.05; ‘n.s.’: non significant.
&Test performed conditioning on Q0w0:2.
&&Test performed conditioning on Q0ƒ0:2.
doi:10.1371/journal.pcbi.1000565.t002

HCV Evolution within and between Hosts
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(Figure 3C and D). Increasing smax significantly increases both the

fitness of rapidly replicating strains and the duration of the

infections these strains cause (Table 2). Indeed, the increase in

smax leads to a decrease in the number of infected cells early in the

infection. Since immune activation is proportional to the number

of infected cells present in the system, the increase in killing

capacity also has a drawback: it slows down the immune response.

Therefore, both the duration of the infection and the viral density

increase, thus improving the infection fitness. When the killing rate

is very high, the virus is completely eliminated and no within-host

evolution occurs. Overall, these results show that interfering with

immune activation or immune killing can lead to different

outcomes. Also, the result that increasing immune response does

not always reduce viral fitness is in accordance to the experimental

observation that HCV generates a highly cytotoxic environment

and therefore it is the immune response that may jeopardise host

survival. Our model thus provides a simple mechanism that

explains how an increase in immune resources can limit the

immune response.

We also studied the effect of the initial population sizes of

infected cells and of lymphocytes (precursor frequency), the

possibility of host death (i.e., virulence) and of saturation in the

lymphocyte proliferation function in equation 1. These results are

shown in Text S2.

Long-term optimal replication rate
In the absence of within-host evolution, Figure 2A would be

sufficient to infer the evolutionary stable strategy (ESS, [50]) of the

virus, i.e., the replication rate that is selected on the long term. In a

model with within-host evolution where all infections would

produce the same number of secondary infections (i.e., have the

same infection fitness), Figure 2C could be used to find the ESS.

The latter, if it exists, is at the intersection between the curve and

the y~x line (see the caption of Figure 4 for further details).

Figure 2. Effect of the variation of the initial replication rate (QQ0) and of the breadth of cross-reactive immunity (q) on infection life-
history traits. A) Number of transmission events (i.e. infection fitness), B) Duration of the infection, C) Average replication rate of transmitted strains,
and D) Viral diversity (Shannon index) near the end of the infection. Curves with different colour symbols represent simulations performed with
different values of q (see the box in panel A). The case with default parameter values is shown with black filled circles. For further details about the
simulations see the main text and Text S1.
doi:10.1371/journal.pcbi.1000565.g002

HCV Evolution within and between Hosts
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Depending on the topology near the intersection, this singularity

can be evolutionary stable (i.e., be an ESS) or unstable: if the curve

intersects the y~x line from top to bottom (i.e. that it is concave),

there is an ESS.

In our model, each one of the transmitted strains potentially has

a different infection fitness based on its replication rate. We

therefore combine differential fitness (Figure 2A) and within-host

evolution (Figure 2C) to identify the ESS (see Model Section).

Figure 4 shows the average replication rate of transmitted strains

weighted by their infection fitness for different values of q. In the

default case, the ESS is obtained for Q�&1 (the black star in

Figure 4). This estimate is close to what would be obtained by

ignoring the differences in infection fitness, which indicates that

within-host evolution acts more strongly than between-host

evolution. Increasing the level of cross-reactive immunity favours

those strains with higher replication rates, which eventually

dominate the population on the long term. For low values of q,

curves in Figure 4 strongly differ from those in Figure 2C. This

shows that the control over trait evolution can shift from the

within-host to the between-host level when parameter values

change.

Effect of treatments on viral evolution
We simulate two types of treatments: the first type improves the

killing of infected cells and is modelled with an additional killing

term of infected cells, the second type blocks viral replication and

is modelled with a limitation term on viral replication. Current

treatments of HCV use interferon-a typically in combination with

ribavirin. These treatments act on viral dynamics by blocking viral

replication [51], but also stimulate innate and cellular immunity

[52,53].

In Figure 5, we show the effect of a replication-blocking

treatment administered with different intensities (t2) and started at

different time points (0, 30 or 180 days after infection). A

treatment model based on increasing immune killing leads to

similar results (results not shown). This is because, in our model,

Figure 3. Effects of parameter variations on infection fitness. Effect of the initial replication rate (x-axis) on the infection fitness for different
values of A) the mutation rate m, B) the mutation width for the replication rates w, C) the maximum proliferation rate of immune cells cmax , and D) the
maximum killing rate of immune cells smax . Different parameter values are shown using different colour symbols (see the box in each panel) and the
default case is in black. For further details about the simulations see the main text and Text S1.
doi:10.1371/journal.pcbi.1000565.g003

HCV Evolution within and between Hosts
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there is only immune-mediated competition between strains and

no resource competition. Overall, increasing t 2 decreases the

infection fitness, the duration and the diversity of the infection

(Figure 5A, C and, E, and Table 2). Note that the average

infection fitness values we show in Figure 5 are obtained by

including hosts who cleared the infection before the initiation of

the treatment. Regardless of the starting time, increasing the

treatment intensity increases the value of the initial replication rate

that maximises infection fitness (Figure 5A, C and E), as in models

without within-host evolution [5].

The timing of the treatment also affects the course of an

infection. When the treatment is initiated at the onset of an

infection (which would be the case if hosts are treated following

exposure), we see a shift of the curves to the right (Figure 5A, C

and E). This means that the virus can compensate completely for

the fitness decrease due to treatment by increasing its replication

rate. The current practice in HCV infections is to treat the patient

after several months to avoid treating cases that resolve naturally,

and because treatments based on interferon-a are toxic. We show

that delaying the treatment also has an evolutionary advantage

because strains that do well in a treated host are also the strains

that tend to lead to acute infection (Figure 2B).

In order to investigate the effect of treatment at the host level

rather than at the host population level, we focussed on the

duration of the infection and removed from the analysis hosts who

had cleared the infection before the beginning of the treatment

(Fig. 5B, D and F). We find similar effects as for the infection

fitness: depending on the initial replication rate and on the

treatment intensity, the duration of the infection can decrease (e.g.,

if Q0 is low and t 2 is high) but it can also increase (e.g. if Q0 is high).

The only case where the treatment always decreases the duration

of the infection is when treatment begins after 180 days (Figure 5F).

This is because in the other cases not all the acute infections have

ended and treating at that time allows rapidly-replicating strains to

persist in the host.

Discussion

We developed a nested model that incorporates within-host

evolutionary dynamics into an epidemiological perspective to

study the evolution of viral traits, such as the replication rate. This

approach raises an important issue in that viral traits evolve within

the host during the course of an infection and at the between-host

level. In other words, what infects a host (a strain with its initial

replication rate) differs from what is transmitted (a distribution of

replication rates). We show that the replication rate of the strain

that initiates the infection has a strong effect on the course and on

the fitness of an infection. On average, the initial replication rate

tends to be heritable from one infection to the next. These two

results (heritability and fitness effect) combined with the known

variability in replication rates indicate that, in our model, natural

selection acts on viral replication at the between-host level.

Slow replication maximises infection fitness
We find that infection fitness (measured as the number of

transmission events per infection) is maximised for infections

initiated by slow-replicating strains. This is partly due to the

assumption we make on the immune proliferation function, which

allows slow-replicating strains to have the most efficient resource

exploitation (by escaping from the immune response). Escaping

from the immune response has a second advantage because it gives

more opportunities to these strains to generate escape mutants. We

are not aware of studies on the evolution of HCV replication rate

at the between-host level. In the case of HIV, the subtype C of

HIV-1 has been shown to be spreading more rapidly than other

subtypes [17]. Interestingly, viruses of this subtype are out-

competed when grown with viruses from other subtypes. Even if in

vitro conditions have little in common with the within-host

environmental conditions, these results suggest that slow replica-

tion could be optimal at a population level for rapidly evolving

viruses (see also [54]).

In epidemiology, the idea that low replication rates can be

optimal is not new; it is present in the transmission-virulence trade-

off theory [55,56], which states that pathogens should spare their

host to maximise the duration of the infection. However, most

models ignore within-host evolution of the replication rate (but see

[25]). Our nested model provides an explicit description of the

within-host mechanisms that drive evolution toward low replica-

tion rates.

Our model also illustrates the conflict between levels of selection

[25–27]. At the between-host level, slow-replicating strains have

an advantage because they tend to generate longer infections, thus

leading to more transmission events. At the within-host level

however, rapid replication is favoured through cross-reactive

immunity. As discussed in [8], rapid replication leads to higher

activation of the immune response, which penalises slow-

replicators (rapid replication rate being a means to compensate

for the immune killing). Note that here, contrary to other models,

the virus cannot indefinitely evolve to higher replication rates

within the host because the immune activation function depends

on both viral density and viral replication rate [7]. This explains

why, for default parameter values, strains with a replication rate

close to 1 are likely to dominate the population over the long term

even though the highest infection fitness is reached for replication

Figure 4. Weighted average replication rate of transmitted
strains for different values of cross-reactive immunity (q). This
figure is obtained by combining Figures 2A and 2C (see the main text).
The average replication rates are weighted with the infection fitness
values (see Figure 2A). Long-term optimal replication rates are indicated
with stars, which are located at the intersection between the curves and
the y~x line. Intuitively, if the transmitted replication rate is above the
y~x line, the virus evolves towards higher replication rates, whereas if
the transmitted replication rate is below the line, the virus evolves
towards lower replication rates. Only if the transmitted replication rate
is on the line do we have an evolutionarily singular strategy. Increasing
cross-reactive immunity decreases the long-term optimal replication
rate.
doi:10.1371/journal.pcbi.1000565.g004
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Figure 5. Effect of the timing and of the intensity of anti-viral treatments limiting viral replication. In panels A, and B the treatment
starts at the time of the infection, in panels C, and D the treatment starts 30 days after the beginning of the infection. Finally in panels E and F
treatment starts 180 days after the infection. Panels A, C, and E show the average infection fitness (IF). Panels B, D, and F show the average duration of
the infections (DoI). The latter is calculated by excluding simulation runs that result in host before the beginning of the treatment (this is done to
highlight the effect of the treatment at the within-host level). Different colours correspond to different treatment intensities (t 2, see legend in panels
C and D). The default case is in black. Note that in panel F, infections starting with low replication rates are cleared before treatment is initiated. For
further details about the simulations see the main text and the Text S1.
doi:10.1371/journal.pcbi.1000565.g005
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rates close to 0.3. Moreover, increasing cross-reactive immunity

favours more slowly replicating strains in the long term at the

between-host level. This effect is much clearer at the between-host

level (Figure 4) than at the within-host level (Figure 2A), and also

highlights the fact that changes in within-host parameter values

can shift the overall selective pressure from the within-host to the

between-host level.

Importance of the timing of treatments
Our model allows us to study the evolutionary consequences of

anti-viral treatments on infection life-history traits. Increasing the

efficiency with which a treatment blocks viral replication decreases

viral fitness, but also increases the evolutionarily optimal

replication rate of the virus. This is consistent with theoretical

[57,58] and experimental results [59]: treatments decrease viral

fitness but they also select for more virulent parasites.

Most epidemiological models find a host ‘selfish’ strategy, which

consists in increasing its own protection at the expenses of the

community [57]. Here, starting a treatment is not always the best

option for the host because, in addition to the toxicity of the drugs,

treatment can increase the duration of the infection. This is

especially true for acute HCV infections, where hosts recover

without intervention. Therefore, we stress the importance of a

neglected factor in evolutionary epidemiology, i.e., the timing of

treatment administration. We show that administering treatment a

few months after the infection begins, imposes a treatment-free

period that selects against rapidly replicating strains. Of course,

this procedure is acceptable only if the short duration of the

infection comes from rapid host clearance and not from host death

(fortunately, acute HCV infection very rarely results in fulminant

disease). These predictions could be tested empirically by

comparing the course of the infection in patients infected by

similar HCV genotypes for whom treatment started at different

time points.

Viral evolution and disease outcome
Few studies have attempted to model HCV disease outcomes.

Wodarz [60] studied the pathology of HCV with a multi-strain

model that described both cellular and humoral immune

responses. However, this model did not account for antigenic

diversity nor for different viral traits. Population genetics and

phylogenetic analysis applied to HCV provide evidence that HCV

evolution within-host is under a strong immune pressure [61] and

that disease outcome is statistically associated with the number of

genetic sites selected [62].

A key feature of our model is that for the exact same parameter

values, we can observe chronic or acute infections (for a review on

this topic, see [63]). In both cases there is a significant amount of

viral diversity generated, which means that this result is not only

due to the fact that fewer escape mutants are generated during

acute infection outcomes. Finally, we find that there is a delay of a

few weeks in launching a specific immune response following viral

infection, which is consistent to reports in acute HCV infections.

This also echoes a more general concern about most within-host

models, in which the outcome of the infection tends to be an

assumption rather than a result [38].

We show that replication rate of the initial strain and the

parameters describing the immune response alter the probability

that one of the two outcomes (chronic or acute infection) is

reached. The few observations on the correlations between the

outcome of HCV infections and the viral replication rate tend to

support our results. Data on the growth of HCV in sera suggest

that slow replicating viral populations are common in HCV cases

with viral persistence [64–66]. A direct relationship between the

initial viral replication kinetics and cellular responses has also been

observed [46]. Moreover, a study based on a peculiar sample of

seven people infected on the same day from the same source

showed a correlation between viral load and the dominance of a

few strains [67]. They also showed that subjects with lower viral

loads had a higher diversity that increased over time, thus

suggesting an evolutionary process driven by slow-replicating

strains, which fits with our result that these strains have the highest

infection fitness.

The immune response against HCV is puzzling. The mecha-

nisms responsible for the high rate of viral persistence are thought

to be the result of complex early host-virus interactions that

involve immune system heterogeneity, viral diversity and cross-

reactive immunity [63,68]. In acute HCV infection there is a

significantly broader cytotoxic T-cell response with wider variant

cross-recognition capacity than in chronic cases [69]. A significant

result of our work is that cross-reactive immunity decreases viral

diversity, and infection fitness, thus supporting the idea that viruses

face a trade-off: low replication maximises infection fitness but

rapid replication helps to escape from cross-reactive immunity.

However, one needs to be careful about drawing conclusions from

our model regarding the optimal level of cross-reactivity of the

immune response, as increasing the width of the cross-reactive

immunity function confers a cost-free advantage to the immune

system. Therefore, it should not come as a surprise that infection

fitness decreases with cross-reactive immunity. A more detailed

analysis should introduce a cost to the breadth of the immune

response (for instance in terms of efficiency of killing).

Perspectives
The between-host dynamics of our model could be extended in

several ways. We used an invasion fitness analysis (with R0), which

simplifies the analysis but can also be misleading [70]. Adding a

detailed between-host framework would allow to remove the

assumption that the size of the susceptible host population remains

constant and would lead to more accurate epidemiological

dynamics.

Modelling the between-host dynamics more explicitly would

allow one to take into account the age of the infection. Day [71]

shows that variations in transmission rates during the infection

(which is likely to happen if parasite densities vary) can affect the

epidemiology of the disease. Here, as we show in Figures 1E and

S2, the trait of the transmitted strains varies over the duration of

the infection. This could significantly impact on the evolution of

the trait during an epidemic, for instance if rapidly replicating

strains are transmitted later in the infection (see [6] for a similar

discussion in a case with only two strains per host).

Another extension would be to include several transmission

routes for the virus. The model we use here assumes that infections

are initiated by a unique viral strain, which is known to be the case

for sexual transmission of HIV [72]. However, transmission can

also occur through needle sharing in which case the inoculum is

more likely to be diverse. Allowing for multiple transmission routes

would influence both the within- and between-host dynamics.

Regarding the selective forces involved in the evolution of HCV

at a population level, there is evidence that the major

histocompatibility complex (MHC) allele diversity among the

population is a major force driving the evolution of the virus [68].

Host heterogeneity could be introduced by assuming that each

host type has lymphocytes with different antigenic values for their

receptors. This would allow us to identify the optimal viral strategy

at the between-host levels for different parameter sets. It would

also allow us to further investigate the unresolved issue of why,

during HCV infection, mutants that escape the immune responses
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do not always revert to wild type forms upon transmission. Here,

we suggest that this evolutionary process may be influenced by

both the antigenic value (epitope escape) and the viral replication

rate; host diversity is likely to have a strong impact as well.

Our work leads to predictions that can be tested experimentally:

strains that dominate early in the infection and those that

dominate later have different replication rates; and the replication

rate of the initial strain and the mutation rate affect the duration

and/or the fitness of an infection (see Table 2 for a summary). Of

course, some experimental difficulties need to be overcome. First,

estimating the replication rate of a circulating strain may be

challenging. Second, diversity in replication rates may be difficult

to assess if some of the circulating strains are rare. Third, in the

case of HCV, it is rare to detect the infection in the early acute

phase (as it is typically asymptomatic). Another interesting

question raised by this model that calls for empirical support is

the heritability of infection life-history traits in the case of rapidly

evolving diseases. This question has been studied in the case of

HIV virulence, but there is still no convincing evidence that this

trait is heritable from one infection to the next [54].

This study stresses the key role played by the cross-reactive

immune response in controlling the duration and the fitness of an

infection. In addition to the theoretical challenge described above,

an experimental validation of this study could be to measure ex vivo

the strain-specific immune response and the degree of cross-

reactive immunity within-host, and finally to investigate the role of

these responses in the outcome of the infection. This model

validation could be achieved by identifying strain specific and

shared T-cell responses across multiple strains during an infection.

Experimental assays such as the Elispot assay, in vitro stimulation

and intracellular cytokine detection, and MHC-tetramer staining

are established methods to measure the T-cell responses against

specific T-cell epitopes [69,73,74]. However, these assays carry a

substantial cost given the large uncertainty and variation in the

distribution of MHC class I and II epitopes between infected

individuals. Bioinformatics tools have been successfully used to

predict pools of MHC class I epitopes (which can be synthesised as

peptides) to be employed in immunological assays to measure T-

cell specific responses [75]; these predictions minimise the

experimental effort in identifying T-cell epitopes in terms of cost

and timing [76]. One could validate the model predictions by

measuring variations in viral replication rates with in vitro assays,

and of strain specific immune responses using prediction tools and

T-cell response read-out techniques, during the course of the

infection. Overall, combining bioinformatics tools, immunological

assays, and theoretical models on viral trait evolution forms a

promising framework for detecting and measuring the presence of

immune selection during the within-host evolution of rapidly

mutating viruses.

Model

Within-host dynamics
We model viral dynamics with an immune control model based

on a predator-prey-like interaction, where lymphocytes are

predators. We assume a finite number of T-cell clones per host,

m, while the number of viral strains, n, varies during the infection.

We explicitly take into account the cross-reactivity of the immune

response i.e., the fact that a lymphocyte clone can be activated by

and destroy more than one viral strain.

Following previous models, we simplify the virus life cycle by

focusing on infected cells only [37,38]. The reason for this is that

we study a case where viral growth is limited by the immune

response, not by resource availability (indeed, only a fraction of the

total amount of liver cells seem to be infected, [77]). Moreover, the

half-life of free viruses has been shown to be low [51], which

supports the assumption that these dynamics can be considered to

be at equilibrium. Mathematically, if we denote the number of

cells infected by viral strain i by xi and the number of T-cells of

type j by yj , the population dynamics are governed by the

following system of nzm equations:

dxi

dt
~ Qi{

Xm

j~1

sij yj{dx

 !
xi ð1aÞ

dyj

dt
~

Xn

i~1

cij Qi xi{dy

 !
yj ð1bÞ

where Qi is what we refer to as the replication rate of strain i (it

corresponds to the rate at which viruses of strain i are produced

and infect susceptible cells), dx is the base-line death rate of

infected cells, sij is the killing rate of cells infected by viruses of

strain i by lymphocytes of clone j, cij is the activation rate of

lymphocytes of clone j by cells infected by viral strain i and dy is

the lymphocyte death rate (the notations used are summarised in

Table 1). As in Alizon [7], the immune activation term does not

only depend on the number of infected cells (xi) but on the overall

viral growth rate (Qi xi, see Introduction).

T-cells of clone j are defined by one trait that does not vary over

time: their receptor (Rj ). Viruses of strain i are defined by an

antigen value (Ai). In reality, viruses are recognised by cellular

immune responses via multiple antigenic peptides but the

combination of peptides is unique and it is this combination that

our antigen value reflects. For simplicity and to avoid boundary

effects, the receptor and antigen values are chosen on a finite

space, i.e. in 0,2p½ �. The intensity of the cross-reactivity between a

lymphocyte clone and a viral strain depends on a measure of the

genetic proximity, i.e. Ai{Rj

�� ��. The strength of the cross-

immunity between an antigen Ai and a receptor Rj is then given

by a 2p-periodic function. More precisely, we have

cij~cmax cos
Ai{Rj

2

� �����
����

1
q

ð2aÞ

sij~smax cos
Ai{Rj

2

� �����
����

1
q

ð2bÞ

where q is the width (or breadth) of the cross-reactive immunity

and cmax and smax are the maximum values for cij and sij ,

respectively. We assume that cross-reactivity affects both the T-cell

proliferation and the killing of infected cells. Here, increasing q
results in an increase in the range of antigen values Ai recognised

by receptor Rj . Note that the cross-immunity function has a

maximum for Ai~Rj . Note also that in the model as we define it

in equation system 1, a viral strain undergoes immune killing by all

the lymphocyte clones (but with variable efficiency), which means

there is never complete immune escape. For further details on

modelling cross-immunity as a function of the distance between

antigens and receptors, see [8] and the discussion therein.

Evolutionary dynamics
Equation system 1 only describes within-host dynamics, but

nothing is specified concerning evolutionary processes. Here, the
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number of viral strains n varies due to stochastic mutations. Newly

infected cells can mutate to a new viral strain with probability m.

Mutations are modelled as stochastic events following a Binomial

distribution (for details see Text S1).

In this model, viruses of strain i are defined by two traits, their

replication rate (Qi) and their antigen (Ai). Each time a virus

replicates within a cell, it produces ‘mutants’, i.e. offspring with

different genomes. Mutations in the genome sequence can be

silent or affect the phenotype of the virus, and then can be

deleterious or advantageous. Here, we consider mutations

affecting both the antigen and the replication rate of a virus.

Therefore, our mutation event is a composite event that accounts

for mutations leading to a new replication rate and to a change in

the antigenic value.

We analyse the effect of escape mutants with a hybrid

stochastic-deterministic approach (see Text S1), where the

population dynamics of the strains are given by equation system

1. A mutant strain is defined, as any other strain, by its antigen

value and its replication rate. The antigen is drawn randomly

among one of the Amax ~1000 possible values (see above). By

doing so, we allow for the mutant to (partially) evade the existing

immune response while limiting the impact of the antigen value on

viral evolution. The mutant replication rate depends on that of the

original strain. There is little data on the shape of the distribution

in which the trait value of a new mutant should be drawn, even if

there are strong constraints on RNA genomes [78]. Without

further information, we assume for simplicity that the replication

rate of the new strain is drawn from a uniform distribution of

width w centred at the replication rate value of the original strain.

We assume a finite number of replication rates Rmax that is fixed

to 100 in the default case.

We wish to stress that our model allows for backwards mutation.

By this we mean that a mutant can be identical to another strain in

the infection or to a strain that was present earlier in the infection.

This approach provides a realistic representation of the quasi-

species characteristics of HCV evolution and frees us from

potential biases due to infinite allele model assumptions.

The number of strains is not constant in these simulations. We

follow the evolution of strain diversity by measuring the Shannon

index,

D tð Þ~{
Xn

i~1

xi tð Þ
X tð Þ log

xi tð Þ
X tð Þ

� �
ð3Þ

where X(t) is the total density of infected cells at time t, i.e.

X tð Þ~
P

i xi tð Þ. The higher the value of D, the more diverse the

infection is.

We extended the model to study the effect of two types of

treatments. The first type of treatment directly increases the killing

of infected cells. It is obtained by adding a death term ({t 1xi) in

equation 1a, where t 1 is the treatment efficiency rate. The second

type of treatment blocks viral replication. This is modelled by

multiplying the Qi by 1{t 2ð Þ in equations 1a and b, where t 2 is

the treatment efficiency in reducing viral replication. Treatment

efficiencies are assumed not to vary among strains. Further

details concerning the model with treatments can be found in the

Text S1.

We do not introduce host death in the default case of the model.

The main justification for this assumption is that, from the point of

view of the virus, host recovery or host death are very similar, the

only difference lies at the epidemiological level that is outside the

scope of this study. The effect of virulence is shown in Text S2. We

also investigated the effects of a saturation term in the lymphocyte

proliferation rate due to resource competition. This term does not

change qualitatively the results presented (see Text S2).

Evolutionary epidemiology
Having a nested model requires a careful definition of the viral

trait that evolves at the between-host level. Here, we follow the

replication rate of the strain that causes an infection (or ‘initial

replication rate’). Can this trait evolve under natural selection at

the between-host level? For this, three conditions must be fulfilled

[79]: the trait value must be variable in the population, it must be

heritable (here from one infection to the next) and it must have a

fitness effect. The first condition is fulfilled because viral

replication rates are known to vary among infections (see the

Background section). The validity of the last two conditions is

unknown: so far, no data show that the initial replication rate is

heritable from one infection to the next, nor that it has an effect on

the infection fitness. Our model allows us to test if these two

conditions are fulfilled. If so, we can identify trait values that are

optimal at the between-host level.

Now that we have specified our trait of interest, we need to

introduce a fitness measure for the infection bearing the trait. The

‘fitness’ of an infection can be expressed through the basic

reproduction ratio (R0), which indicates the number of new

infections caused by an infected host in a population of susceptible

hosts [9]. This R0 is a measure of the invasion fitness and, as

discussed in [70], it can be used to study disease evolution

provided that the epidemiological dynamics are simple (for

instance there should not be frequency-dependent feedbacks).

To estimate the infection fitness, we introduce a random

transmission event in the simulation. At each time step, this event

occurs with a probability proportional to the log of the total

density of infected cells at this time, thus reflecting recent data

showing that the transmission rate during primary infections with

HIV increases linearly or more than linearly with the viral load

[80] (for further details, see Text S1). The trait of the transmitted

strain depends on the proportion of each type of strain at the time

the transmission event takes place. We use the number of

transmission events during an infection to estimate infection

fitness. (This number correlates with the total number of viruses

produced during an infection.) We also have access to the average

replication rate of transmitted strains as a function of the initial

replication rate, which allows us to assess the heritability, from one

infection to the next, of the trait of interest.

In addition to the infection fitness, we investigate the effect of

parameter values and initial values on several life-history traits of

the infection: the duration of the infection, the final viral diversity

(measured near the end of the infection), the final total immune

cell density, and the final total viral load. The analysis is performed

by varying one of the parameters at the time and running

simulations for 22 different initial replication rates (ranging from

0:005 to 2day{1). In order to keep the computational time within

feasible time scales, we introduce a maximum duration of an

infection of 800 days (2 years circa), which is sufficiently long to

represent a chronic infection. An additional reason not to prolong

in silico infections beyond 800 days is that long-lasting infections

are characterised by impaired immune responses, where the HCV

directed immune responses undergo a functional change [21],

which would call for a different modelling approach. To test the

robustness of our results, we run each simulation setting 200 times

(see also Text S1 for more details of the simulations).

Finally, we introduce a weighted average replication rate of

transmitted strains. The rationale for this is that the average

replication rate of transmitted strains per se is not sufficient to

estimate the long-term fitness. For instance, in a very extreme case
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where only two strains (A and B) would be transmitted from an

infected host and where the infection fitness of strain A would be

close to 0, it is easy to see that in the long term strain B should be

more frequent than strain A. In other words, if one of the

transmitted strains generates an infection with negligible infection

fitness, it will not contribute to shaping the virus population in the

long term. If the infection fitness of an infection caused by a strain

with replication rate Qi is denoted W Qið Þ, the weighted average

replication rate is given by

X
j[T

W Qj

� �
QjP

i[T
W Qið Þ

ð4Þ

where T is the set containing all the strains transmitted from the

host. Note that in the classical average, the weights W Qj

� �� �
are

assumed to be equal to 1. Similar methods, such as weighting the

contribution of the transmitted viruses with their relative value of

fitness at the next generation, are often adopted in evolutionary

biology in kin selection models, where the fitness gain obtained by

an individual through its offspring (in terms of inclusive fitness) has

to be weighted by the reproductive value of the offspring [81].

Supporting Information

Figure S1 Dynamics of the average replication rate of

transmitted strains and of the total number of strains transmitted

per day We show the results obtained for 200 simulation runs for

low, average, and high cross-reactive immune responses, respec-

tively (q, indicated on the top of each panel). Other parameter

values are as in Table 1, and Q = 0.3. The top panels show the

replication rates transmitted over time (red dots), and the solid line

represent the result of linear regression (A) r2 = 0.902, B)

r2 = 0.883, C) r2 = 0.810). Bottom panels show the number of

transmission events over time. Increasing cross-reactive immunity

(from left to right) decreases the average replication rate of

transmitted strains.

Found at: doi:10.1371/journal.pcbi.1000565.s001 (0.16 MB TIF)

Figure S2 Effects of parameter variations on the replication rate

of transmitted strains. Effect of the initial replication rate Q0 (x-

axis) on the average transmitted replication rate for different values

of A) mutation rate m, B) mutation width w of the replication rate,

C) maximum proliferation rate of immune cells cmax, and D)

maximum killing rate of immune cells smax. Different parameter

values are shown using different colour symbols (see the box in

each panel) and the default case is in black.

Found at: doi:10.1371/journal.pcbi.1000565.s002 (0.52 MB EPS)

Text S1 Details about the simulations. This text file gives further

details about the simulations and the statistical tests used in

Table 2.

Found at: doi:10.1371/journal.pcbi.1000565.s003 (0.08 MB PDF)

Text S2 Additional results. We discuss the effect on life-history

traits of variations of the initial value of immune cells and infected

cells, of the probability of virulence and of the effect of a saturation

term for the description of lymphocyte proliferation rate function.

Found at: doi:10.1371/journal.pcbi.1000565.s004 (0.08 MB PDF)
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