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Abstract

The mitochondrial free radical theory of aging (mFRTA) implicates Reactive Oxygen Species (ROS)-induced mutations of
mitochondrial DNA (mtDNA) as a major cause of aging. However, fifty years after its inception, several of its premises are
intensely debated. Much of this uncertainty is due to the large range of values in the reported experimental data, for
example on oxidative damage and mutational burden in mtDNA. This is in part due to limitations with available
measurement technologies. Here we show that sample preparations in some assays necessitating high dilution of DNA
(single molecule level) may introduce significant statistical variability. Adding to this complexity is the intrinsically stochastic
nature of cellular processes, which manifests in cells from the same tissue harboring varying mutation load. In conjunction,
these random elements make the determination of the underlying mutation dynamics extremely challenging. Our in silico
stochastic study reveals the effect of coupling the experimental variability and the intrinsic stochasticity of aging process in
some of the reported experimental data. We also show that the stochastic nature of a de novo point mutation generated
during embryonic development is a major contributor of different mutation burdens in the individuals of mouse
population. Analysis of simulation results leads to several new insights on the relevance of mutation stochasticity in the
context of dividing tissues and the plausibility of ROS ’’vicious cycle’’ hypothesis.
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Introduction

Mitochondria are the main energy producing organelles present

in eukaryotic cells. Mitochondria are the only organelles aside

from the nucleus which harbor their own genetic material.

Mitochondrial DNA (mtDNA) encodes a small number of

polypeptides needed for the electron transfer chain (ETC). The

ETC is responsible for cellular energy synthesis via oxidative

phosphorylation (OXPHOS), during which some of the electrons

leak from the ETC and are captured by oxygen to form reactive

oxygen species (ROS) [1]. Most ROS are detoxified by cellular

antioxidant defenses, but some escape and cause damage to

cellular biomolecules like lipids, protein and nucleic acids [2].

Mitochondrial DNA may be particularly susceptible to such

oxidative insult due to its proximity to the ROS production sites of

the ETC [3]. Oxidative damage of mtDNA and its implications on

cellular aging form the basis of the mitochondrial Free Radical

Theory of Aging (mFRTA) [3]. One of the predictions of the

mFRTA is the possibility of ROS ‘vicious cycle’ (Figure 1),

referring to the hypothesized positive feedback mechanism in

which mtDNA mutations cause an increase in the ROS

production resulting in a higher de novo mutation rate [3]. Major

challenges and questions with respect to the mFRTA have been

summarized in some of the recent reviews [4,5].

Despite uncertainties related to the assumptions of mFRTA, the

importance of mitochondria as both the source and target of ROS

in aging is supported by some transgenic mouse studies. For

example, a 15% increase in the maximum and median lifespan is

observed in knock-in mice expressing human catalase, an enzyme

that decomposes H2O2 into water and oxygen, in mitochondria

(MCAT), but not in the nucleus or the peroxisome [6].

Furthermore, MCAT mice heart tissue accumulates less than

50% of the mtDNA point mutations of age-matched wild-type

mice [7]. Also, studies of homozygous knock-in mice with an error-

prone polymerase-c (POLG mutator mice) show that a dramatic

increase in mtDNA mutation burden, most importantly deletions

[7], is associated with shortened lifespan and some phenotypes that

may resemble accelerated human-like aging [8,9].

Although there is reasonable evidence for an age-dependent

increase in mtDNA mutations, the dynamics by which these

mutations accumulate is still largely unclear. Inferring dynamics

and more importantly, the mechanism by which mtDNA

mutations accumulate critically depends on accurate quantifica-

tion of oxidative and mutational burden, which poses significant

experimental challenges [4]. Many of these challenges stem from

the limitations associated with experimental protocols in measur-

ing oxidative damages and mutational frequency [10,11], which

typically exist at extremely low magnitude. Consequently,

published reports show conflicting results regarding the levels of

oxidative damages and mutation dynamics of mtDNA during

aging [12–14]. A highly sensitive method based on the random

mutation capture (RMC) assay has recently been developed for the

quantification of mtDNA mutation frequency [15]. This method is

based on restriction enzyme digestion and amplification of
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mtDNA molecules carrying mutations at the corresponding

recognition site [12]. Application to wild-type mice has revealed

mtDNA mutation burdens that were two orders of magnitude

lower than previously determined using PCR-cloning and

sequencing protocols [8,9]. This indicates that PCR artifacts

may have been a major contributor of errors in the past reports.

Furthermore, quantification of age-dependent accumulation of

point mutation burdens using the RMC assay in wild-type mice

suggested an exponential increase, apparently supporting the

existence of a ‘vicious cycle’ in the mutation accumulation [3,13].

However, the low levels of burden suggest that point mutations

may not be a major determinant of lifespan [12] and it is difficult

to see how a positive feedback mechanism could set in at such a

miniscule level of point mutation burden.

One requirement for addressing these uncertainties is a better

understanding of the inherent stochasticity of cellular processes

[16]. The accumulation of mtDNA mutations likely involves

complex stochastic factors, such as the inherent random nature of

mutations and related cellular processes in the context of aging.

For instance, enzyme staining for ETC deficient tissue of

substantia nigra neurons in aged subjects and Parkinson patients

revealed a high degree of mosaicity of COX respiratory deficient

cells [17]. This mosaicity has also been seen in skeletal muscle cells

associated with sarcopenia in aged subjects [18]. Also, studies on

Caenorhabditis elegans indicate that individual worms and their cells

harbor a wide spectrum of mtDNA deletion loads [19].

Here we aim to address these challenges using a systems

approach by way of constructing mathematical models that

encompass the most relevant biological processes and also features

related to experimental protocols to comprehend the origin and

consequence of mutation variability that arises in individuals of a

mouse population. Additionally, we seek to better understand the

influence of intrinsic stochasticity of the mutation process on the

variability observed in the experimental data. Such understanding

may reveal possible causes of disagreements amongst published

reports and further facilitate optimization of experimental design.

In this study, we have constructed an in silico stochastic mouse

model using the Chemical Master Equation (CME) [20]. Here, the

accumulation of point mutations in mtDNA is simulated to arise as

a consequence of what we believe to be a minimal process required

for the maintenance of mtDNA integrity.

Methods

In silico mouse model
The in silico mouse model accounts for the accumulation of

mtDNA point mutations across two stages of mouse life:

development and postnatal (Figure 2). In this study, the number

of wild-type mtDNA (W) and mutant mtDNA (M) molecules are

tracked for each cell in whole mouse heart (,2.56107 cells) and

liver tissues (,46108 cells) [21]. Each mutant mtDNA molecule

is assumed to contain only a single mutation in the TaqI

recognition site (TCGA), following the RMC experimental

design [12]. The probability of finding two or more mutations

at the same site is negligible [15]. The model simulates two

mtDNA-related maintenance processes: mitochondrial turnover,

comprising of relaxed replication and degradation of mitochon-

dria, and de novo point mutation, based on a minimal conservative

assumptions. First, the mtDNA population of each cell is assumed

to exist as a well-mixed pool due to fast fusion and fission

dynamics of mitochondria [22]. Second, due to the low overall

mutation burden, point mutation burden is assumed to remain

below the level of functional significance (i.e. no nuclear

retrograde signaling [23,24]). While the latter assumption is

conservative, our simulations indicate that the incorporation of

functional effects of mutations into the model, by assuming that

mutant mtDNA are non-functional and cells respond to a

decrease in the number of wild-type (WT) mtDNA by increasing

replication, does not result in any significant changes to the

mutation burden (see Text S1 and Figure S3). A Langevin

Figure 1. Mitochondrial ROS vicious cycle. A putative positive
feedback mechanism between mtDNA and ROS is based on the
hypothesis that ROS-induced damaged mtDNA produce defective
components of the ETC, thereby increasing electron leakage in the
OXPHOS process and ROS production. The vicious cycle is expected to
give an exponential expansion of mtDNA mutations over time, which
eventually causes the loss of mitochondrial function in generating ATP.
doi:10.1371/journal.pcbi.1000572.g001

Author Summary

Aging is characterized by a systemic decline of an
organism’s capacity in responding to internal and external
stresses, leading to increased mortality. The mitochondrial
Free Radical Theory of Aging (mFRTA) attributes this
decline to the accumulation of damages, in the form of
mitochondrial DNA (mtDNA) mutations, caused by free
radical byproducts of metabolism. However, there is still a
great deal of uncertainty with this theory due to the
difficulties in quantifying mtDNA mutation burden. In this
modeling study, we have shown that a random drift in
mtDNA point mutation during life, in combination with the
experimental sampling can explain the variability seen in
some of the reported experimental data. Particularly, we
found that while the average mutation increases in a linear
fashion, the variability in the mutation load data increases
over time, and thus a low number of data replicates can
often lead to a deceptive inference of the mutation burden
dynamics. The model also predicted a significant contri-
bution from the embryonic developmental phase to the
accumulation of mtDNA mutation burden. Furthermore,
the model revealed that the replication rate of mtDNA is a
major determinant of new mutations during development
and in fast-dividing tissues.

Stochastic Drift in mtDNA Point Mutations
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formulation using relaxed replication assumption demonstrated

that stochastic drift can lead to a clonal expansion of mtDNA

mutations in human [25].

Following experimental evidence, each mitochondrion is

assumed to carry 10 mtDNA molecules and these mtDNA are

assumed to undergo replication and degradation due to mito-

chondrial turnover [26]. In a turnover event (Figure 2B), ten

molecules of mtDNA are chosen randomly from a well mixed

population of mtDNA in a cell and are either degraded or

replicated according to the CME described below. The selection of

ten wild-type and mutant mtDNA molecules from the population

can be described as a hypergeometric random sampling following

the probability distribution: [27]

f xð Þ~

W

x

� �
M

10{x

� �
WzM

10

� � ð1Þ

Figure 2. Stochastic mouse mtDNA model. (A) The in silico mouse model simulates the point mutation load of mtDNA in cells of a tissue such as
heart and liver during development and postnatal stages. (B) Stochastic drift of point mutations in cells results as a consequence of mtDNA
maintenance processes. Three sources of randomness are captured: (I) a random selection of a mitochondrion with ten mtDNA molecules from a
well-mixed population, (II) a random replication or degradation of a mitochondrion, and (III) random occurrences of de novo mtDNA point mutation
during replication.
doi:10.1371/journal.pcbi.1000572.g002

Stochastic Drift in mtDNA Point Mutations
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where x represents the number of wild type mtDNA chosen for

replication or degradation.

De novo point mutation can occur during replication of mtDNA

due to mis-pairing associated with ROS-induced mutagenic

lesions such as 8-hydroxy-2-deoxyguanosine (8OHdG) [2] or as

random errors arising due to finite polymerase-c (POLG) fidelity

[28]. Consequently, each replication of a wild-type mtDNA has a

finite probability, given by the mutation rate constant (km), to

produce a mutant. Here, the number of de novo mutant mtDNA is

randomly chosen from a binomial distribution: [27]

g yð Þ~
x

y

� �
:ky

m
: 1{kmð Þx{y ð2Þ

where y denotes the number of de novo mutations resulting from

replication of x wild-type mtDNA.

Based on these probabilities, the in silico mouse model is

formulated as a CME in which each mtDNA-related process:

replication without mutation, replication with de novo mutations

and degradation, is described as a jump Markov process with the

following state transitions:

W �?kR� 2W

M �?kR� 2M

W �?km� WzM

W �?kd� 1

M �?kd� 1

ð3Þ

The first two transitions reflect replication without mutation, the

third represents de novo mutation, and the last pair represents

degradation. A general formulation of CME is given by: [20]

df x,t x0,t0jð Þ
dt

~
X

j

aj x{nj

� �
f x{nj ,t x0,t0j
� �

{aj xð Þf x,t x0,t0jð Þ
ð4Þ

where x is the state vector denoting the total number of each

molecular species present in the system and the function

f x,t x0,t0jð Þ denotes the probability of a system to assume the

state configuration x at time t, given the initial condition x0 at time

t0. The function aj denotes the propensity function, while nj is the

state change associated with a single j-th event. The propensity

function aj xð Þdt gives the probability of the j-th event to occur in

the time interval [t, t+dt). As analytical solution to CME is usually

not available even for moderately sized systems [29], Monte Carlo

algorithms have been employed to solve the CME numerically

[30], e.g. using Gillespie’s SSA (Stochastic Simulation Algorithm)

[31]. In SSA, two random variables (t, j ) determine the temporal

evolution of the states in a system, where t is the time for the next

event to occur and j is the type of event that will take place. The

probability density functions of t and j are evaluated based on the

propensity function of the events involved [29].

A modified version of the SSA is used in this work for simulating

in silico mice tissues based on the following CME:

LP W ,M; tð Þ
Lt

~kR
:
X10

x~0
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 !
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The density function P W ,M; tð Þ denotes the probability of a

cell in a given tissue to contain W and M number of wild-type and

mutant mtDNA, respectively, given the initial conditions of the

states (not explicitly stated here for brevity, refer Equation 4). The

parameters kR, kd and km represent the specific probability rate

constants for mtDNA replication, degradation and de-novo point

mutations, respectively. The terms in the curly braces describe the

hypergeometric sampling of mtDNA from the population.

Particularly, the first two terms of the CME above represent

mtDNA replication without mutation, the second pair of terms

corresponds to replication with de-novo mutation, and the last two

terms represent the degradation of mtDNA. The CME can be

solved numerically using a Monte Carlo approach following the

SSA. The implementation of the modified SSA is described below:

1. Compute the propensities of replication and degradation

processes as a function of W and M at time t.

2. Based on the propensities, generate random samples of (t, j ) as

in the SSA algorithm [31].

3. Select ten mtDNA molecules randomly from the population

(hypergeometric sampling) for either replication or degradation

accordingly. Each replication of a wild type mtDNA can result

in a mutant mtDNA with a probability given by the mutation

rate constant (km).

4. Update W and M based on events in steps 2 and 3 and

increment the time t by t.

5. Repeat steps 1 through 4 until the desired end time.

To predict mtDNA mutation burden in a single organ or tissue,

millions of such simulations are performed to capture the mtDNA

dynamics of all cells in a tissue.

(5)

Stochastic Drift in mtDNA Point Mutations
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Simulations were performed using an IBM high performance

computing cluster with 112 Intel 1.6 GHz processors. The

simulation code (Text S2) was compiled using GNU FORTRAN

compiler G77 (v4.1.1) and run on a CentOS Linux platform. On

average, a single simulation of a heart tissue (,25 million cells) from

development to 3 years of age required approximately 3 hours.

Simulations of mouse development
The embryonic cell divisions begin after fertilization of an oocyte.

Mouse oocytes harbor a large number of mitochondria (,1.56105

mtDNA) [32], which allow the zygote to multiply initially without

the need to replicate mtDNA [33,34]. Mouse embryos with

dysfunctional mitochondrial replication are able to proceed through

the implantation and gastrulation stages, but eventually die,

presumably when the mtDNA synthesis becomes necessary to

maintain ATP level [35,36]. Furthermore, the total mtDNA number

in mouse embryo does not increase until the late stage of blastocyst,

which is roughly the 7th to 8th cell divisions in development (i.e., 4.7 to

5.5 days post coitum (d.p.c)) [33,34,37]. During these stages, mtDNA

are segregated among the dividing progenitor cells (Figure 2A).

Consequently, each progenitor cell of the developing embryo has

only few copies of mtDNA at the early egg-cylinder stage [33,34].

In order to account for the mtDNA segregation without

replication during the initial cell divisions, the developmental

simulations start from the end of the 8th stage (5 d.p.c) with an initial

wild-type mtDNA count of roughly 580 molecules per cell (W = 580,

M = 0) [33]. Mitochondrial DNA replication is tied to the cellular

division to maintain a steady state number of total mtDNA after

each division [38]. Mouse development lasts until 20 d.p.c [39] with

a doubling time of roughly 15.5 hours [40]. The mtDNA

replication rate is estimated assuming that mtDNA doubles its

population every 15 hours while still undergoing degradation. Here,

a cell division occurs when the total number of mtDNA count

reaches twice the steady state homeostatic count (Table 1). The

segregation of wild-type and mutant mtDNA between the daughter

cells is assumed to occur at random, without any selective advantage

according to a hypergeometric distribution: [27]

f xð Þ~

W

x

� �
M

n{x

� �
WzM

n

� � ð6Þ

where x denotes the number of wild-type mtDNA in one of the

daughter cells after segregation and n is the total number of mtDNA

in a single daughter cell (i.e., n = (W+M)/2). During development,

polymerase-c, the care taker of the mtDNA replication fidelity, is

the main contributor for point mutations in mtDNA, with negligible

oxidative activity and damage [28,41].

Simulation of postnatal stage
After birth, many tissues like heart do not undergo further

cellular division. However, mtDNA in these tissues are still

continuously turned over independent of cellular division, a

process called ‘‘relaxed replication’’ [26]. The functional signifi-

cance of relaxed replication in postmitotic tissues like heart and

brain is to maintain a healthy population of mtDNA to satisfy the

cellular energy requirements [26,42]. The postmitotic simulations

continue from cells produced at the last stage of development

(Figure 2A), in which each cell maintains mitochondrial biogenesis

to balance degradation. The mutation rate in this stage is a

summation of contributions from oxidative damage and POLG-

related error.

Simulation of POLG mutator mouse models
The in silico mouse model is also used to simulate POLG mutator

heterozygous (POLG+/mut) and homozygous (POLGmut/mut)

mice by changing the rate of de novo point mutations. Mutator

mice carry a proofreading-deficient allele of POLG which has 200

times the error rate of the wild-type enzyme [28,43]. Thus, in the

simulations of POLG mutator mice, the model formulation

remains the same in all aspects with the exception that the POLG

error rate corresponding to the mutant allele is assumed to be 200

times higher (Table S2 and S3). In heterozygous POLG mutator

mouse, the replication of mtDNA molecules is carried out by either

wild-type or mutant allele with equal probability.

Model parameters
Model parameters are compiled from published data for mice

and we have ensured that they are consistent with the current

literature and the state of the art techniques. The basic model

parameters are listed in Table 1, while more detailed information

of the rest of parameters used in all mouse models is given in

Tables S1, S2 and S3.

Mitochondrial DNA degradation rate (kd). Cellular

organelles like mitochondria are normally degraded by the

Table 1. Basic model parameters of the in silico stochastic mouse model.

Rates Unit Values Comments References

W0 molecules 580 Initial value of wild type mtDNA during start of development [33,64]

M0 molecules 0 Initial value of mutant mtDNA during start of development

kd d21 2.337761023 Degradation rate of mtDNA [45]

kdev
R

molecules d21 465 Maximum replication rate of mtDNA during development

kdev
m

rep21 bp21 1.061027 Mutation rate of mtDNA during development (POLG fidelity) [28,41,43]

Ncyc - 22 Number of developmental cycles [37,39,40,64]

(W+M)ss molecules 3500 Homeostatic set-point of the mtDNA population (Heart cells) [21,65]

kPM
R

molecules d21 0.8182 Maximum replication rate of mtDNA during post natal stage

kPN
m

rep21 bp21 1.661026 Mutation rate of mtDNA during post natal stage (POLG fidelity and Oxidative burden) [11,28,41,43,54,55]

Ncell - 2.24436107 Number of cells (Heart) [21,61]

aPOLG - 200 POLG allele fidelity factor [28,41,43]

doi:10.1371/journal.pcbi.1000572.t001

Stochastic Drift in mtDNA Point Mutations
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autophagy process, where an entire organelle is engulfed by a

lysosome and undergone lytic degradation [44]. The half-life of

mouse mtDNA molecules can be studied in vivo using isotopic

deuterated water 2H20 [45]. The decrease of isotopic

deoxyadenosine in mtDNA after discontinuation of 2H20

treatment can be used to determine the turnover of mtDNA

[45,46], providing a highly sensitive measurement of mtDNA

degradation rate constant for the model, kd.

Hepatocytes of liver are mitotically quiescent and stop

differentiating at the end of the postnatal growth period (,60

days in the rats) [47,48]. While under normal conditions these cells

have a very long life span (,400 days) [48], they can become

mitotic in response to hepatic stress or injury [47,48]. Thus, in

simulating the liver tissue, the slow cellular turnover is approxi-

mated using an elevated mtDNA turnover (Table S2).

Literature values regarding mitochondrial turnover differ

widely, citing half life values ranging from 6 days to ,300 days

[45,46,49–51]. The literature is relatively sparse and spans many

decades. Consequently the methods utilized and the tissues

examined differ significantly among studies, making direct

comparison somewhat difficult. However, considering the higher

value of turnover [49,50], a simple estimation of the expected

mutation load under the simplifying assumptions (refer to Text S1

for details), show that unless there is a preferential degradation of

mutants against the wild-type mtDNA (which at least can be

envisioned for the functionally relevant mtDNA mutations), it is

difficult to see how such high turnover rates can be physiologically

feasible given the low mtDNA mutation frequencies that are

actually found by RMC assay [12] (Figure S6). We also intend to

explore such mechanisms, which are likely to be dependent on the

compartmentalization effects of mitochondria (fusion-fission dy-

namics), retrograde signaling [24] and mitochondrial threshold

levels [52].

Mitochondrial DNA replication rate (kR). The mtDNA

copy number is maintained throughout the cell growth and

divisions [53]. The mtDNA replication should occur to balance

the degradation. There exist evidence supporting the existence of a

retrograde signaling between mitochondria and nucleus to

regulate the mtDNA content based on cellular bioenergetics

[24]. This suggests that mitochondrial biogenesis may be initiated

as soon as the mtDNA copy numbers in a cell falls below a certain

homeostatic set-point value. Here, we have used a constant

biogenesis (i.e. without retrograde signaling), but the main

conclusions of our work remain the same even with retrograde

signaling (see Figure S3 and Text S1). The constant mtDNA

replication rate was deduced based on the homeostatic mtDNA

copy number in a cell and the degradation rate of mtDNA. Thus,

the replication constant kR is given by:

kR~kd WzMð Þss ð7Þ

where WzMð Þss represents the homeostatic level of mtDNA

population in the cell (Table 1).

Mitochondrial DNA point mutation rate (km). In vivo,

8OHdG level most likely ranges from 0.3 to 4.2 lesions per 106

bases in nuclear DNA [11,54,55]. However, such lesions make

only about 10 to 20% of the complete damage spectra [12,56].

Therefore, the actual frequency of point mutation rate may be as

low as 1.5 and as high as 42 lesions per 106 DNA bases per

replication. In this work, we have made a conservative assumption

that the oxidative damage to mtDNA is the same as that to nuclear

DNA, consistent with our earlier observations [57]. While some

reported values of 8OHdG adducts in mtDNA that are an order of

magnitude higher than in nuclear DNA [10], our simulations

indicate that such a high damage level is unlikely as this will lead to

an mtDNA mutation burden much in excess of those quantified by

RMC assay (Figure S5) [12].

In addition to the oxidative damage, the fidelity of polymerase-

c also contributes to de novo point mutations during replication.

The polymerase is responsible for the replication and proof

reading of newly synthesized strands with a reported error rate

between 161027 and 161026 bp21replication21 for the wild-

type enzyme [28]. Therefore, the overall mutation rate is a sum of

oxidative damage and POLG-related errors, giving a range of

mutation rate between 1.661026 and 4.361025 mutations per

base pair per mtDNA replication. A conservative value (lowest) of

1.6(10-6 bp-1 replication-1 is chosen for wild-type mouse

simulations.

The summary of all the parameters used in this work is described

in Table S1, S2 and S3. Table S1 gives the details on the model

parameters used for wild-type mouse simulations. Table S2 and S3

give a summary of the model parameters used for simulating the

POLG mutator mice, POLG heterozygous (POLG+/mut) and

POLG Homozygous (POLGmut/mut), respectively.

Results/Discussion

Statistical features of the RMC assay
In silico wild-type (WT) mouse population of 1100 individuals

was generated starting from embryo up to three years of age, the

approximate life span of mice (Figure 2). The overall point

mutation frequency in 2.56107 cells of whole heart tissues was

recorded at the end of each cell division during development and

every fortnight during the postnatal stage. Figure 3 illustrates the

percentile and distribution function of the mutation frequency

arising from two important sources of variability related to the

quantification of mtDNA point mutations. The probability density

functions indicate the distribution of mutation frequencies in the

population as a function of time. Each contour on the percentile

plot represents the maximum mutation frequency that a given

percentage of the population harbors (e.g. 99% of mice harbor

mutation frequencies up to and including the level indicated by the

99th percentile curve (Figure 3A, 3C)).

The main source of randomness is the intrinsic stochastic nature

of the aging process, which arises from the mtDNA maintenance

processes (Figure 2B). Note that the intrinsic stochasticity

prevailing in the in silico population has a long tailed non-Gaussian

density function (Figure 3B, 3D), indicating that a small fraction of

the population harbors a significantly higher mutation burden.

Cell-to-cell variability of mtDNA mutation load is also observed as

a result of the random processes (Figure S1). Figure 4 illustrates the

evolution of mtDNA states (W and M) in two cardiomyocytes

during the postnatal stage of a mouse. Random fluctuation of wild-

type mtDNA can be seen in the population with regular bursts and

decay of mutant mtDNA. Furthermore, it is interesting to observe

that despite the significant cell-to-cell variability of mutation load

being large (Figure S1), the average accumulation of mtDNA

mutation in tissue remains linear after birth (Figure 3A). Also, the

variance due to the natural aging process remains roughly

constant during the mouse life span, indicating that the variability

among individuals is inherited at birth.

However, for comparison with data derived from RMC assay, a

second source of variability has to be considered due to the

intrinsic statistical properties of the assay protocol. This is because,

the determination of point mutation burden by the RMC assay

involves drawing a random sample of mtDNA copies (,840,000)

from tissue homogenates [12]. This sampling procedure introduc-

es additional variability that becomes significant due to the low

Stochastic Drift in mtDNA Point Mutations
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overall count of total mtDNA mutations. This statistical feature of

the RMC protocol can be described as sampling from a

hypergeometric distribution [27].

f mjWtot,Mtotð Þ~

Mtot

m

� �
Wtot

n{m

� �
WtotzMtot

n

� � ð8Þ

where m denotes the number of mutant mtDNA molecules present

in a random sample of mtDNA of size n (n = 840,000 mtDNA

molecules in this case). Thus, for low mutation frequencies and

sample sizes, the RMC protocol introduces significant additional

variability in the data. For example, in heart tissue homogenate

containing 1010 molecules of mtDNA with a mutation frequency

of 1026/bp (a total of 46105 mutant mtDNA), samples of 840,000

mtDNA drawn from the same homogenate will have a mean value

of 3.36 mutants with a standard deviation of 1.83 molecules or

54.6% coefficient of variation from the RMC sampling alone.

The compounded effect of the two sources of variabilities

(intrinsic aging related and RMC assay) can be expressed by,

w mð Þ~
X

Wtot,Mtot

f m Wtot,j Mtotð Þ|h Wtot,Mtotð Þ ð9Þ

where h Wtot,Mtotð Þ denotes the underlying probability distribu-

tion of mtDNA mutations predicted by the mouse model

simulations and w mð Þ is the overall probability function of measured

mtDNA mutations. Importantly, the additional variability associ-

ated with the sampling of mtDNA in the RMC protocol causes the

mutation frequency variance to increase as a function of the

average mutation frequency (Figure 3C), a result expected from a

hypergeometric distribution. This is particularly relevant here

because of the age-dependent increase in mean mutation burden

and the fact that the distribution describing the mutation process is

long-tailed (Figure 3A, 3B). When this underlying mutation

dynamics is sampled using the RMC assay, the resulting data

will exhibit an age-dependent increase in variance. Due to low

number of replicates (typically n,5 per age group), it is highly

Figure 3. Stochastic determinants of age-dependent dynamics in the observed mtDNA point mutation frequency. Heart tissue
simulations provided the distribution of mutation frequency among 1,100 in-silico wild type mice. (A, B) The percentiles and probability distribution
functions of the mutation frequency arising from the intrinsic stochasticity of cellular processes alone. The dotted line indicates the evolution of the
average mutation frequency of 1,100 mice, which grows linearly with time. (C, D) The percentiles and probability distribution functions of the
mutation frequency in the RMC assay of in silico wild-type mouse population. The apparent variability arises from the combined effect of intrinsic
stochasticity and the (hypergeometric) sampling variability in the RMC protocol (details in the main text).
doi:10.1371/journal.pcbi.1000572.g003
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probable to obtain data that are best approximated by a non-

linear, possibly exponential model (Figure 3C). However, this

apparent exponential increase is not actually a feature of the

underlying mutation dynamics, which may be in fact, linear

(Figure 3A). This has important implications for the interpretation

of the available experimental data.

In accordance with the interpretation reached in the original

experimental work [12], the variance in the in silico data as well as

the experimental data for low n-values appears to suggest an

exponential dynamics supporting the ‘vicious cycle’ theory [3,13].

However, on careful consideration (Figure 3), the apparent

exponential increase of the mutational burden is actually an artifact

of: (a) intrinsic stochasticity of aging process (Figure 3A, 3B), coupled

with (b) the random sampling variability introduced by the statistical

properties of the RMC protocol (Figure 3C, 3D). Experimentally, it

is not possible to carry out 100 s or 1000 s of repeats and it is

therefore difficult to distinguish between a truly exponential and a

linear increase of age dependent point mutation burden. In

summary, while the RMC assay is able to quantify extremely low

levels of mutations, its discrete nature (in terms of mutant mtDNA

count) introduces significant challenges in data analysis and

interpretation. The interpretation of the data can be flawed if the

statistical properties of the RMC assay are not considered. Taking

both processes into consideration, the fundamental mtDNA

maintenance processes modeled by our in silico mice are in excellent

agreement with the published data (Figure 3C). However, the last

data point of mutation burden from an old mouse (980 days)

deviated from in silico mouse population (p-value = 0.064), suggesting

that other processes not predicted by our model may be involved

during the last months of life (e.g., inflammation or other disorders

that can accelerate oxidative DNA damage [58]).

Transgenic mouse studies
Transgenic mouse studies on POLG mutator mouse have

recently shed some light on the role of mtDNA in aging [8,9,12].

However with these mutator models, many open questions still

remain about the role of mtDNA mutation in aging. For example,

only the homozygous mutator mice exhibited accelerated human-

aging-like phenotypes (e.g., anemia, alopecia, kyphosis) and

shortened lifespan, while the heterozygous mice have no obvious

aging phenotypes, despite significantly elevated mutation burdens

[9].

After successfully validating the in silico mouse model against

wild-type mouse data, we further simulated 1,100 hetero- and

homozygous POLG mouse heart and liver tissues by elevating the

baseline POLG error rate to 200 times that of wild-type [28,43].

We found an excellent agreement of our in silico results with the

reported mutation burdens from two different laboratories [9,12]

(Figure 5 and Figure S4). As with the wild-type mice, the point

mutation increase was linear with age (Figure S4). Again,

mitochondrial turnover and de novo point mutations alone were

sufficient to explain the accumulation of mtDNA point mutations.

These results indicate that even at the elevated levels of point

mutations ROS-mediated acceleration of point mutations with age

is not necessary to explain the data presented in [8,9]. This is

consistent with additional experimental observation suggesting

that the levels of ROS in POLG mice are not significantly elevated

in the mutator mice [8]. Crucially, no modification of mtDNA

Figure 4. Stochastic evolution of mtDNA states. (A) represents
the stochastic evolution of the wild-type mtDNA, while (B) illustrates
the stochastic changes in the mutant mtDNA population. Red and blue
curves indicate the outcomes of two independent realizations.
doi:10.1371/journal.pcbi.1000572.g004

Figure 5. Average mtDNA point mutation frequencies in WT
and POLG mutator mice. The variances in the in silico mouse data
represent the intrinsic stochasticity only (without the RMC sampling
variability).
doi:10.1371/journal.pcbi.1000572.g005
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maintenance rate constants was required to reproduce the

experimental data [8,9]. That is, one does not have to resort to

assumptions such as the existence of a vicious cycle or other

possible feedback mechanism [59,60].

Significance of development
The stage in an organism’s life from which the accumulation of

mtDNA mutations starts to become functionally significant (if at all)

is unclear. During development, mtDNA replication is tied to the

cellular division, and as a consequence, initial mutations may arise

as soon as mtDNA replication begins. In fact, the total number of

replications during development is comparable to that during the

entire adult life. In mice, the heart tissue develops in about 20 days

[39]. Considering the degradation rate described in Table 1 and the

mouse heart to contain ,2.56107 cardiomyocytes [21,61] arising

from 22 cell divisions (6 progenitor cells), the total number of

mtDNA replications needed to maintain homeostatic value of

mtDNA (Table 1) [21] per cell should exceed 961010 times during

the development. On the other hand, based on the degradation rate

of mtDNA in postnatal stages (Table 1) [45], the number of mtDNA

replications events over the three years lifespan of mice is about

1.361011. Thus depending on their source (ROS, POLG errors),

the development period may carry comparable contributions in de

novo mtDNA mutations as does the entire adult life.

POLG errors have been postulated to be the main cause of de novo

point mutations in murine embryonic fibroblast [28,41]. Therefore,

the POLG baseline error rate was used as mutation rate during

development. Generally, our in silico mouse data highlight that

mutations occurring in the early embryonic cells have a strong

impact on the mutation load at birth (Figure 6) and that the

variability among individuals is set during development (Figure S2

and Figure S4). Since the mtDNA replication is several folds higher

than the degradation during development, de-novo point mutations

generated during the early cell divisions can accumulate very

Figure 6. Mitochondrial DNA point mutation during mouse development. Expansion of mtDNA point mutations during heart tissue
development from in silico wild-type (A), POLG+/mut (B) and POLGmut/mut mice (C) population (n = 1,100). (A) The square symbols show examples of
point mutation trajectory from two different mice, one of which suffers from a rare point mutation early in the development, resulting in the
amplification of the mutation frequency in subsequent cell divisions. (B) Like in the wild-type cohort, de-novo point mutations generated in the
POLG+/mut mice during the early cell divisions can accumulate very quickly, resulting in a high mutation load in the cells at birth. (C) Since the error
rate of mtDNA replication in POLGmut/mut is much higher than the wild-type mtDNA replication, a significant proportion of the population (.75%)
harbors mtDNA mutations at an early stage of development (before the 10th cell division). As a consequence, the resulting mutation load in the tissue
is significantly higher than that in the wild-type tissues at birth.
doi:10.1371/journal.pcbi.1000572.g006
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quickly, resulting in a high mutation load at birth in some

individuals (Figure 6). These results highlight that the stochastic

drift of mutation dynamics during the early developmental cell

divisions may be a deciding factor of the organism’s mutation

trajectory, and also a major contributor of the mutation variability

in a population, including isogenetic individuals [19]. The

variability generated during development is conserved throughout

the organism’s life (see Figure 2A and Figure S4A, S4B).

In postmitotic tissues, like heart, mtDNA are continuously

turned over independent of cellular division [26]. Although the

turnover rate of mtDNA is lower during the postnatal stage than

during development, the higher mutation rate due to oxidative

damage (Table 1) can lead to 2–3 fold increase in the mutation

load between birth and old age in wild-type mice (see Figure 2A

and Figure 7). The in silico POLG mice however differ from the

wild-type because in these mice, the POLG error is the dominant

contributor of de novo point mutations, both during embryonic and

postmitotic stages (Supplementary Table S2 and S3). Due to faster

mtDNA replication (tied to cell division), most of the mutations in

mutator mice therefore arise during development (Figure 6B, 6C

and Figure 7). This is consistent with the experimental data which

shows clearly that mutator mice are born with significantly

elevated mutation burden [9,62]. However, during their adult life,

the accumulation is relatively lower compared to their develop-

ment, due to the slow turnover of mtDNA [45].

Furthermore, the above observation leads to an interesting

insight, largely unappreciated in the original work [8,9,63],

regarding the point mutation load in tissues that remain mitotic

(epidermal, stem cells, spleen). Since in POLG mice the point

mutation burden of mtDNA is dominated by POLG errors,

mutation accumulation in fast dividing cells is expected to be

several fold faster than in postmitotic tissues such as heart. This is

consistent with the experimental observation in POLG mutator

mice, where some of the most prominent pathologies associated

with the fast dividing tissues manifest in the form of alopecia,

spleen enlargement and anemia. However it should be appreciated

that such mechanistic hypothesis is speculative, because we have

not included the simulation of mtDNA turnover of any fast

dividing tissues in the present work. Treatment of cell division and

selection pressure for mitochondrial turnover might be a

promising area of investigation for the future work.

Conclusions
By thinking carefully about the different sources of stochasticity in

each process from early development all the way to experimental

sampling, we have identified the RMC assay procedure as a major

contributor to the overall uncertainty. In contrast to the original

interpretation of the data, our analysis reveals that the existence of

an exponential dynamics in point mutations cannot be inferred with

certainty, and thus no contradiction between the observed point

mutation dynamics and the apparent absence of evidence for

elevated oxidative stress exists. A detailed, quantitative understand-

ing of the relevant sources of noise also allows optimization of

experimental designs, thereby opening avenues for maximizing

information return and minimizing cost, time and animal use.

The fact that the reproduction of the POLG mouse data requires

no modifications to the wild type model, other than the obvious

decrease of the polymerase fidelity, suggests that elevation of the

point mutation burden does not trigger fundamentally new

processes. In particular, neither mutant replicative advantage nor

the elevation of the ROS dynamics resulting from the increase of the

point mutation burden is required to explain the POLG data. This

is consistent with our current view on the mFRTA [4], showing little

evidence for the existence of vicious cycle mechanism. Two further

observations related to the POLG mice that have originally been

seen as somewhat surprising, can also be explained. The first is the

observation that dividing tissues seem to be more severely affected in

POLG mice than postmitotic tissues [9,63]. The second is the fact

that most mtDNA mutations in the POLG mice are already present

at birth with comparatively little further accumulation during adult

life, when compared to its development [9,62]. Quantitative analysis

shows both of these observations to be consequences of the low

turnover of mtDNA in postmitotic tissues of adult mice.

Finally, our in silico analysis reveals the importance of early

development in determining the trajectory of mtDNA mutation

burden. This is in sharp contrast to the common assumption that

health and diseases are determined predominantly by the genome

interacting with the environment. Here, we have demonstrated

that in silico modeling can contribute significantly to analysis and

understanding of experimental data as well as potentially help to

design more effective methodology. We believe that this approach

of ‘‘Computer Aided Thought’’ can contribute towards a

fundamentally improved understanding of intrinsically challenging

biological problems such as aging.

Supporting Information

Figure S1 Point mutation distribution in cells of heart tissue from

different in silico mice. Stacked distribution plots of the normal and

mutant mtDNA counts (W,M) in an in silico mouse heart. Each plot

represents the simulation outcome of a single heart tissue. Subplots

on the left pane represent the complete distribution of all states in

the cells and those on the right pane illustrate the states distribution

for all the cells having at least one mutant mtDNA (M.0) (Note, the

frequency of the cells having mutant mtDNA in a wild-type tissue is

two orders of magnitude lower than the cells from the tissue of

POLG mutator mice). Dispersion of mutation load in the cells has

an increasing trend amongst the three different mouse models with

the POLGmut/mut mouse having the highest dispersion of mutant

mtDNA states in the cells. The stochastic nature of mtDNA

Figure 7. Average mtDNA point mutation accumulation in wild
type and POLG mutator mouse models. Wild-type mice have a low
mutation burden at birth, but they accumulate relatively more
mutations during their life. On the other hand, the POLG mice harbor
a significant mutation load at birth due to error-prone mtDNA
replications during development. In the post-mitotic stage however,
the relative accumulation (in comparison to mutations at the birth) is
significantly lower due to the slow turnover of mtDNA.
doi:10.1371/journal.pcbi.1000572.g007
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turnover has a significant contribution in the mutation load

dispersion. (A, B) Distribution of mtDNA states in the tissue of

wild-type mouse. (C, D) Distribution of the mtDNA states in the

tissue of POLG+/mut (heterozygous) mouse. (E, F) Distribution of the

mtDNA states in the tissue of POLGmut/mut (homozygous) mouse.

Found at: doi:10.1371/journal.pcbi.1000572.s001 (1.84 MB TIF)

Figure S2 Simulations with exclusion of developmental phase.

Sources of variability in the observed mtDNA point mutation

frequency of 1,100 in silico wild-type mouse heart tissues without

developmental de novo point mutations. The mutation frequencies

were recorded every fortnight up to 36 months. (A) The percentile

curve of mutation frequency due to the intrinsic stochasticity of

aging process in the mouse population. The mtDNA maintenance

during life did not cause any observable variability among the

mouse population, as indicated by the overlapping percentile

curves and the sharp distribution. This is in agreement with our

previous observation that the genetic variability is inherited from

the development and conserved during the adult life. (B) The

percentile curve of the mutation frequency in the RMC assay of in

silico wild-type mouse population. The variability again increases

with age due to the increase of the mutation frequency. The model

excluding the development was in worse agreement with the

experimental data than the trials that included the development

(Figure 3 in Main Text). (C) Comparison of the average mutation

frequency in mouse heart tissues with and without developmental

contribution. Two types of simulations were performed, one type

included de novo mutations during development while the other did

not (i.e. no mutations at birth). Although the influence of

development in the wild-type mice is rather insignificant at older

ages, the exclusion of the developmental stage in the simulations of

the POLG mutator mice causes a significant difference in the

resulting mutation burden. The variance in the in silico mice data

represents the intrinsic genetic variability only, without the RMC

sampling variability.

Found at: doi:10.1371/journal.pcbi.1000572.s002 (1.14 MB TIF)

Figure S3 Effect of different choices of point mutation model on

the average mutation burden. The average mutation frequency

reported in the plot represents the mutation burden in the heart

tissues of wild-type mice and was recorded at the end of 36

months. (a) Comparison of the average mutation burden obtained

using two different turnover rates. The higher turnover rate was

based on a frequently cited experimental data (a half-life of 17 days

reported by [1,2] in the figure). It is evident that usage of such high

value of turnover can give vastly differing mutation loads and the

model is particularly very sensitive with respect to the turnover

rates. Also Supplementary Figure S6 further illustrates the

variation of the point mutation burden in population of 100 mice

for this turnover rate. (b) Comparison of the average mutation

burden obtained using two different replication models described

in the supplementary text. The two replication models based on: (i)

constant biogenesis, and (ii) biogenesis with the Hill-type kinetics

are equivalent.

Found at: doi:10.1371/journal.pcbi.1000572.s003 (1.29 MB TIF)

Figure S4 Stochastic determinants of age-dependent point

mutation dynamics in mutator mice. Comparison of the observed

mtDNA point mutation frequency in a population of 1,100 in silico

POLG mouse heart tissues (Heterozygous and Homozygous). The

mutation frequencies were recorded every fortnight up to 36

months (heterozygous) and 14 months (homozygous). (A) The

percentile curves of the mutation frequency in the RMC assay of in

silico POLG+/mut mouse (heterozygous) population. The apparent

variability arises from the genetic variations intrinsic to the aging

process and the hypergeometric sampling variability in the RMC

protocol (details in the Methods section). (B) The percentile

curves of the mutation frequency in the RMC assay of in silico

POLGmut/mut mouse (homozygous) population. Unlike the wild-

type, the uncertainty arising due to the combined effect of the two

sources of variability does not increase with time. The variance

remains roughly constant with age and this is primarily due to the

high point mutation load prevailing in the cells at birth, which only

increases relatively marginally with age.

Found at: doi:10.1371/journal.pcbi.1000572.s004 (0.50 MB TIF)

Figure S5 Mitochondrial DNA point mutation burden under an

elevated oxidative burden assumption. The oxidative burden used

in these simulations was elevated to 10 times higher than that used

in the main article (Figure 3 in Main Text). The mutation

frequencies were again recorded every fortnight up to 36 months.

(A, B) The percentile curve and distribution of the mutation

frequency due to the intrinsic stochasticity of aging process in the

mouse population (n = 500 mice). (C, D) The percentile curve and

distribution of the mutation frequency estimated by the RMC

assay of the in silico wild-type mouse population considered.

Found at: doi:10.1371/journal.pcbi.1000572.s005 (1.12 MB TIF)

Figure S6 Mitochondrial DNA point mutation burden simulat-

ed using mtDNA half-life of 17 days. Inherent mtDNA point

mutation frequency in the heart tissues of 100 mice using an

mtDNA half life of 17 days (based on the references [2] and [3]

indicated in the figure). The mutation frequencies in the post

development were monitored every fortnight up to 36 months. (A)

Expansion of the mtDNA point mutations during the heart tissue

development and, (B) Point mutation dynamics in the mouse

population post-birth.

Found at: doi:10.1371/journal.pcbi.1000572.s006 (1.23 MB TIF)

Table S1 Model parameters used in the simulations of the in

silico wild-type mice.

Found at: doi:10.1371/journal.pcbi.1000572.s007 (0.07 MB

DOC)

Table S2 Model parameters used in the simulations of the in

silico POLG heterozygous mice’s (POLG+/mut) mice.

Found at: doi:10.1371/journal.pcbi.1000572.s008 (0.09 MB

DOC)

Table S3 Model parameters used in the simulations of the in

silico POLG homozygous mice’s (POLGmut/mut) mice.

Found at: doi:10.1371/journal.pcbi.1000572.s009 (0.07 MB

DOC)

Text S1 Supporting Information

Found at: doi:10.1371/journal.pcbi.1000572.s010 (0.07 MB

DOC)

Text S2 Stochastic mtDNA Point Mutation Simulation

Algorithm

Found at: doi:10.1371/journal.pcbi.1000572.s011 (0.03 MB PDF)
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