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Abstract

Understanding the mechanisms of cell function and drug action is a major endeavor in the pharmaceutical industry. Drug
effects are governed by the intrinsic properties of the drug (i.e., selectivity and potency) and the specific signaling
transduction network of the host (i.e., normal vs. diseased cells). Here, we describe an unbiased, phosphoproteomic-based
approach to identify drug effects by monitoring drug-induced topology alterations. With our proposed method, drug
effects are investigated under diverse stimulations of the signaling network. Starting with a generic pathway made of logical
gates, we build a cell-type specific map by constraining it to fit 13 key phopshoprotein signals under 55 experimental
conditions. Fitting is performed via an Integer Linear Program (ILP) formulation and solution by standard ILP solvers; a
procedure that drastically outperforms previous fitting schemes. Then, knowing the cell’s topology, we monitor the same
key phosphoprotein signals under the presence of drug and we re-optimize the specific map to reveal drug-induced
topology alterations. To prove our case, we make a topology for the hepatocytic cell-line HepG2 and we evaluate the effects
of 4 drugs: 3 selective inhibitors for the Epidermal Growth Factor Receptor (EGFR) and a non-selective drug. We confirm
effects easily predictable from the drugs’ main target (i.e., EGFR inhibitors blocks the EGFR pathway) but we also uncover
unanticipated effects due to either drug promiscuity or the cell’s specific topology. An interesting finding is that the
selective EGFR inhibitor Gefitinib inhibits signaling downstream the Interleukin-1alpha (IL1a) pathway; an effect that cannot
be extracted from binding affinity-based approaches. Our method represents an unbiased approach to identify drug effects
on small to medium size pathways which is scalable to larger topologies with any type of signaling interventions (small
molecules, RNAi, etc). The method can reveal drug effects on pathways, the cornerstone for identifying mechanisms of
drug’s efficacy.
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Introduction

Target-based drug discovery is a predominant focus of the

pharmaceutical industry. The primary objective is to selectively

target protein(s) within diseased cells in order to ameliorate an

undesired phenotype, e.g., unrestrained cell proliferation or

inflammatory cytokine release. Ideally, other pathways within

the diseased cells, as well as similar phenotypes in other cell types,

should remain unaffected by the therapeutic approach. However,

despite the plethora of new potential targets emerged from the

sequencing of the human genome, rather few have proven

effective in the clinic [1]. A major limitation is the inability to

understand the mechanisms or drug actions either due to the

complex signaling transduction networks of cells or due to the

complicated profile of drug potency and selectivity.

Finding drug’s targets is traditionally based on high-throughput

in vitro assays using recombinant enzymes or protein fragments [2].

The main goal is to characterize the drug’s biochemical activity

(binding affinities that describe potency and selectivity) and depict

them in drug-interaction maps [3]. In most cases, once the target(s)

is known, the in vivo effect on the signaling pathway is validated by

measuring the drug’s efficiency to inhibit the activity (usually

measured as phosphorylation level [4]) of the downstream protein.

However, beyond that measurement, little is know on how the rest

of the signaling network is affected. In addition, in vivo drug effects

can hardly be calculated from in vitro assays for several reasons:

most kinase inhibitors are promiscuous [5], there is discrepancy

between in vivo and in vitro binding affinities of drugs [6], and there

is an additional discrepancy between in vivo binding affinities and

in vivo inhibitor activity for the phosphorylation of downstream

signals.

To address drug effects in more physiological conditions, novel

genomic and proteomic tools have recently been developed [7]. In

the genomic arena, large-scale mRNA analysis (e.g., [8,9])
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enhanced by computational approaches for drug target deconvo-

lution (e.g., [10,11]) have been developed. Despite the holistic

advantages that genomic approaches have to offer, proteomic-

based discovery is a step closer to the function of the cell. Towards

this goal, affinity chromatography offers a viable strategy for in-vivo

target identification. This approach utilizes a solid support linked

to a bait (usually the drug) to enrich for cellular binding proteins

that are identified by mass spectrometry (MS) [12]. However, such

experiments usually require large amounts of starting protein, are

biased toward more abundant proteins, and result in several hits

due to nonspecific interactions [13,14]. In order to circumvent the

non-specific interaction problem, another bait-based strategy uses

quantitative MS with ‘‘dirty’’ inhibitors for baits to immobilize the

kinome [15,16]. While this approach significantly reduces the non-

specific interaction problem, it also limits the target-searching

space to those kinases with the highest affinity to the bait. More

recently, quantitative MS-based proteomics using SILAC tech-

nology [14] extends the search space to all targets that do not bind

covalently to the drug. However, incorporation of the SILAC’s

isotopes requires 5 population doublings and thus, excludes the

application on primary cells with limited replication capabilities.

Taken together, all techniques listed above can -in the best case

scenario- list the affinities of all targets to the drug but no

information is provided whether this binding affinity is capable of

inhibiting the transmission of the signal to the downstream protein

or how those preferential bindings can collectively affect the

signaling network of the cell.

Here, we describe a significantly different approach to identify

drug effects where drugs are evaluated by the alterations they

cause on signaling pathways. Instead of identifying binding

partners, we monitor pathway alterations by following key

phosphorylation events under several treatments with cytokines.

The workflow is presented in Figure 1. On the experimental front,

using bead-based multiplexed assays [17], we measure 13 key

phosphorylation events under more than 50 different conditions

generated by the combinatorial treatment of stimuli and selective

inhibitors. Based on the signaling response and an a-priori set of

possible reactions (i.e. generic pathway), we create a cell-type

specific pathway using an efficient optimization formulation

known as Integer Linear Programming (ILP). This approach

Author Summary

Cells are complex functional units. Signal transduction
refers to the underlying mechanism that regulates cell
function, and it is usually depicted on signaling pathways
maps. Each cell type has distinct signaling transduction
mechanisms, and several diseases arise from alterations on
the signaling pathways. Small-molecule inhibitors have
emerged as novel pharmaceutical interventions that aim
to block certain pathways in an effort to reverse the
abnormal phenotype of the diseased cells. Despite that
compounds have been well designed to hit certain
molecules (i.e., targets), little is known on how they act
on an ‘‘operative’’ signaling network. Here, we combine
novel high throughput protein-signaling measurements
and sophisticated computational techniques to evaluate
drug effects on cells. Our approach comprises of two steps:
build pathways that simulate cell function and identify
drug-induced alterations of those pathways. We employed
our approach to evaluate the effects of 4 drugs on a cancer
hepatocytic cell type. We were able to confirm the main
target of the drugs but also uncover unknown off-target
effects. By understanding the drug effects in normal and
diseased cells we can provide important information for
the analysis of clinical outcomes in order to improve drug
efficacy and safety.

Figure 1. Experimental and computational workflow to assess drug effects. (A) A Boolean generic map is assempled from pathway
databases and includes stimuli (green squares), key measured phosphoproteins (brown circles), and the neighboring proteins (yellow circles). (B) Cells
are treated with a combination of cytokines and selective inhibitors (red circles) of known effects and an ILP formulation is used to fit the data to the
Boolean pathway. (C) A cell-type specific pathway is constructed. (D) Cells are treated with a combination of cytokines and drugs –their effects are
assumed unknown- and ILP is used for the second time to fit the drug-induced phosphorylation data. (E) Alterations of the the cell-type specific
topology reveals drug effects (red arrows).
doi:10.1371/journal.pcbi.1000591.g001
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builds upon the Boolean optimization approach proposed in [18].

The ILP is solved using standard commercial software packages to

guaranteed global optimality (within a user-defined, numerically

small tolerance). To evaluate drug effects, we subject the cells with

the same stimuli in the presence of drugs and we tract the

alterations of the same key phosphorylation events. Then, we

reapply the ILP formulation without a-priori assumption of the

drug target, and we monitor the changes in the pathway topology

with and without drug presence. To demonstrate our approach,

we construct a generic map and optimize it to fit the

phosphoproteomic data of the transformed hepatocytic cell lines

HepG2. Then, we identify the effects of four drugs: the dual

EGFR/ErbB-2 inhibitor Lapatinib [19], two potent EGFR kinase

inhibitors Erlotinib [20] and Gefitinib [21], and the ‘‘dirty’’ Raf

kinase inhibitor Sorafenib [22]. When our method is applied on

those 4 drugs we find their main target effect and we also uncover

several unknown but equally active off-target effects. In the case of

Gefitinib, we find a surprising inhibition of cJUN in the IL1a
pathway.

In contrast to previously developed techniques, our method is

based on the actual effect on phosphorylation events carefully

spread into the signaling network. Theoretically, it can be applied

on any type of intracellular perturbations such as ATP-based and

allosteric kinase inhibitors, RNAi, shRNA etc. On the computa-

tional front, our ILP-based approach performs faster and more

efficient than current algorithms for pathway optimization [18]

and can identify the main drug effects as well as unknown off-

target effects in areas of pathways constrained between the

activated receptors and the measured phosphorylated proteins.

Our fast and unbiased characterization of modes of drug actions

can shed a light into the potential mechanisms drug’s efficacy and

toxicity.

Results

Construction of phosphoproteomic datasets
High-throughput bead-based ELISA-type experiments using

xMAP technology (Luminex, Texas, USA) are performed as

briefly described in the Materials and Methods section and in [17].

We create two datasets: one for the construction of cell-type

specific topology and another for the identification of the

mechanisms of drug actions. To do that, HepG2s are stimulated

in 10 different ways with combinatorial treatments with a diverse

set of 5 ligands (TNFa, IL1a, HGF, INS, TGFa, and no stimuli)

and either 4 highly selective inhibitors (PI3K, MEK, p38, cMET,

and no inhibitor) or 4 commercial drugs (EGFR inhibitors

Lapatinib, Erlotinib and Gefitinib, and the ‘‘dirty’’ inhibitor

Sorafenib) (Figure 1b and 1d). For the purpose of this paper, we

refer to ‘‘inhibitors’’ as the compounds for which we know the

target and we use them in a concentration capable to block ,95%

of the downstream protein. Conversely, we refer to ‘‘drugs’’ as the

compounds for which we assume no a-priori knowledge of their

target. For each combination of cytokine and drug/inhibitor we

collect cell lysates at 5 and 25 minutes. The two time points are

pooled together in 1:1 ratio and the mixed lysates are used as an

indicator of the ‘‘average early signaling response’’. For each

treatment we measure 13 protein phosphorylations that we

consider ‘‘key protein activities’’ (raw data in Figure S1). The

key phosphorylation signals (listed in Materials and Methods) are

chosen based on the availability of the reagents and quality

controls performed at the early phases of the experimental setup

[17]. The raw data (arbitrary fluorescent intensities) are normal-

ized to fit logic models as described in [18] using a non-linear

transformation that converts raw data into values between 0 and 1

where 1 corresponds to the fully activated state and 0 to no-

activation. It has to be noted that logic-transformed data depends

on what should be considered ‘‘protein activation’’ (transformed

value .0.5), a criterion that is embedded in the transformation

function and accounts for signal-to-noise limits, saturation of the

detection scheme, and eliminates biases that could have been

introduced by the variability of antibody affinities [18].

Generic pathway assembly and visualization
The generic pathway map is constructed in the neighborhood of

the 5 stimuli and the 13 measurements. The ubiquitous presence

of conflicting reports on pathway maps and alternative protein

names makes this step a highly nontrivial one. We explored several

pathway databases including STKE, Pathway Interaction Data-

base, KEGG, Pathway Commons, Ingenuity, and Pathway Studio

[23,24]. Our limited intracellular protein coverage makes

impractical the reduction of very large pathway datasets such as

those found in Pathway Commons. Here, we create the initial

topology from the union of canonical pathways found in Ingenuity

(Redwood City, California) with subsequent manual curation.

A detailed description of Boolean representation of pathways

can be found elsewhere [18,25–29]. In the present manuscript as

opposed to [18], the connectivity in our pathway (Figure 2, left

panel) is represented with OR gates and only few connections

(represented with small black circles in Figure 2) require an AND

gate. We are therefore not comparing OR vs. AND gates, but

rather assuming our pathways to be ‘causal’ graphs, and since

there are a few AND gates we refer to it as Boolean model.

Construction of cell-type specific pathway via ILP
formulation

The formulation for the optimal pathway identification is a 0–1

Integer Linear Program, i.e., an optimization problem with binary

variables and linear constraints (see Materials and Methods). The

optimizer picks values for the decision variables, such that the

logical constraints are satisfied and the objective(s) optimized. The

primary objective is to find an optimal pathway, i.e., a pathway

that best describes a set of phosphoproteomic data under a given

model (e.g. Boolean). A secondary objective is that the pathway is

as small as possible, i.e., has as few connections as possible, such

that the best-possible fit of the experiments is maintained (see

Materials and Methods). It is shown that some of the binary

variables can be relaxed to continuous, without changing the

feasible set.

The ILP is solved with the state-of-the-art commercial code

(CPLEX [30,31]) that guarantees minimal error between exper-

imental data and the Boolean topology. The goodness of fit

(percent error as described in Materials and Methods) was

decreased from 36.7% on the generic map to 8.3% on the

optimized map (Figure 2). The main source of error is the inability

of TGFa to activate the IRS1_s (serine residue of IRS1) (see the

red background on the IRS1 row at the bottom panel of Figure 2).

This is a result of the infeasibility of the generic pathway to satisfy

the activation of IRS1_s in a TGFa/IL1a-dependant but HGF/

INS-independent manner: TGFa activation of IRS1_s requires

mTOR activation via AKT which the optimization algorithm

removes to satisfy the inactivation IRS1_s by INS that shares

the same path with TGFa. This example highlights the

importance of multi-perturbations to better constrain the optimi-

zation formulation.

Figure 2 shows the optimized topology of HepG2s. Our ILP

formulation uses two subsequently-imposed objective functions to

remove reactions that do not fit the experimental data. During the

optimization of the first objective the ILP formulation (A) keeps

Phosphoproteomic Identification of Drug Effects
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Figure 2. Cell type specific topology using Integer Linear Programming. The ILP algorithm is using a subset of postulated reactions denoted
with black and gray arrows in a generic pathway to construct a HepG2 pathway map (black arrows in pathway diagram). Gray triangles show
phosphoprotein activation level upon stimuli (columns in top and bottom panels) and inhibitors (subcolumns in top and bottom panels). Red
background denotes an error between experimental and pathway-inferred responses. Generic topology can hardly represent the HepG2 signaling
responses (red background in top panel) and pathway optimization is critical to obtain a pathway topology that captures HepG2 function (limited red
background in bottom panel). Pathways are visualized using Cytoscape [54].
doi:10.1371/journal.pcbi.1000591.g002
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reactions that lead to phosphorylations of the key proteins and (B)

removes reactions that lead to false protein activations. An

example of the first case is the Insulin (INS)-induced AKT

activation that is maintained via the INSRIRbRIRS1tRPI3KR
PIP3RPDK1RAKT path (see INS to AKT path in Figure 2). An

example of a removed reaction is the TNFRRPI3K reaction

which is removed because there is no TNFa induced AKT

activation (see TNFRRPI3KR…RAKT in Figure 2). During the

optimization of the secondary objective (see Materials and

Methods), several reactions with no evidence of their existence

(no downstream measurements, or no stimuli) are removed. In this

step, the overall goodness of fit is not improved, but the size of the

topology is reduced. To illustrate this case, we add to the initial

topology the receptor IL6R but the associated stimulus IL6 is not

introduced on the experiments. After the secondary optimization,

all downstream reactions of IL6 are removed because no data are

present (see reaction arrows downstream for of IL6 in Figure 2).

Similarly, all reactions downstream of the bottom-of-the-network

key proteins are removed (e.g. CJUNRCFOS reaction in

Figure 2). All those reactions might be present in reality and

could have been kept if the secondary objective was not present.

Here, we apply the secondary objective and follow a network

trimming which removes all reactions that might be present in the

cell but due to the lack of measured signals or experimental

conditions cannot be verified. The resulting network is significantly

smaller but contains only elements for which there are solid

experimental evidence that explain the topology.

To validate our model, we also examine three scenarios where

we remove 20% of our experimental data, and then we try to

predict them. Specifically, we create three training datasets, each

time by removing all cases where one inhibitor is present (either

MEKi, PI3Ki, or p38i) and then we calculate how well our ILP-

optimized map can predict each of the inhibitor cases (see Figure

S2). For the MEKi, PI3Ki, and p38i scenarios the goodness of fit is

8.22%, 9.46%, 7.05% respectively and our ILP-formulation

converges on the same or slightly less optimal solutions compared

to the solutions obtained when the whole dataset is used for

training (4.47%, 7.76%, and 7.05% respectively) - See Figure S2.

Note that the errors given refer only to the subset considered in

each case, not the entire dataset. More extensive validations for

Boolean-type models on similar phospho-proteomic dataset can

also be found in Saez-Rodriguez et al. [18].

Comparison with genetic algorithm
In order to compare the ILP algorithm with the previously

published genetic algorithm (GA) we use the same initial topology

and the same normalized dataset [18]. The two algorithms

reached almost identical results (see Figure S3). For the ILP, the

computational requirements are manageable, in the order of a few

seconds (14.3 seconds for this example) on an Quad Core Intel

Xeon Processor E5405 (2.00GHz,2X6M L2,1333) running Linux

2.6.25.20 (using only one core). In comparison, the same

optimization problem using GA requires approximately 1 hour

on a similar power computer. The optimal pathway furnished by

the ILP matches all but 98 out of 880 experimental data, as

opposed to 110 mismatches in the topology furnished by the GA.

It has to be noted that GA does not provide termination criteria,

and it is conceivable that after even larger CPU times the GA

would have achieved the same fit as the ILP. In contrast the

deterministic solution of the ILP guarantees that an optimal fit (not

necessarily unique) has been identified within a user-specified

tolerance (1023 in our case). In addition to the guaranteed optimal

solution, commercial ILP solvers are fast, robust and reliable. Note

that open-source ILP solvers also exist, but in our experience are

not yet adequate. Note also that for larger network topologies, the

differences in CPU time will become even more dramatic,

rendering the GA intractable.

The notable differences between the proposed method and the

method used in [18] is mainly due to fundamental algorithmic

differences: the technology behind deterministic ILP solvers

(branch-and-bound, branch-and-cut) is more sophisticated than

genetic algorithms, it employs the inherent linearity of the

problem, and makes use of the good scalability of linear programs

(sub-problems in branch-and-bound tree). In contrast, GA treats

the model as a black-box and does not exploit the problem

structure. Another point is that herein we used a well-established

commercial solver, whereas Saez-Rodriguez et al. [18] used their

own implementation of GA. Commercial deterministic ILP

solvers, such as CPLEX, rely on several decades of research and

development, and have extremely powerful features such as pre-

processors and node selection heuristics. Thus, they typically

become the default choice for ILPs.

Identifying drug effects via drug-induced topology
alterations

For the identification of the drug effects we make use of the

second dataset in HepG2s where drugs are applied together with

the same set of ligands. In this case, the ILP formulation is being

used with the HepG2 specific topology (topology obtained from

the previous step) and not the generic map. We also do not impose

inhibitor constrains the way we do for pathway optimization (e.g.,

PI3K inhibitor blocks the signal downstream of PI3K) but we let

the optimization algorithm decide which reaction(s) should be

removed in order to fit the drug-induced data.

The effect of Lapatinib (Figure 3a), the most selective and

specific EGFR inhibitor [32], is the complete removal of the

downstream reactions of the TGFa branch: TGFaRGRB2R
SOSRRASRPI3K and RASRRAF1RMEK1/2RERK1/2.

This resulted from the fact that Lapatinib blocks the TGFa
induced MEK1/2, ERK1/2, and AKT phosphosignals (Figure 3e).

Note that the PI3KR…RAKT branch is not removed because it

is being used by the HGF and INS path for the activation of AKT

that cannot be blocked by Lapatinib (Figure 3e).

Gefitinib, an EGFR tyrosine kinase inhibitor, alters the topology

in a very similar pattern as Lapatinib, but, interestingly enough, it

also results in the removal of the JNKRc-JUN branch (Figure 3b).

Closer examination of the raw data (Figure 3f) shows a potent

inhibition of IL1a- and (IL1a+TGFa)-induced cJUN activity upon

Gefitinib treatment. To follow up this interesting off-target effect,

we did a dose-response experiment where Gefitinib shows that it

can reduce the activation of cJUN signal induced by the IL1a
stimuli (Figure 3i). We believe that the inhibition of cJUN is not

due to the binding of Gefitinib in the upstream molecule JNK but

a collective effect of signaling inhibitions in several species that

take part in the path between IL1a and cJUN. For this reason, a

fitting with a typical dose response curve has been avoided and a

simple linear equation has been used instead (Figure 3i). Erlotinib,

another EGFR inhibitor, has the same effects as Gefitinib

(Figure 3c) but at the same time shows an effect in the

TRAF6RMAP3k7 reaction. This effects is probably because

IkB-a is inhibited in an IL1a -dependent but TNFa-independent

manner (see IkB-a signals upon IL1a and TNFa stimuli in Figure

S1); the only way for the ILP to satisfy this behavior is to remove

the transmission of signal before the merging of TNFa and IL1a
paths which can be done through the TRAF6RMAP3K reaction.

The ‘‘dirty’’ Raf inhibitor Sorafenib shows a very different

profile: it also blocks the JNKRc-JUN branch (Figure 3d) and in

addition affects the p38 path (see complete HSP27 inhibition upon

Phosphoproteomic Identification of Drug Effects
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Figure 3. Drug-induced pathway alterations. (A–D) Red arrows denote drug effects, i.e., reactions that are removed from the HepG2 topology
by the ILP algorithm in order to fit the drug-altered phosphoprotein dataset. (E–H) Raw data that correspond to drug effects. Lines indicates the
signal between 0 minutes (untreated) and ‘‘early response’’ (average signal of 5 and 25 minutes post stimuli). (I) Off-target effect of Gefitinib. Dose
response curve shows that the EGFR inhibitor reduces cJUN activation upon IL1a treatment. R2 corresponds to linear fit.
doi:10.1371/journal.pcbi.1000591.g003
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IL1a treatment in Figure 3h). An interesting observation is that

network optimization does not remove the RAFRERK1/2

reaction despite the fact that RAF is the main target of Sorafenib.

Close inspection of the data shows that Sorafenib reduces but does

not block the MEK1 phosphorylation (see MEK phosphorylation

in Figure 3h). This is in agreement with previous published results

where Sorafenib does not inhibit activation of the RAF/MEK/

ERK pathway in all human tumor cell lines [33] a finding that

highlights the importance of in-vivo assays for the quantification of

drug effects.

Discussion

In this article, we present an unbiased phosphoproteomic-based

approach and an optimization formulation to construct cell-type

specific pathways and to identify drug effects on those pathways.

For the pathway construction, we track 13 key phopshorylation

signals in 55 different conditions generated by the combinatorial

treatment of stimuli and inhibitors. Using Integer Linear

Programming (ILP) for pathway optimization we take a generic

network of 74 proteins and 105 reactions and construct a cell-type

specific network of 49 proteins and 44 reactions that spans

between the 5 stimuli and the 13 measured phosphorylated

proteins. In this network, we monitor 4 cases of drug-induced

pathway alterations using a similar computational scheme.

In comparison to all other protein-based target identification

approaches, our method is not based on measurements of drug

affinities either by in vitro or in vivo assays. Instead, we use an

‘‘operative’’ signaling network and rely on key phosphorylation

events and a-priori knowledge of possible connections to reveal the

topology and monitor its alterations under the presence of the

drug. Thus, our method is expandable to any type of intracellular

perturbations such as ATP-based and allosteric inhibitors, RNAi,

shRNA etc. Since no bait or MS is required, we have simple

ELISA-type experimental procedure with minimal requirements

of cell starting protein (,30,000 cells per condition), without

affinity immobilizations, protein fractionations, or carefully

optimized wash conditions. With our current semi-automated

procedures in our lab (robotic liquid handlers), we can achieve

total experimental and computational time for a similar size

experiment in less than a week. On the other side, our approach

can only detect signaling alterations in topologies bounded

between the applied stimuli and the measured phosphorylated

proteins and it misses off-target effects outside the constructed

network. The expansion of the constructed network depends

primarily on three factors: highly curated generic topology,

multiplex assay availability for ‘‘key’’ phosphorylation measure-

ments, and experimental cost. We believe that the explosive

growth of multiplexed phosphoproteomic assays, the rapid

reduction of the cost per datapoint, and the significant

improvement in quality of several pathways databases will

significantly increase the searching space for drug effects using

our proposed methodology. However, our search space will always

be significantly smaller compared to whole-genome based

approaches [8–11] because it requires (a) the input of a generic

pathway which is available only in well-studied pathways and (b)

good quality antibodies for the detection scheme. By merging our

phosphoproteomic method with genome-wide screening tech-

niques, we might be able to combine the strengths of both

approaches and increase the searching space for off-target drug

effects.

An important aspect of the current approach is the construction

of pathway maps. Pathway construction is a major endeavor in

biology and a variety of experimental [34–38] and computational

approaches that span from data-driven methodologies (e.g.,

statistical, unsupervised machine learning) to topology-based

methods (e.g., kinetic models based on ordinary differential

equations-ODEs) [17,35,38–41] have been developed. Our

approach, which is based on Boolean (logical) modeling

[26–28,42], represents a simplified topology-based method.

Compared to ODE-based methods, a logic model has limited

abilities to model kinetic behavior [25] (especially when modeling

feedback loops in single-step logic models) or even to model the

protein activity in a continuous fashion. On the flip side, logic

models do not require parameter estimation (sometimes ill-defined

from lack of experimental data) and thus can be applied for the

simulation of large topologies. A refinement of the model

formalism into multistep logic [28], fuzzy logic [43], or ODE-

based logic systems [44] may provide a more precise simulation of

the activity and time-dependency of the signaling network. Taking

into account the current limitations of experimental assays

(throughput, sensitivity, reliability, cost) we believe that Boolean

modeling is the method of choice with high predictive power when

large topologies are studied.

Optimizing pathway topologies is a relatively new approach for

the construction of cell-type specific pathways. Using Boolean

topology and Genetic Algorithm (GA) for an optimization scheme,

Saez-Rodriguez et al. [18] are able to fit a generic map to cell-type

specific map from phosphoprotein data. Here we present an

alternative method of optimal pathway identification based on

ILP. Compared to GA, our algorithm gives guaranteed globally

optimized map (the solution identified is guaranteed to be no

worse than 0.001 than any other possible solution). Additionally,

the computational cost has cut down dramatically and allows

pathway optimization with ,70 species to be performed on a

desktop computer in a matter of few seconds. Due to minimal

computational requirements ILP can be used for the construction

of large pathways (assuming that experimental capabilities can by

matched) and for the exploration of alternative reactions beyond

the generic topology to further improve the optimal fit. However,

several factors should be addressed before expanding our

formulation to larger topologies. Although our formulation is able

to identify a globally optimal solution, additional optimal solutions

might exist [18] in the same generic network and further more

solutions might arise when the optimization formulation is relaxed.

Larger and more interconnected networks increase the number of

solutions that are equally (or near equally) optimal. A possible way

to circumvent this problem is to reduce our network using

techniques that have been described previously in graph theory or

in [18]. Being aware of those limitations in the present manuscript

we described a ‘‘simple’’ and not highly interconnected network in

order to minimize redundancy of solutions. To address the issue of

finding a both unique and optimal solution we are currently

working on two complementary approaches: (a) instructing the

ILP solver to furnish a pool of near-optimal solutions and (b)

devising ‘‘clever stimulations’’ by taking into account experimental

limitations (i.e., combination of inhibitors, stimuli, and key protein

measurements) that maximally constrains the optimization scheme

and gives smaller number of unique solutions.

When applied in HepG2s, our approach identifies both known

and unanticipated results. As a positive control, it removes the

TGFa branch upon EGRF drug treatments. Another easily

understandable effect is Sorafenib’s inhibition of the pathway

downstream of p38 which can be explained by the drug’s target

affinity to p38a and p38b [32,45]. A surprising effect is the

removal of the JNKRcJUN reaction under the influence 3 out of

4 cancer drugs Erlotinib, Gefitinib and Sorafenib. Interestingly,

kinase profiles of those drugs [32] shows no medium or high
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affinity for the directly upstream JNK1/2 kinases. Despite that,

Gefitinib shows a significant reduction of the cJUN activity upon

IL1a treatment. A possible explanation is that the signaling

propagation can collectively be attenuated from the low or

medium off-target inhibitions of several kinases upstream of JNK

and cJUN. This also might explain the inhibition curve in

Figure 3i, where Gefitinib inhibition of cJUN activation does not

follow a typical dose-response curve. In this context, sensitivity

analysis in ODE-based pathway models [46] have shown that

slight changes of reaction constants can have significant attenu-

ations on protein activities several steps downstream the network

and thus inhibitory curves cannot be simulated by simplified dose-

response models. Our findings also highlight a unique feature of

our approach: we find effects of drug’s promiscuity that cannot be

identified by the direct binding of the drug to the upstream target

but are the result of a collective effect of drug’s interactions with

several upstream molecules. Bait-based analysis cannot reveal

those effects since there is no binding involved between the drug

and the protein.

Understanding the interplay between cell function and drug action

is a major endeavor in the pharmaceutical industry. Here, we

provided a methodology to construct cell type specific maps and

identify drug effects on those maps. Our ILP formulation was able

to build the best possible topology from a set of a-priori determined

reactions and choose those, where their presence is confirmed

from high throughput phosphoprotein data. Since phosphoryla-

tion events are the ultimate reporters of protein/drug function the

use of high-throughput phosphoproteomic datasets gave an

advantage in data quality for modeling signaling network. We

believe our approach complements standard biochemical drug

profiling assays and sheds new light into the discovery of possible

mechanisms for drug’s efficacy and toxicity.

Materials and Methods

Experimental procedure: phosphoprotein dataset
HepG2 cells were purchased from ATCC (Manassas, VA), and

seeded on 96-well plates coated with collagen type I-coated (BD

Biosciences, Franklin Lakes, NJ) at 30,000 cells/well in DME

medium containing 10% Fetal Bovine Serum (FBS). The following

morning, cells were starved for 4 hours and treated with inhibitors

and/or drugs. Kinase inhibitors were used at concentrations

sufficient to inhibit at least 95% the phosphorylation of the nominal

target as determined by dose-response assays (presented in [17]).

AKT was chosen as the nominal target for Lapatinib, Erlotinib, and

Gefitinib. The following saturated concentrations were used: p38

(PHA818637, 20 nM), MEK (PD325901, 100 nM) and cMET

(JNJ38877605, 1mM), PI3K (PI-103, 10 mM), Lapatinib at 3uM

[47], Erlotinib at 1 uM [47], Gefitinib at 3uM [47], and Sorafenib

at 3 uM (based on its inhibitory activity on ERK1/2 phosphory-

lation [33]). Following incubation for 45 minutes with inhibitors

and/or drugs cells were treated with saturated levels of 5 ligands:

Tumor Necrosis Factor alpha (TNFa) at 100ng/ml, Interleukin 1

alpha (IL1a) at 10ng/ml, Insulin (INS) at 2uM, Transforming

Growth Factor (TGFa) at 100ng/ml, and Hepatocytes Growth

Factor (HGF) at 100 ng/ml. Each ligand was added alone or in

pairs and cell lysates were collected at 0, 5, and 25 minutes following

the cytokine stimulation. The 5 and 25 minutes lysates were mixed

together in 1:1 ratio and the mixed lysate was measured as an

indicator of the ‘‘average early signaling response’’. The 5 and

25 minute time points were identified in a preliminary experiment

as the optimal time points that maximally captured early

phosphorylation activities [17].

A major improvement in the present dataset as compared to [17]

was the ‘‘in-vitro’’ averaging of the signals from 5 and 25 minutes

rather than ‘‘in-silico’’ averaging (i.e., first both time points are

measured, then we take the average). Three are the main advantages

using such approach: 1) two signals are used instead of one and thus

very early signalling responses can be captured, 2) the experimental

cost is reduced by 50% (or more for averaging multiple time points),

and 3) we achieved the averaging of some signals that could not be

measured independently because their ‘‘active’’ state is reaching the

saturation limits of our measuring instrument.

From each lysate we measured 13 phosphorylation activities that

we considered ‘‘key phosphorylation events’’ using a Luminex 200

system (Luminex Corp, Austin, TX). The 13-plex phospho-protein

bead set from Bio-Rad was used to assay p70S6K (Thr421/Ser424),

CREB (Ser133), p38 (Thr180/Tyr182), MEK1 (Ser217/Ser221),

JNK (Thr183/Tyr185), HSP27 (Ser78), ERK1/2 (Thr202/

Tyr204, Thr185/Tyr187), c-JUN (Ser63), IRS-1 (Ser636/

Ser639), IkB-a (Ser32/Ser36), Histone H3 (Ser10), Akt (Ser473),

and IR-b (Tyr1146). Data were normalized and plotted using with

DataRail [48]. For the construction of the dose response curve in

Figure 3i, HepG2 were starved for 4 hours and then incubated with

Gefitinib (from 20uM down to 27nM – 3 fold dilution) for

45 minutes followed by incubation with IL1a at 10ng/ml final

concentration for 30 minutes. Duplicate lysates were analyzed using

the c-JUN (Ser63) beads in the Luminex 200 system.

Computational procedure: ILP formulation
Here, we describe how the Boolean model described in [18] can

be reformulated as an ILP. Note that such a transformation was

recently performed for a different problem, namely the satisfia-

bility, by [49]. A pathway is defined as a set of reactions

i~1, . . . ,nr and species j~1, . . . ,ns. Each reaction has three

corresponding index sets, namely the index set of signaling

molecules Ri, inhibitors Ii, and ‘‘products’’ Pi (‘‘product’’ can also

correspond to the phosphorylation level of the protein). These sets

are all subsets of the species index set (Ri,Ii,Pi5f1, . . . ,nsg).
Typically, these subsets have very small cardinality (few species),

e.g., jRij~0,1,2; jIij~0,1; jPij~1,2; jRijzjIij~1,2. A reaction

takes place if and only if all reagents and no inhibitors are present.

If a reaction takes place, all products are formed. Note that

reactions without products as well as reactions with neither

reagents nor inhibitors will be excluded here.

While typically the set of species is known, the set of reactions is

not known. Rather, only a superset of potential reactions is

postulated. The goal of the proposed formulation is to find an

optimal (in some sense) set of reactions out of such a superset. To

that extent binary variables yi are introduced, indicating if a

reaction is possible or not (yi~0 connection not present, yi~1
connection present).

A set of experiments is performed, indexed by the superscript

k~1, . . . ,ne. In each experiment a subset of species is introduced

to the system and another subset is excluded from the system.

These are summarized by the index sets Mk,1 and Mk,0

respectively (two for each experiment). In the proposed formula-

tion, constants are introduced for all such species, respectively

xk
j ~1 and xk

j ~0. In the following it will be assumed that these

species do not appear as products in any reaction; this assumption

is not limiting, since in the experiments performed only

extracellular species and inhibitors are manipulated. In the

experiments a third subset of the species is measured (index set

Mk,2) and for the remaining species no information is available. In

the proposed formulation for each of the experiments and each

such species a binary decision variable xk
j [ f0,1g is introduced

indicating if the species j is present (xk
j ~1) or not (xk

j ~0) in the
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experiment k according to the model predictions. It is proved that

in the absence of loops, xk
j [ ½0,1� can be used for species that are

not input species (see Text S1). This has some computational

advantages.

The last group of variables zk
i introduced indicate if reaction i

will take place (zk
i ~1) or not (zk

i ~0) in the experiment k

according to the model predictions. It is proved that a real variable

zk
i [ ½0,1� can be used equivalently (see Text S1). This reformu-

lation has some computational advantages.

For the case that a species is measured, the measurement is

defined as xk,m
j . For Boolean measurements xk,m

j [ f0,1g; otherwise

xk,m
j [ ½0,1� (assuming a scaling as afforementioned). The primary

objective function is formed aiming to minimize the weighted error

between model predictions and measurements
P

j,k ak
j jxk

j {xk,m
j j.

The absolute value is reformulated as xk,m
j z(1{2xk,m

j )xk
j . It can

be easily verified that for binary xk
j and for xk,m

j [ f0,1g this

reformulation is valid:

1. xk
j ~0:

xk,m
j z(1{2xk,m

j )xk
j ~xk,m

j z(1{2xk,m
j )0~xk,m

j ~jxk,m
j j~jx

k,m
j {xk

j j:

2. xk
j ~1:

xk,m
j z(1{2xk,m

j )xk
j ~xk,m

j z(1{2xk,m
j )1~1{xk,m

j ~j1{xk,m
j j~jxk

j {xk,m
j j:

Note also that alternative norms, such as least-squares errors,

could be also used. The resulting optimization problem would still

be an ILP, since the objective function involves only integer

variables. For instance for the least-square error objective function

the following linear reformulation is valid:

(xk
j {xk,m

j )2~(xk
j )2{(2xk

j xk,m
j )z(xk,m

j )2 ~(xk
j ){(2xk

j xk,m
j )z(xk,m

j )2

The secondary objective is to minimize the weighted number of

possible reactions
P

i biyi. In multiobjective optimization typically

the concept of Pareto-optimal or noninferior solution is introduced, i.e.,

a set of decision variable values, such that if one tries to improve

one objective, another will be degraded [50]. The set of Pareto

points forms the Pareto-optimal curve. Here, however, the

primary objective is considered much more important than the

secondary objective. Therefore, a single Pareto-optimal point is

obtained, by first minimizing the primary objective and then the

secondary objective by requiring that the former (more important)

objectives are not worsened, see also [51–53].

The ILP proposed can be summarized as:

min
X ,y,Z

Xne

k~1

X
j[Mk,2

ak
j xk,m

j z(1{2xk,m
j )xk

j

� �
;
Xnr

i~1

biyi ð1Þ

s:t:
Xnr

i~1

al
iyiƒbl , l~1, . . . ,nc, ð2Þ

zk
i ƒyi, i~1, . . . ,nr, k~1, . . . ,ne: ð3Þ

zk
i ƒxk

j , i~1, . . . ,nr, k~1, . . . ,ne, j [ Ri ð4Þ

zk
i ƒ1{xk

j , i~1, . . . ,nr, k~1, . . . ,ne, j [ Ii: ð5Þ

zk
i §yiz

X
j[Ri

xk
j {1

� �
{
X
j[Ii

xk
j

� �
, i~1, . . . ,nr, k~1, . . . ,ne: ð6Þ

xk
j §zk

i , i~1, . . . ,nr, k~1, . . . ,ne, j [ Pi: ð7Þ

xk
j ƒ

X
i~1,...,nr:j[Pi

zk
i , j~1, . . . ,ns, k~1, . . . ,ne: ð8Þ

xk
j ~0, k~1, . . . ,ne, j [ Mk,0 ð9Þ

xk
j ~1, k~1, . . . ,ne, j [ Mk,1 ð10Þ

X [ f0,1gne|ns , y [ f0,1gnr , Z [ f0,1gne|nr , ð11Þ

where the objectives are separated by a semi-colon. Note that for
the elements of the matrices X and Z, the row index (experiment)

is indicated as superscript, and the column index (species and

reactions respectively) is indicated as subscript.

In formulation (1)–(11) for the manipulated species binary

decision variables along with the constraints (9) and (10) are

introduced. This simplifies notation. In the implementation, these

variables are replaced by constants. Alternatively the preprocessor

of the optimization solver can be used to exclude these trivial

variables.

In the following the reasoning for the formulation is given. The

first set of constraints, i.e., (2) allow the modeler to limit the

combinations of connectivities considered. For instance, suppose

that two reagents R1, R2 form a product P, but it is not known if

both reagents (AND) or either (OR) are required. This can be

modeled as three potential reactions

r1 : R1zR2?P

r2 : R1?P

r3 : R2?P,

with the additional constraint that r1 excludes r2 and r3, which

can be modeled as two linear inequalities:

yr1
zyr2

ƒ1

yr1
zyr3

ƒ1:

The constraints (3) indicate that a reaction can only take place if it

( 6)
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is possible (yi~1). This can be seen easily, since yi~0, gives zk
i ƒ0

and together with zk
i [ f0,1g we obtain zk

i ~0. Similarly, the

constraints (4) and (5) ensure respectively that a reaction can only

take place if all reagents and no inhibitors are present. If for

instance a reagent is absent, zk
i ~0 is enforced, and the other

constraints are redundant. On the other hand, the constraints (6)

enforce that if a reaction is possible, all reagents are present, and

no inhibitors are present, then the reaction will take place (zk
i ~1).

The constraints (7) ensure that a species will be formed if some

reaction in which it is a product occurs. Note that multiple

reactions can give the same species; mathematically this will result

in redundant constraints. In contrast, the constraints (8) enforce

that a species will not be present if all reactions in which it appears

as a product do not occur. Recall that manipulated species are not

considered as products in reactions. Note also, that it would be

possible to combine the constraints (7) into a single constraint for

each species, e.g.,

xk
j §

X
i~1,...,nr:j[Pi

zk
i =

X
i~1,...,nr:j[Pi

1, j~1, . . . ,ns, k~1, . . . ,ne,

but this would result in weaker LP-relaxations. Also the

reformulation of xk
j to ½0,1� would no longer be exact.

In the present study, our ILP formulation was utilized in two

different circumstances. For the creation of the cell-type specific

pathway using combinations of inhibitors and stimuli our ILP

formulation included 27887 constraints and 9732 variables. For

each drug case, where the reduced and optimized pathway was

utilized, we had 2477 constraints and 947 variables.

Computational procedure: goodness of fit
For the goodness of fit, we calculated the percentage error as:

Error~
Xns

j~1

xk,m
j {xk

j

��� ���
,

ns,m
:100%

Note that for binary xk
j and xk,m

j [ ½0,1� the percentage error

cannot be 0% even when there is no mismatch between model and

experiment data. Another way to quantify the goodness of fit is by

counting the number of mismatches: the cases where the rounded

experimental value (0 or 1) is not the same with the computational

value, or in other words, when experimental – computational

error is more than 0.5.

Supporting Information

Figure S1 Raw data for the construction of the cell-type specific

map and the evaluation of the drug effects. The signals in the

Y-axis correspond to the measurements of the phosphorylated

residues listed in Materials and Methods. Each column corre-

sponds to cytokine or cytokine mix and each sub-column to the

presence of an inhibitor or drug. The numbers to the left are the

maximum values across all treatments measured as arbitrary

fluorescent intensities.

Found at: doi:10.1371/journal.pcbi.1000591.s001 (0.52 MB PDF)

Figure S2 Model Validation. The first panel shows the

optimization results when the full dataset (shown in Figure 2)

has been used as training dataset. To validate our model, we

created three subsets, in which 20% of our experimental cases are

removed that correspond to the treatments with PI3K inhibitor

(2nd panel), MEK inhibitor (3rd panel), and p38 inhibitor (bottom

panel), and we trained our model against them. The data left out is

then used as test dataset for prediction (see highlighted strips in

each panel). The error of prediction of the test subsets

(error = goodness of fit as describes in Materials and Methods) is

shown on the right of each panel.

Found at: doi:10.1371/journal.pcbi.1000591.s002 (0.91 MB PDF)

Figure S3 Comparison between genetic algorithm and ILP.

Both algorithms performed well and achieved very similar

solutions. Red background denotes inconsistency between pre-

dicted values and experimental data: ILP matched all but 98 out of

880 experimental data, as opposed to 110 mismatches in the

topology furnished by the GA. The computational time for ILP

was 14.3 sec as opposed to 1approximately one hour for GA.

Found at: doi:10.1371/journal.pcbi.1000591.s003 (0.63 MB PDF)

Text S1 Equivalent reformulation as MILP

Found at: doi:10.1371/journal.pcbi.1000591.s004 (0.03 MB PDF)
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