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Abstract

Two different strategies for stabilizing proteins are (i) positive design in which the native state is stabilized and (ii) negative
design in which competing non-native conformations are destabilized. Here, the circumstances under which one strategy
might be favored over the other are explored in the case of lattice models of proteins and then generalized and discussed
with regard to real proteins. The balance between positive and negative design of proteins is found to be determined by
their average ‘‘contact-frequency’’, a property that corresponds to the fraction of states in the conformational ensemble of
the sequence in which a pair of residues is in contact. Lattice model proteins with a high average contact-frequency are
found to use negative design more than model proteins with a low average contact-frequency. A mathematical derivation
of this result indicates that it is general and likely to hold also for real proteins. Comparison of the results of correlated
mutation analysis for real proteins with typical contact-frequencies to those of proteins likely to have high contact-
frequencies (such as disordered proteins and proteins that are dependent on chaperonins for their folding) indicates that
the latter tend to have stronger interactions between residues that are not in contact in their native conformation. Hence,
our work indicates that negative design is employed when insufficient stabilization is achieved via positive design owing to
high contact-frequencies.
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Introduction

Protein stabilization can be achieved via two different strategies:

(i) ‘positive design’ in which the native state is stabilized; and (ii)

‘negative design’ in which non-native states are destabilized [1–3].

Positive design can be achieved by introducing favorable pairwise

interactions between residues that are in contact in the native state

whereas negative design can be achieved by introducing unfavor-

able pairwise interactions between residues that are in contact in

non-native conformations of the protein. The factors that favor

employing one strategy over the other (or some combination of both

strategies) are not known. For example, it is possible that certain

features of a protein’s native structure such as its secondary structure

content or contact-order [4] bias the choice of which particular

strategy is employed. Here, we explore this question with respect to

lattice models of proteins and then show that the principles that we

have discovered also apply to real proteins. Although lattice models

of proteins ignore many important details, they have been used

successfully for elucidating general principles of protein folding and

stability [5–8] and addressing evolutionary questions [9–11]. In

particular, such models have the advantage that in certain cases all

the possible conformations in the ensemble can be enumerated and,

therefore, preferential design strategies for certain protein confor-

mations may be identified.

The stability, dynamics and function of proteins are determined

by both short- and long-range pairwise interactions. Long-range

interactions are manifested, for example, in the energetic coupling

between distant ligand-binding sites in allosteric proteins owing to

conformational changes that are propagated from one site to

another. The strength of both direct (short-range) and indirect (long-

range) pairwise interactions can be analysed experimentally using

the double-mutant cycle (DMC) method [12]. Recently, we

introduced a computational version of DMCs for analysis of

pairwise interactions in lattice models of proteins [13]. Computa-

tional DMC analysis can be easily employed in an exhaustive

manner to determine the strength of interaction between all possible

residue pairs in a lattice model in contrast with experimental DMC

analysis that must be restricted to a relatively small number of

residue pairs owing to the prohibitive amount of work involved.

Using this computational DMC approach, we previously discovered

that the strength of both short- (i.e. between residues in contact in

the native state) and long-range (i.e. between residues not in contact

in the native state) pairwise interactions changes in a linear fashion

with increasing ‘contact-frequency’, a term defined for each pair of

residues in a sequence that corresponds to the fraction of states in

the conformational ensemble of the sequence in which that pair of

residues are in contact [13,14]. In other words, a pair of residues

that are in contact in many conformations available to the chain has

a high contact-frequency whereas a pair of residues that are rarely in

contact has a low contact-frequency. A protein fold can, therefore,

be characterized by the average contact frequency of all the residue

pairs in contact in that fold. Here, we show for lattice models that
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positive design is favored when this average ‘contact frequency’ is

low whereas negative design is favored when this average ‘contact

frequency’ is high. A mathematical derivation of this result indicates

that it is general and, thus, likely to hold also for real proteins.

Negative design in the lattice models is also found to be

associated with a higher incidence, on average, of correlated

mutations, i.e. mutations at one site that tend to be accompanied

by other mutations at a second site. Correlated mutations are

assumed to be due to selective pressure to maintain protein

structure or function and have, therefore, been used for prediction

of 3D protein structure [15,16], allosteric pathways [17,18] and

protein-protein interactions [19,20] and in protein design [21].

Correlated mutations in real proteins, however, also reflect

common ancestry [22–24] whereas in our lattice models this

concern is obviated. Here, by applying correlated mutation

analysis we show that proteins likely to have a higher average

‘contact-frequency’, such as disordered proteins, also have a higher

incidence of correlated mutations. These results strengthen our

conclusion that ‘contact-frequency’ is an important factor in

determining the design strategy of real proteins.

This paper is organized as follows. First, we show that the effects

on stability of positive and negative design in lattice models are

both linearly dependent, but with opposite sign, on the contact-

frequency and that there is a strong trade-off between them. We

then provide a general (not lattice specific) mathematical

derivation supporting these claims. An analysis of correlated

mutations in sequences selected for stability of a lattice fold that

follows next shows that the density of correlated mutations

increases with increasing contact-frequency. Finally, we show that

a similar trend is likely to exist in real proteins by analyzing

correlated mutations in proteins that fold with difficulty and are

suspected to have higher contact-frequencies.

Results

Selection in lattice models
Sets of 25 residue-long sequences that share a particular native

state were generated with and without selection for native state

stability. The native states of the sets that were formed (termed

SBSS) correspond to each of the 1081 compact folds on a 565

lattice. The average perturbation energy (DDGper) was then

calculated for each pair of positions i and j in an alignment and the

difference, D(i,j), in the average perturbation energies for that pair

of positions in the alignments with and without selection was

determined. The average value of D(i,j) was then calculated for all

pairs of positions in contact in a particular native conformation,

,D(i,j).short, and for all pairs that form long-range interactions in

that conformation, ,D(i,j).long. Two positions are defined as

forming a long-range interaction in a particular conformation if

there is no path formed by residues in contact in that conformation

that connects them (Figure S1). For example, if residue A is in

contact with residue B and residue B is in contact with residue C

then we do not consider residues A and C to be involved in a long-

range interaction. Hence, the number of long-range interactions

varies slightly between folds since the paths that connect residues

in contact depend on the specific conformation. In the case of a

compact conformation on a 565 lattice, the number of long-range

interactions is 108+3 whereas the number of pairs in contact is

always 16. It is important to note that all pairs of positions with a

contact-frequency of zero (in the case of a square lattice, for

example, residues at positions with the same parity cannot be in

contact) are not considered in this analysis since their DDGper

equals zero by definition. The values of ,D(i,j).short of different

folds were found to be correlated with their respective average

contact-frequencies (vfcontacts
c w). It can be seen in Figure 1 that

the value of ,D(i,j).short decreases when the corresponding value

of vfcontacts
c w for that fold increases (r = 20.608; P-value

,0.0001). Smaller values of ,D(i,j).short reflect a smaller

contribution of pairs in contact to the gain in stability upon

selection. Surprisingly, we discovered that some native states have

zero or even negative ,D(i,j).short values. Such values are found

when the value of vfcontacts
c w is large. This observation indicates

that positive design is almost a negligible factor when stabilizing

native states with a very high average contact-frequency.

We also examined whether a correlation exists between the

contribution of negative design to stability and the average

Author Summary

Most proteins are functional only in their native states. The
stability of the native state of proteins is, therefore, of
paramount importance both in vivo and for many
biotechnological applications in vitro. Protein stability is
determined by the difference between the free energies of
the native and non-native states. It follows that protein
stabilization can be achieved via two different strategies: (i)
‘positive design’ by introducing favorable interactions
between residues in contact in the native state; and (ii)
‘negative design’ by introducing unfavorable interactions
between residues in contact in the non-native states. Here,
we ask when is one strategy favored over the other. We
show that ‘positive design’ is favored when interactions
that stabilize the native state are rarely found in the non-
native states whereas ‘negative design’ is favored when
the interactions that stabilize the native state are also
common in the non-native states. We also show that
correlated mutations, i.e. mutations at one site that
compensate for effects of mutations at other sites, tend
to be associated with ‘negative design’. Analysis of protein
sequence data shows that a higher incidence of correlated
mutations is found in protein families with native states
that are not stable or difficult to reach.

Figure 1. Relationship between the impact of positive design
on the stability of different lattice folds and their respective
average contact-frequencies. The values of a measure of the effect
of positive design of stability, ,D(i,j).short, for the 1081 different folds of
25 residue-long sequences on a 565 lattice are plotted against their
respective average contact-frequencies, vf contacts

c w. A linear correla-
tion is observed with r = 20.6082 and a P-value,0.0001.
doi:10.1371/journal.pcbi.1000592.g001
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contact-frequency. The correlation between ,D(i,j).long and

vfcontacts
c w is shown in Figure 2 and found to be significant

(r = 0.639; P-value,0.0001). It may also be seen in Figure 2 that

negative design is hardly used for stabilizing native states with a

very low average contact-frequency. In Figure 3, ,D(i,j).short for

each fold is plotted against the corresponding value of ,D(i,j).long.

The correlation observed is almost perfect (r = 20.96, P-

value,0.0001), thereby revealing the strong trade-off between

the two strategies of positive and negative design.

General derivation of the relationships between the
contributions of positive and negative design of protein
stability and contact-frequency

The results shown in Figures 1–3 for a specific lattice model

prompted us to examine whether a general derivation can be

obtained for the linear dependence of the contributions of positive

and negative design to protein stability on contact-frequency. The

starting point for the following such derivation is the previously

derived [13] linear relationship between the perturbation energy

and Boltzmann-weighted contact-frequency:

DDG i,jð Þ
per ~Ec-

kT el=kT-1
� �

BWCF i,jð Þ
Q0=Q Zj j ð1Þ

where Ec is the energy of a contact that was removed (see Table 1

in [13]), Q~
P
C[Z

e-E(C)=kT (Z is the ensemble of all possible

conformations and E(C) is the energy of a conformation),

Q0~Q-e-E(N)=kT (E(N) is the energy of the native state), l is the

contact energy of the residue types found at positions i and j (see

Table 1 in [13]), T is the temperature and k is the Boltzmann

constant. The Boltzmann-weighted contact-frequency, BWCF(i, j),

is calculated by multiplying each occurrence of a contact by the

Boltzmann weight of the conformation in which it occurs. Eq. (1)

can be written in a simplified and approximate form, as follows:

DDG(i,j)
per&Ec-A(el=kT-1)fi,j

c ð2Þ

where A~kTQ Zj j=Q0 and fi,j
c is the contact-frequency that is not

Boltzmann-weighted. Given an alignment of sequences with the

same native fold, one may express the average perturbation energy

for a pair of positions i and j in the alignment, vDDG(i,j)
perw, as

follows:

vDDG(i,j)
perw&vEcw-vA(el=kT-1)wfi,j

c ð3Þ

The difference, D(i,j), in the average perturbation energies with and

without selection was determined for every relevant pair of

positions in the alignments. Inspection of Eq. (3) shows that D(i,j)

for positions i and j in the alignment is equal to:

D(i,j)~DvDDG(i,j)
perw&DvEcw-(DvA(el=kT-1)w)f i,j

c ð4Þ

where D designates the differences in these terms with and without

selection. The average of D(i,j) over all the pairs of positions i and j

that form direct short-range native-state contacts, ,D(i,j).short,

can therefore be written using Eq. (3), as follows:

vD(i,j)
wshort&vDvEshort

c ww-(DvA(el=kT-1)w)vfcontacts
c wð5Þ

where vfcontacts
c w is the average contact-frequency of the short-

range native-state contacts, vDvEshort
c ww is the average of

D,Ec. over all the pairs of positions i and j that form direct short-

range native-state contacts and DvA(el=kT-1)w is assumed to be

the same for all these pairs. Eq. (5) describes a linear relationship

with a negative slope between ,D(i,j).short, which is a measure of

the impact of positive design on stability, and vfcontacts
c w as

observed in Figure 1 for the lattice model. An expression similar to

Eq. (5) for the case of long-range interactions can be written, as

follows:

Figure 2. Relationship between the impact of negative design
on the stability of different lattice folds and their respective
average contact-frequencies. The values of a measure of the effect
of negative design of stability, ,D(i,j).long, for the 1081 different folds
of 25 residue-long sequences on a 565 lattice are plotted against their
respective average contact-frequencies, vf contacts

c w. A linear correla-
tion is observed with r = 0.6390 and a P-value,0.0001.
doi:10.1371/journal.pcbi.1000592.g002

Figure 3. Trade-off between the effects of positive and
negative design on the stabilities of different lattice folds.
The values of a measure of the effect of negative design of stability,
,D(i,j).long, for the 1081 different folds of 25 residue-long sequences on
a 565 lattice are plotted against their respective values of a measure of
the effect of positive design of stability, ,D(i,j).short. A linear correlation
is observed with r = 20.96 and a P-value,0.0001.
doi:10.1371/journal.pcbi.1000592.g003

Design of Protein Stability
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vD(i,j)
wlong&-(DvA(el=kT -1)w)vf long

c w ð6Þ

Eq. 6 is similar in form to Eq. (5) except that Ec = 0 as it is for the

case of long-range interactions. Given that the sum of all the

contact-frequencies is equal to some constant, a, we can write:

X
fc~

X
fcontacts

c z
X

f long
c z

X
frest

c

~Nshortvfcontacts
c wzNlongvf long

c wzNrestvfrest
c w~a

ð7Þ

where
P

frest
c corresponds to the sum of contact-frequencies of all

the residue pairs that do not form short- or long-range interactions

as defined above. Eqs. (6) and (7) can be combined to yield:

vD(i,j)
wlong&-(DvA(el=kT -1)w)c

z(DvA(el=kT -1)w)(
Nshort

Nlong

)vfcontacts
c w

ð8Þ

where c~1=Nlong(a-Nrestvfrest
c w). Eq. (8) describes a linear

relationship with a positive slope between ,D(i,j).long, which is a

measure of the impact of negative design on stability, and

vfcontacts
c w as shown in Figure 2. Given the simplifying

assumptions we made that DvA(el=kT -1)w is the same for all

the relevant residue pairs and that the contact-frequency is not

Boltzmann-weighted, it is not surprising that the correlations

shown in Figures 1 and 2 for a specific model are noisy. The above

derivations do show, however, that these correlations are general

and not specific for particular lattice models and, thus, likely to

hold for real proteins.

Analysis of correlated mutations in lattice models
The different SBSS corresponding to the 1081 different 565

lattice folds were subjected to correlated mutation analysis in order

to determine whether there is a connection between this

phenomenon and the stabilization strategy. The correlated

mutation analysis was able to identify all the 16 pairs of positions

that are in contact in all the 1081 different folds except for some

rare cases in which one or two contacts were not detected. In the

case of the long-range interactions, the strength of the correlated

mutations signal for a given fold was found to depend on the

average contact frequency of its contacts. The different folds were

divided into three equal-sized classes corresponding to different

ranges of values of vfcontacts
c w and the distributions of densities of

correlated mutations (see Methods) at positions involved in long-

range interactions were plotted for each class (Figure 4). Although

the distributions are overlapping, a clear trend is observed that the

average density of long-range correlated mutations increases with

increasingvfcontacts
c w. The correlation coefficient between the

density of correlated mutations at positions involved in long-range

interactions and vfcontacts
c w is 0.626 with a P-value,0.00001

(not shown). Hence, correlated mutations at positions involved in

long-range interactions appear to be associated with negative

design that is also found when vfcontacts
c w is high.

Analysis of correlated mutations in real proteins
The apparent connection between employing negative design

and prevalence of correlated mutations at positions involved in

long-range interactions enables us to expand our analysis to real

protein data. Given that the calculation of the contact-frequency

parameter for a large number of real proteins is impractical owing

to the huge size of their conformational spaces, we decided to look

into groups of proteins for which there is good reason to assume

that their average contact-frequency is high. We analysed two sets

of proteins that are likely to have a high average contact-frequency

of their contacts. The first set contains intrinsically unstructured

proteins (IUP) that populate many conformations and are,

Table 1. Comparison between the correlated mutation densities averaged for all the alignments corresponding to the different
sets examined.

Data seta Number of alignments Average density of correlated mutations S.D.

‘Control’ proteins 432 0.0018 0.007

GroEL-dependent substrates (class I) 35 0.0027 0.007

GroEL-dependent substrates (class II) 110 0.0040 0.006

GroEL-dependent substrates (class III) 77 0.0051 0.009

Intrinsically unstructured proteins 72 0.0103 0.023

aEach data set is comprised of sequence alignments generated using a reference sequence belonging to one of the five groups listed.
doi:10.1371/journal.pcbi.1000592.t001

Figure 4. Distributions of densities of correlated mutations at
positions involved in long-range interactions for different
classes of lattice folds with increasing values of average
contact-frequency. The 1081 different folds of 25 residue-long
sequences on a 565 lattice were ordered according to their average
contact frequency, (vf contacts

c w), and then divided into three equal-
sized groups comprising the folds with the lowest (A), in between (B)
and highest (C) values of vf contacts

c w, respectively. It can be seen that
the density of correlated mutations tends to increase as the average
contact-frequency of the fold increases.
doi:10.1371/journal.pcbi.1000592.g004
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therefore, likely to have relatively high values of contact-frequency

since individual contacts probably stabilize many different

conformations. The second set is based on the GroEL-interacting

proteins found by Hartl and co-workers [25]. These proteins were

divided into classes I to III with increased dependency on the

GroE chaperonin system for folding correctly [25]. A possible

reason that these proteins have low folding propensities is their

relatively high contact-frequency. In addition, we generated a

third set of proteins as a control (see Methods) for the other sets.

Given that structural information is not available for disordered

regions of proteins and, also, for many of the other sequences, we

could not distinguish here between correlated mutations at

positions involved in short-range contacts and those involved in

long-range interactions. However, this does not affect our

conclusions as the fraction of correlated mutations at positions in

contact is lower than 20% [24] and is likely to be approximately

equal in all the sets. Hence, the variation in the densities stems

mostly from the long-range correlations.

The distributions of correlated mutation densities calculated

using the tree-based method [24] are shown in Figure 5 for the

sequence alignments based on the set of disordered proteins, the

three classes of GroEL-dependent proteins and the set of other

randomly chosen control proteins (equal in number to that of the

IUP-based set). The averages and standard deviations of all the

sets are given in Table 1. It can be seen that the average density of

correlated mutations is lowest in the case of the control set of

proteins, it is higher in the case of the three classes of GroEL-

dependent substrates (and increases from class I to III) and is

highest for the IUP-based set. This trend is observed only when

comparing the average correlated mutation densities of the sets but

it is important to note that correlated mutation analysis of real

proteins is much noisier than that of lattice model proteins due to

the larger alphabet size, errors in sequence alignment and

evolutionary background and, therefore, these observations are

significant. It should also be noted that fewer correlations were

obtained in the case of real proteins as compared with lattice

models as the former were detected using the tree-based method

that was developed to filter out evolutionary noise and is more

stringent.

Discussion

A key observation in this study (Figure 3) is that the balance

between the contributions of positive and negative design to the

stability of different lattice folds varies despite the fact that all the

sequences were subjected to the same selection pressure. It is

important to note that mutations that affect short-range interac-

tions tend to have much larger effects on stability than those that

affect long-range interactions [13], suggesting that positive design

should be much more common than negative design. However, we

find that some folds underwent stabilization by using only negative

design. This unexpected result indicates that positive design has

limited ability to stabilize certain folds and that negative design

compensates for that in cases of such folds (Figure 3). Our results

show that folds that can be stabilized by both positive and negative

design are distinguished from those that are stabilized mostly by

negative design in their average contact-frequency. Folds with low

contact-frequency can be stabilized by both positive and negative

design whereas those with high contact-frequency can be stabilized

mostly by negative design. These results suggest that contact-

frequency determines the stabilization potential of different folds

and that certain folds are, therefore, more likely to emerge under

difficult folding conditions such as extreme temperatures.

The analysis in this paper is based on the premise that

stabilization of short-range contacts reflects positive design

whereas stabilization of long-range interactions reflects negative

design. In lattice models, this assumption is correct since the

energy of any native state is determined only by its contacts and,

therefore, any stabilization due to long-range interactions must

stem from destabilization of non-native states (i.e. negative design).

In the case of real proteins, however, this assumption is not

necessarily correct since long-range (e.g. electrostatic) interactions

can also stabilize the native state. However, the correlated

mutation results that we obtained for both the lattice models

and real proteins showed the same trend and, therefore, we

assume that the correlated mutations that are mostly between

distant positions reflect negative design.

It is interesting that two different mechanisms for thermo-

stabilization have also been revealed by comparing mesophilic

proteins with their thermophilic homologs [26]. One mechanism

termed ‘‘structure-based’’ is reflected in structure compactness and

appears in proteins that originated in extreme environments. The

second mechanism termed ‘‘sequence-based’’ is reflected in a bias

of the amino acid composition toward more charged residues and

is found in proteins that originated as mesophiles but later had to

adapt to higher temperatures. Hence, both the findings here and

the work of Berezovsky et al. [26] indicate that certain structural

(e.g. topological) features of proteins dictate their stabilization

potential and that tinkering with sequence can compensate for the

lack of such structural features. Thermostability has been

attributed previously to amino acid composition [27–29] but by

having all the lattice model sequences in our work share the same

composition we were able to identify a purely structural basis for

stabilization.

In conclusion, in this study we subjected lattice model proteins

to selection for stability and showed that the balance between

positive and negative design strategies differs for each fold and

depends on the average ‘contact-frequency’ of that fold. The use of

negative design is found to increase with increasing values of the

average ‘contact-frequency’ of the respective fold. Our results,

therefore, indicate that each fold has its own stabilization potential

Figure 5. Distributions of correlated mutation densities in the
case of the five different sets of real proteins examined in this
study. The densities of correlated mutations were calculated for the
sets of control proteins (A), classes I (B), II (C) and III (D) of the GroEL-
interacting proteins and the intrinsically unstructured proteins (E). It can
be seen that the density of correlated mutations of these sets increases
with the increasing likelihood that their average ‘contact-frequency’ has
increased.
doi:10.1371/journal.pcbi.1000592.g005
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that limits its ability to adapt to extreme conditions. We also

showed that negative design in lattice models can be identified by

correlated mutation analysis and is reflected in higher values of

correlated mutation densities. This trend was also found in

correlated mutation analysis of real proteins when comparing

intrinsically unfolded proteins and chaperonin-dependent protein

substrates to other control proteins. Thus, we conclude that

stabilization of real proteins with high values of average contact-

frequency tends to rely more on negative design and is reflected in

higher densities of correlated mutations.

Methods

The lattice model of proteins. A 2D lattice model similar to

the one described before [13] was used. Here, we describe the

main features of the model relevant to the current work. The

protein sequence consists of an alphabet of four amino acids:

hydrophobic (H), neutral polar (P), positively charged (+) and

negatively charged (2). All the sequences that were generated

have 25 residues and the same composition of 40% H, 28% P,

16% (+) and 16% (2) that corresponds roughly to that of soluble

proteins in the PDB. The energy of a sequence in a specific lattice

conformation, E(C), was calculated by summing all the pairwise

contact energies, eij, between neighboring lattice points (excluding

consecutive residues in the sequence which are always neighbors),

as follows:

E(C)~
XN

jwiz2

eijd( ri{rj

�� ��) ð9Þ

where ri{rj

�� �� is the distance in lattice units between residues i and

j that are separated in sequence by at least two residues and

d(x)~
1 x~1

0 otherwise

�
. The pairwise interaction energies (eij) are

as before [13] and reflect in a qualitative manner the strengths of

interactions between different types of amino acids.

The free energy of folding, DG, of the native conformation of a

sequence was calculated using [5]:

DG~-kT ln
PN

1-PN

� �
ð10Þ

where PN is the probability that the chain is in its native state N. This

probability is given by: PN~
e-E Nð Þ=kT

Q
, where Q~

P
C[Z

e-E Cð Þ=kT

(Z is the ensemble of all possible conformations on the relevant

lattice), E(N) is the energy of the native conformation, T is the

temperature and k is the Boltzmann constant. A value of 1 was used

for kT. The energies of all possible 1081 non-symmetric conforma-

tions of a given 25 residue-long sequence that fit a 565 lattice were

calculated and the conformation with the lowest energy, if a single

such one exists, was considered as its native conformation.

Generation of structure-based sequence sets (SBSS).

Sets of sequences that have the same native conformation were

generated. Two kinds of sets were generated for each of the 1081

lattice conformations. In the first set, the only requirement was

that all the sequences comprising the set have the same particular

native conformation. In the second set, we required that the free

energy of folding to the native state of the selected sequences is

lower than some threshold value. Sets of the first type can be

generated easily by classifying random sequences to different SBSS

according to their native conformation. Sets of the second type

could not be generated rapidly using this simple procedure and,

therefore, we used a Monte Carlo (MC) maximization process of

the following function:

F1~0:05
1

Nc

X
c

e{Ecz0:95
1

NNon

X
non

ezEnon ð11Þ

where Nc and Nnon are the total number of contacts and non-

contacts in the specific conformation, respectively. In each step of

the MC process, two residues in the sequence were randomly

swapped and the swap was accepted if the Metropolis criterion

[30] was met. The MC process was stopped when a sequence with

the requested native state and with DG,DGthreshold was found.

We will refer to the SBSS that were generated by procedures (i)

and (ii) as the sets without and with selection, respectively. Each set

contained between 50–64 sequences. The average DG of folding

for all the sequences in the sets without selection is approximately

2.660.6 and, therefore, the threshold, DGthreshold, for selecting

sequences with stable native folds was set to zero.

Calculation of perturbation energies. We calculated a

perturbation energy, DDGper =DGwt2DGm, for every possible pair

of positions in each sequence where DGwt and DGm are the

respective free energies of folding of the wild-type sequence before

and after a particular short- or long-range pairwise interaction is

‘turned off’ but without affecting any other interaction. Under ideal

circumstances [31], the pairwise interaction energy (or coupling

energy) determined experimentally using DMC provides a good

estimate of the perturbation energy that can only be determined by

computation. In the case of lattice models, the values of the

computationally derived pairwise coupling energies from DMC are

essentially identical to those of the corresponding perturbation

energies [13], thus justifying the use of perturbation energies to

estimate the strength of pairwise interactions. The DDGper for each

pair of positions i and j was determined for each sequence in a SBSS

and the average value, vDDG(i,j)
per w, for that pair of positions in all

the sequences in the SBSS was calculated. The difference between

vDDG(i,j)
per w for the sets with and without selection was defined as:

D(i,j)~vDDG(i,j)
per w{sel{vDDG(i,j)

per wzsel ð12Þ

Calculation of the average ‘contact-frequency’ of a lattice

native state. The fraction of conformations in the ensemble in

which residues at two positions in a sequence are in contact is

termed the ‘contact frequency’. The contact frequency is

sequence-independent and is a function only of the length of the

protein, the positions of the two residues in the sequence and the

lattice dimensions [14]. It is also possible, however, to define a

Boltzmann-weighted contact frequency [13] that is sequence-

dependent as each occurrence of a contact is multiplied by the

Boltzmann weight of the conformation in which it occurs. The

average ‘contact frequency’, vfcontacts
c w, which is calculated for

all the pairs of positions that are in contact in a specific native state

is not Bolzmann-weighted and is, therefore, sequence-independent

but can be viewed as a property of all the sequences that adopt

that particular native state.

Generation of real proteins data sets. Three data sets of

real protein sequence alignments were generated: (i) the IUP set;

(ii) the GroEL-interacting proteins set; and (iii) a control set of

alignments of proteins that does not include any members of the

first two sets and their homologs. The IUP data set was generated

by downloading the DisProt database version 4.8 (http://www.

disprot.org/) [32] and selecting all sequences that contain
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disordered regions of at least 50 residues long that have a UniProt

[33] accession number. These sequences were used as references

for generating the IUP-based alignments. The GroEL-interacting

proteins data set was generated by downloading from the

PEDANT database (http://pedant.gsf.de/links.jsp) the sequences

of GroEL-interacting proteins reported by Kerner et al. [25]. This

data set contains 252 proteins that are divided into classes I to III

(with increasing dependency on GroEL for folding) that comprise

38, 126 and 84 proteins, respectively, and four other proteins

whose class was not determined. The protein P00810 (which

belongs to class I) was excluded from our analysis as it is a b-

lactamase that is not part of the Escherichia coli (E. coli) K12

proteome. These sequences were used for generating the

alignments based on GroEL-interacting proteins. The control set

was generated by downloading the sequences of the full proteome

of the K12 strain of E. coli (corresponding to accession number

NC_000913.1) from the Refseq database ftp://ftp.ncbi.nih.gov/

genomes/Bacteria/Escherichia_coli_K_12_substr__MG1655/

[34]. Homologs of members of the IUP or GroEL-interacting

proteins sets with an E-value smaller than 0.1 were identified

using BLAST [35] and eliminated from this control set. The

remaining sequences were used as references for generating the

control alignments.

Multiple sequence alignments (MSA) corresponding to the

above three sets were generated by searching the UniProt database

[33] using BLAST [35] for up to 250 homologs (with an E-value

smaller than 1) of each reference sequence. Paralogs were filtered

out and MSAs were generated using CLUSTAL W version 2.0.10

[36] as described [24]. It is important to note that alignments

containing less than 50 sequences or with an average pairwise

sequence identity below 45% were discarded. A total of 72 IUP-

based alignments, 222 GroEL-interacting proteins-based align-

ments (divided into 35, 110 and 77 alignments corresponding to

the three different classes mentioned above) and more than 400

control alignments (based on references randomly selected from

the 3339 E. coli control proteins) were generated.
Correlated mutation analysis. Correlated mutation

analysis was carried out for both real protein sequences and

lattice model sequences. In the case of the real proteins, our tree-

based method [24] was applied in order to reduce the extent of

evolutionary noise and all pairs of positions with a P-value equal to

or smaller than 0.05 were considered as coupled. In the case of the

lattice sequences, a random shuffling procedure was used as the

sequences were selected randomly and do not share a common

ancestor and, therefore, there was no need for filtering

evolutionary noise using our tree-based method. The correlated

mutation density is defined as the number of pairs of positions that

were found to have a significant correlation divided by the total

number of possible pairs of positions. Note that conserved

positions or positions at which more than 10% of the sequences

in the alignment have a gap (this is relevant only to real proteins)

were not considered in the analysis. In addition, the correlated

mutation densities of the intrinsically unstructured proteins (IUP)-

based alignments were calculated using only the disordered

positions.

Supporting Information

Figure S1 Scheme of a lattice model showing examples for (i)

short-range interactions between residues in contact and (ii) long-

range interactions between residues that are not in contact either

directly or indirectly. Examples for pairs of residues involved in

short-range interactions (e.g. 17 and 24) are indicated by the red

line that connects the two residues in contact. Residues 8 and 24,

for example, are in indirect contact since there is a path formed by

residues in contact that connects them (8-19-14-17-24). By

contrast, residues 2 and 13, for example, that are connected by

the dashed arrow are defined as being involved in a long-range

interaction since there is no path formed by residues in contact

that connects them.

Found at: doi:10.1371/journal.pcbi.1000592.s001 (0.61 MB TIF)
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