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Abstract

Metagenomic studies characterize both the composition and diversity of uncultured viral and microbial communities.
BLAST-based comparisons have typically been used for such analyses; however, sampling biases, high percentages of
unknown sequences, and the use of arbitrary thresholds to find significant similarities can decrease the accuracy and validity
of estimates. Here, we present Genome relative Abundance and Average Size (GAAS), a complete software package that
provides improved estimates of community composition and average genome length for metagenomes in both textual and
graphical formats. GAAS implements a novel methodology to control for sampling bias via length normalization, to adjust
for multiple BLAST similarities by similarity weighting, and to select significant similarities using relative alignment lengths.
In benchmark tests, the GAAS method was robust to both high percentages of unknown sequences and to variations in
metagenomic sequence read lengths. Re-analysis of the Sargasso Sea virome using GAAS indicated that standard
methodologies for metagenomic analysis may dramatically underestimate the abundance and importance of organisms
with small genomes in environmental systems. Using GAAS, we conducted a meta-analysis of microbial and viral average
genome lengths in over 150 metagenomes from four biomes to determine whether genome lengths vary consistently
between and within biomes, and between microbial and viral communities from the same environment. Significant
differences between biomes and within aquatic sub-biomes (oceans, hypersaline systems, freshwater, and microbialites)
suggested that average genome length is a fundamental property of environments driven by factors at the sub-biome level.
The behavior of paired viral and microbial metagenomes from the same environment indicated that microbial and viral
average genome sizes are independent of each other, but indicative of community responses to stressors and
environmental conditions.
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Introduction

Metagenomic approaches to the study of microbial and viral

communities have revealed previously undiscovered diversity on

a tremendous scale [1,2]. Metagenomic sequences are typically

compared to sequences from known genomes using BLAST to

estimate the taxonomic and functional composition of the

original environmental community [3]. Many software tools
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designed to estimate community composition (e.g. MEGAN)

annotate sequences using only the best similarity [4]. However,

the best similarity is often not from the most closely related

organism [5]. In addition, most metagenomes contain a large

percentage of sequences from novel organisms which cannot be

identified by BLAST similarities, further complicating analysis

[1,6,7].

Mathematical methods based on contig assembly have been

developed to estimate viral diversity and community structure

from metagenomic sequences regardless of whether they are

similar to known sequences [8]. These similarity-independent

methods require the input of the average genome length of viruses

from a given sample [8]. Having an accurate value of this average

is important because it takes a potentially large range spanning 3

orders of magnitude, and has a large influence on the diversity

estimates. Average genome length for an environmental commu-

nity can be determined using Pulsed Field Gel Electrophoresis

(PFGE) [9,10]. PFGE gives a spectrum of genome lengths in a

microbial or viral consortium, indicated by electrophoretic bands

on an agarose gel, which can be used to calculate an average

genome length. Due to the large variability of dsDNA virus

genome length, PFGE can discriminate and identify dominant

viral populations [11]. However, PFGE is limited because the

bands are not independent and a single band can contain different

DNA sequences [12,13].

Average genome length in environmental samples has also been

used as a metric to describe community diversity and complexity

[9,14–17]. In PFGE, both a larger size range and a greater

number of bands indicate a wider variety of genomes and hence, a

more diverse community [9,14,16,17]. The average genome

length of a microbial community has been shown to serve as a

proxy for the complexity of an ecosystem [15]. Longer average

genome lengths indicate higher complexity [15], since larger

bacterial genomes can encode more genes and access more

resources [18].

Here we introduce Genome relative Abundance and Average

Size (GAAS), the first bioinformatic software package that

simultaneously estimates both genome relative abundance and

average genome length from metagenomic sequences. GAAS is

implemented in Perl and is freely available at http://sourceforge.

net/projects/gaas/. Unlike methods that rely on microbial marker

genes to estimate genome length, the GAAS method can be

applied to viruses, which lack a universally common genetic

element [19]. GAAS determines community composition and

average genome length using a novel BLAST-based approach that

maintains all similarities with significant relative alignment lengths,

assigns them statistical weights, and normalizes by target genome

length to calculate accurate relative abundances. Using GAAS, the

community composition and average genome length for over 150

viral and microbial metagenomes was derived from four different

biomes, including the Sargasso Sea virome previously described in

Angly et al. [1]. The average genome lengths were used in a meta-

analysis to determine how genome length varies at three levels:

between biomes (e.g. terrestrial versus aquatic), between related

sub-biomes (e.g. ocean versus freshwater), and between microbial

and viral communities sampled from the same environment.

Results/Discussion

Accuracy of GAAS estimates
GAAS provided more accurate estimates of average genome

length and community composition than standard BLAST

searches (i.e. no length normalization, no relative alignment

length filtering, top BLAST similarity only) (Figure 1). The

accuracy of GAAS estimates was benchmarked using artificial viral

metagenomes. To simulate environmental metagenomes, 80% of

species were treated as unknowns and viral communities were

created with either power law or uniform rank-abundance

structures. The error for power law metagenomes was consistently

higher than for the uniform case (data not shown). Significance of

BLAST similarities was determined using relative alignment

length and percentage of similarity in addition to an E-value

cutoff. The accuracy of GAAS was dramatically increased by

normalizing for genome length; average errors decreased signif-

icantly for community composition (p,0.001, Mann-Whitney U

test), as well as genome length (p,0.001, Mann-Whitney U test)

(Figure 1 A, B). Metagenomes consist of sequence fragments

derived from the available genomes in an environment [20]. Even

if two genomes are present in equal abundances, a larger genome

has a higher probability of being sampled because it will produce

more fragments of a given size per genome (Figure S1). Length

normalization in GAAS corrected for this sampling bias inherent

to the construction of random shotgun libraries such as

metagenomes. Using all similarities weighted proportionally to

their E-values further reduced errors in composition. This

reduction was significant in comparison to average error when

only the top BLAST similarity was used (p,0.001, Mann-Whitney

U test) (Figure 1 C). When no species were treated as unknown,

the error on the GAAS estimates decreased dramatically (Figure

S2). GAAS performed well in benchmarks using artificial

microbial metagenomes obtained from JGI (Figure S3). Figure

S4 shows that it is harder to distinguish between closely related

strains than unrelated species using local similarities: the error on

the relative abundance estimates is higher than for more distantly

related microorganisms (Figure S3). However, GAAS improves

both estimates of relative abundance and average genome length,

from ,2% relative error for the average genome size when

keeping only the top similarity to ,0.2% using all similarities and

weighting them (Figure S4).

Author Summary

Metagenomics uses DNA or RNA sequences isolated
directly from the environment to determine what viruses
or microorganisms exist in natural communities and what
metabolic activities they encode. Typically, metagenomic
sequences are compared to annotated sequences in public
databases using the BLAST search tool. Our methods,
implemented in the Genome relative Abundance and
Average Size (GAAS) software, improve the way BLAST
searches are processed to estimate the taxonomic
composition of communities and their average genome
length. GAAS provides a more accurate picture of
community composition by correcting for a systematic
sampling bias towards larger genomes, and is useful in
situations where organisms with small genomes are
abundant, such as disease outbreaks caused by small
RNA viruses. Microbial average genome length relates to
environmental complexity and the distribution of genome
lengths describes community diversity. A study of the
average genome length of viruses and microorganisms in
four different biomes using GAAS on 169 metagenomes
showed significantly different average genome sizes
between biomes, and large variability within biomes as
well. This also revealed that microbial and viral average
genome sizes in the same environment are independent of
each other, which reflects the different ways that
microorganisms and viruses respond to stress and
environmental conditions.

Genome Relative Abundance and Average Size
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Read length does not matter for GAAS
Variations in metagenomic read lengths did not affect the

accuracy of GAAS relative genome length estimates (Figure 2,

Figure S5, Figure S6). GAAS was benchmarked on simulated viral

metagenomes containing 50, 100, 200, 400, or 800 base pair

sequences. Read length had no effect on the accuracy of average

genome length estimates (p = 0.408, Kruskal-Wallis test). Average

errors in composition increased significantly (p,0.001, Kruskal-

Wallis test) with increasing read length, but there was only a very

weak positive correlation between increased errors and longer

reads (tau = 0.07, p,0.001). The accuracy of GAAS estimates was

thus not very susceptible to changes in read length on average.

This contrasts with a report on the inappropriateness of short

reads for characterizing environmental communities, mainly on

the basis that they miss more distant homologies than longer

sequences [21]. In addition, the longest reads tested here (800 bp)

achieved both the lowest and highest error on the relative

abundance estimates (Figure S5). This indicates that the choice of

appropriate filtering parameters is more important for longer

sequences than for short sequences. In summary, GAAS can be

used to accurately and effectively estimate both composition and

average genome length for sequences from a variety of available

technologies: very short (,50 bp) sequences obtained by reversible

chain termination sequencing (e.g. Solexa), mid-size sequences

produced by Roche 454 pyrosequencing (,100–400 bp), and long

700+ bp reads sequenced by synthetic chain-terminator chemistry

(Sanger).

Figure 1. Effects of length normalization and similarity weighting on the accuracy of GAAS estimates. Different methods were used: (A)
the standard method (no length normalization, selection of the top similarity only), (B) a combination of genome length normalization and top
similarity selection only, and (C) the GAAS method (genome length normalization, selection of all significant similarities, and E-value based weights).
Decreases in average error indicate increased accuracy. In the simulated viral metagenomes, 100 bp sequences were used and 80% of the species
were considered unknown.
doi:10.1371/journal.pcbi.1000593.g001

Figure 2. Effects of metagenomic read length on average error
of GAAS estimates. Decreases in average error indicate increased
accuracy. In the simulated metagenomes, 80% of the species were
considered unknown. See Figure S5 and Figure S6 for full details.
doi:10.1371/journal.pcbi.1000593.g002

Genome Relative Abundance and Average Size
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Re-analysis of the Sargasso Sea virome
Re-analysis of the Sargasso Sea virome using GAAS revealed

that small ssDNA phages were more important than previously

assessed, representing ,80% of the viral community (Figure 3).

Community composition and average genome size for the

Sargasso Sea virome were calculated using both the GAAS

method and the standard method (no length normalization, top

similarities only) for comparison. Both the pie charts and length

spectra in Figure 3 were generated directly by GAAS. Using the

standard method, the Sargasso Sea viral community was

dominated by Prochlorococcus phages (64%), with lesser abundances

of Chlamydia phages (15%), Synechococcus phages (12%), Bdellovibrio

phages (3%) and Acanthocystis chlorella viruses (2%). In contrast,

using GAAS, Chlamydia phages were the most abundant organism

(79%), whereas Prochlorococcus phages only comprised 16% of the

community. The presence of Chlamydia phages in the Sargasso Sea

was previously verified experimentally using molecular methods

[1]. In contrast to the standard method, the GAAS method also

indicated very low relative abundances (,1%) of Synechococcus

phages and Chlorella viruses, which have larger genomes.

Most of the variations in community composition estimates

were explained by differences in viral genome lengths (Figure 3,

right panel). The corrected relative abundance estimates provided

by GAAS indicated that species with larger genomes were less

abundant than previously thought, and that normalizing by

genome length was essential for accurate estimation of community

composition (as shown in benchmark tests, Figure 1). A lack of

normalization could lead to poor and possibly misleading

community composition estimates, as our results have shown,

since relative abundance does not equal percentage of similarities.

Phages with small genomes (20–40 kb) are believed to be the

most abundant oceanic viruses [11]. In the re-analysis of the

Sargasso Sea metagenome, GAAS estimated that 80% of the viral

particles were Microviridae (mainly Chlamydia phages), viruses with a

genome size smaller than 10 kb. Multiple Displacement Amplifi-

cation (MDA) was used during the preparation of the Sargasso Sea

virome and could have led to over-representation of this viral

family. Despite this potential bias, the Chlamydia phage content of

this virome was still higher than in all viromes prepared with MDA

(except for the stromatolite viromes [6]) (data not shown). In

addition, diverse marine circovirus-like genomes, with a length of

less than 3 kb, have also been reported in the Sargasso Sea [22],

suggesting that small single-stranded viruses play important roles

in this marine habitat.

Average genome length varies significantly between and
within biomes

Both microbial and viral average genome lengths calculated by

GAAS were significantly different between marine, terrestrial, and

host-associated biomes (Figure 4A, Table S1, Table S2). Of the

169 metagenomes analyzed, 146 had a sufficient number of

similarities for estimation of average genome length. The average

for genome length across all aquatic viral metagenomes was

consistent with the previous estimate of 50 kb for marine systems

Figure 3. Re-analysis of the Sargasso Sea viral community. Genome relative abundance in the Sargasso Sea (left) and size spectrum with 95%
confidence interval for the average genome length (right) were calculated using the standard method (A) and GAAS (B).
doi:10.1371/journal.pcbi.1000593.g003

Genome Relative Abundance and Average Size

PLoS Computational Biology | www.ploscompbiol.org 4 December 2009 | Volume 5 | Issue 12 | e1000593



using PFGE by Steward et al. [9]. Host-associated and aquatic

viromes had average genome lengths spanning a wide range, from

4.4 to 51.2 kb and from 4.6 to 267.9 kb respectively. Viral average

genome lengths were significantly smaller in host-associated

metagenomes than in aquatic systems (p = 0.002, Mann-Whitney

U test). Estimates of microbial average genome length for aquatic

and terrestrial biomes were similar to those predicted using the

Effective Genome Size (EGS) method [15], a computational

technique based on finding conserved bacterial and archaeal

markers in metagenomic sequences. Aquatic microbiomes also

showed large variation in average genome sizes, ranging from 1.5

to 5.5 Mb for Bacteria and Archaea and from 0.7 to 25.7 Mb for

protists. Microbial average genome lengths in the terrestrial biome

were significantly higher than in the host-associated and aquatic

biomes (p,0.0001, Mann-Whitney U test). Genome lengths of

Bacteria and Archaea from soil environments have previously

been shown to be larger than those observed in other biomes [15].

A larger genome is characteristic of the copiotroph lifestyle [23] as

it provides microbes a selective advantage in the complex soil

environment where scarce but diverse resources are available [24].

Microbial and viral average genome lengths were also signifi-

cantly different between aquatic sub-biomes. Aquatic metagenomes

were grouped into five categories (ocean, freshwater, hypersaline,

microbialites, and hot springs) to determine if the variation in

average genome lengths could be accounted for by the influence of

distinct sub-biomes (Figure 4B, Table S1, Table S2). Other biomes

did not include enough metagenomes from different sub-biomes to

allow for meaningful classification and analysis. While average

genome lengths still varied over a range of values in sub-biomes, the

variability was much lower than in the aquatic biome as a whole

(Table S1). The average genome sizes in oceanic viromes varied

from 20 to 163 kb, well within the range described in [17]. In

hypersaline metagenomes, the average genome length varied from

51 to 263 kb, which is comparable to viral genome sizes detected in

ponds of similar salinities [16]. A number of average genome

lengths were significantly different between sub-biomes for both

viruses and microbes (Figure 4B). The stromatolite metagenomes

had an average genome length which was significantly different

from the oceanic and hypersaline sub-biomes (p,0.05, Mann-

Whitney U test), but not from freshwater systems. Oceanic and

hypersaline environments were not significantly different. In

comparison with the biome level (Figure 4A), the range of average

genome lengths at the sub-biome level was reduced (Figure 4B).

This suggests that differences in average genome lengths may be

driven by environmental factors at a more specific level (e.g. the

sub-biome) than what can be encompassed by general biome

classifications. Previous work has demonstrated that both metabolic

profiles and dinucleotide composition vary at the sub-biome level,

and significant differences between both composition and meta-

bolic functions have been reported for marine (ocean), hypersaline,

microbialite, and freshwater environments [7,25].

Microbial and viral average genome lengths are
independent

Microbial and viral average genome lengths varied indepen-

dently of each other across biomes and aquatic sub-biomes, and

reflected differences in the way microbial and viral consortia react

to stressors and environmental conditions (Figure 5). Using GAAS

estimates for average genome lengths, we compared 25 pairs of

viral and microbial metagenomes sampled from the same

environment at the same time point. Viral and microbial

community compositions have been shown previously to co-vary

[26], however, there was no consistent trend between microbial

and viral average genome length across all biomes (Kendall’s

tau = 20.21, p = 0.10).

Most viromes in this analysis were obtained by the collection of

viral particles small enough to pass through 0.22 mm pore size

filters. The four viral metagenomes collected using 0.45 mm filters

[27] had a larger viral average genome length (in light blue in

Figure 5). These data show that large viruses may be omitted when

sampling with 0.22 mm filters and the capsid size of DNA viruses is

likely positively correlated with their genome length. Sampling

biases, however, do not account for the independence of viral and

microbial length reported here.

Paired metagenomes from oceanic and hypersaline aquatic sub-

biomes were characterized by small fluctuations in viral genome

lengths coupled with large variations in microbial genome lengths.

The four paired ocean metagenomes (Figure 5, light blue squares)

were taken from waters surrounding coral atolls in the Northern

Line Islands [27]. Microbial communities changed dramatically

Figure 4. Average genome length of viruses, Bacteria and
Archaea, and protists in metagenomes. Different biomes (A) and
marine sub-biomes (B) were analyzed using GAAS. Non-parametric
Mann-Whitney U tests were used to compare biomes. Metagenomes
from sediments and hot springs were excluded from the statistical
analysis due their small number. All protist metagenomes were from
the ocean and could not be sub-classified further.
doi:10.1371/journal.pcbi.1000593.g004

Genome Relative Abundance and Average Size
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along a gradient of human disturbance, with populations of

pathogens and heterotrophic microbes increasing with human

activity [27], which could have resulted in large differences in

average microbial genome lengths between atolls. Across all four

atolls, viral communities were dynamic but dominated in general

by Synechococcus and Prochlorococcus phage, according to both the

original [27] and the GAAS analysis (not shown). The large

genome of these widespread phages resulted in a less variable viral

average genome length. In hypersaline metagenomes (Figure 5,

blue diamonds), a similar trend of low variation in viral genome

lengths coupled with larger ranges of microbial genome lengths

was observed. This corresponded to known differences in the

ranges of genome lengths of dominant halophilic viruses and

microbes. The most abundant viruses in hypersaline systems have

genome lengths between 32 and 63 kb, while predominant

Halobacteria have genome lengths varying across a larger range,

from 2.6 to 4.3 Mb [28,29].

The relationship between viral and microbial average genome

lengths in manipulated coral metagenomes reflected differences

in how viral and microbial consortia reacted to stress (Figure 5,

yellow triangles). Five of the six manipulated metagenome pairs

used in this analysis were metagenomes from Porites compressa

corals subjected to a variety of stressors [30,31]. Nutrient, DOC,

temperature, and pH stress all resulted in an increased

abundance of large herpes-like viruses over the control, which

could lead to increased average viral genome lengths overall [30].

However, shifts in the microbial consortia (consisting of Bacteria,

Archaea, and eukaryotes) were more variable depending on

which stressor was applied [31]. For example, temperature

stressed corals showed a dramatic increase in fungal taxa, which

could be driving the larger average microbial genome length seen

here.

Conclusions
The GAAS software package implements a novel methodology

to accurately estimate community composition and average

genome length from metagenomes with statistical confidence.

GAAS provides the user with both textual and graphical outputs,

including genome length spectra, relative abundance pie charts,

and relative abundances mapped to phylogenetic trees. GAAS can

easily be applied to any database of complete sequences to perform

taxonomic or functional annotations, and provides filtering by

relative alignment length as a standard for selecting significant

similarities regardless of which database is used. Since GAAS

controls for sampling bias towards larger genomes and considers

all significant BLAST similarities, it has the potential to identify

key players in ecosystems that may be ignored by other analyses.

For example, the re-analysis of the Sargasso Sea virome indicated

that small ssDNA phage were very abundant and may play a

previously overlooked role in the oceanic ecosystem. GAAS could

also be applied in metagenomic studies of disease outbreaks and

epidemics. Many emerging and highly virulent human pathogens

are ssRNA viruses with small genomes, which could be missed by

standard analysis methods, which do not normalize for genome

length. Meta-analysis using GAAS provided insight into how

environmental factors may affect average genome lengths in

microbial and viral communities and the relationships between

them. The lack of covariance between microbial and viral average

genome lengths indicates that natural and applied stressors

have different effects on microbes and viruses from the same

environment.

Materials and Methods

GAAS: Genome relative Abundance and Average Size in
random shotgun libraries

GAAS software package. GAAS was implemented as a

standalone software package in Perl and is freely available at

http://sourceforge.net/projects/gaas/. It accepts and produces

files in standard formats (FASTA sequences, Newick trees, tabular

BLAST results, SVG graphics). The GAAS methodology is

described in detail below and is outlined in Figure 6.

Similarity filtering. BLAST analyses (NCBI BLAST 2.2.1)

were conducted through GAAS in order to determine signifi-

cant similarities between metagenomic sequences and completely

sequenced genomes. Similarities were filtered based on a combin-

ation of maximum E-value, minimum similarity percentage and

minimum relative alignment length. E-value filtering removed non-

significant similarities, and the alignment similarity percentage and

relative length were used to select for strong similarities likely to

reflect the taxonomy of the metagenomic sequences. E-values

depend on the size of the database and the absolute length of

alignments between query and target sequences, and thus may not

be comparable between analyses [32,33]. Relative alignment

length, also called alignment coverage [34], is the ratio of the

length of the alignment to the length of the query sequence (Figure

S7). It is independent of the database size and sequence length, and

provides an intuitive and consistent threshold to select significant

similarities. Since the ends of sequenced reads can be of lower

quality, similarities were kept only if the length of the alignment

represented the majority of the length of the query sequence.

Sequences with no similarity satisfying the filtering criteria were

ignored in the rest of the analysis.

Similarity weighting. In order to avoid the loss of relevant

similarities by reliance upon smallest E-values alone [5], all

significant similarities for each query sequence (as defined by our

criteria above) were kept and assigned weights as follows.

Based on the Karlin-Altschul equation, the expect value Eij

between a metagenomic query sequence i and a target genome

sequence j is given by: Eij ~ mi
0 n0 e{S0ij where m’i is the effective

query sequence length, n’ is the effective database size (in number

of residues) and S’ij is the high-scoring pair (HSP) bitscore [32].

Using the effective length corrects for the ‘‘edge effect’’ of local

alignment and is significant for sequences smaller than 200 bp

such as sequences produced by the high throughput Roche-454

Figure 5. Relationship between average microbial and viral
genome lengths in paired metagenomes.
doi:10.1371/journal.pcbi.1000593.g005

Genome Relative Abundance and Average Size

PLoS Computational Biology | www.ploscompbiol.org 6 December 2009 | Volume 5 | Issue 12 | e1000593



GS20 platform. Assuming that a query sequence is more likely to

have local similarities to longer target genomes, each of the E-

values can be reformulated into an expect value Fij of a similarity

in a given target genome by: Fij ~ mi
0 tj
0 e{S0ij ~ Eij tj

0 = n0

where t’j is the effective length [35] of the target genome j. Using

the length of the target genome in the F-value produces an expect

value relative to the target genome, not to the totality of the

genome database (as is the case of the E-value).

From Fij, a weight wij can be calculated as wij ~ zi = Fij with zi

being a constant such that for a given metagenomic query

sequence i,
P

j

wij ~ 1. This weight carries the statistical meaning

of the expect value of the similarity relative to the given genome in

such a way that the larger the expect value, the lower the weight.

Therefore, for a given query sequence i, the weight was calculated

as wij ~ zi

Eij tj
0.

Genome relative abundance using genome length

normalization. The relative abundance of sequences in a

random shotgun library is proportional not only to the relative

abundance of the genomes in the library but also to their length.

Similarly to the normalization used in proteomics [36–38],

normalization by genome length is needed to obtain correct

relative abundance of the species in a metagenome. For each

target genome j, the weights wij to that genome were added to

obtain Wj. The weighted similarities Wj to each genome were then

normalized by the actual length tj of the genome (including

chromosomes, organelles, plasmids and other replicons) to obtain

accurate relative abundance estimates: Wj ~ x = tj where x is a

constant such that
P

j

Wj ~ 1.

Average genome length calculation. GAAS relies on the

relatively stable genome size found within taxa [39] to calculate

average genome length. The average genome length was

calculated as a weighted average of individual genome lengths.

The length of the genome for each individual organism

identified in the metagenome was weighted by the relative

abundance of that organism as calculated by GAAS. Thus, the

mean genome length L was calculated as: L ~
P
k

rklk where rj

was the relative abundance of organism k, and lj its individual

genome length.

Confidence intervals for relative abundance and average

genome length estimates. A bootstrap procedure was

implemented in GAAS to provide empirical confidence intervals

for relative abundance and average genome length estimates. The

estimation of community composition and average genome length

was repeated many times using a random subsample of 10,000

sequences for each repetition. Confidence intervals were

determined based on the percentiles of the observed estimates,

e.g. 5th and 95th percentiles for a 90% confidence interval.

Figure 6. Flowchart of GAAS to calculate relative abundance and average genome size. GAAS runs BLAST and uses various corrections to
obtain accurate estimations.
doi:10.1371/journal.pcbi.1000593.g006
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Reference databases for viral, microbial and eukaryotic
metagenomes

NCBI RefSeq (ftp://ftp.ncbi.nih.gov/refseq/release) (Release

32, August 31, 2008) was used as the target database for the

estimation of taxonomic composition and average genome size.

Three databases containing exclusively complete genomic se-

quences were created from the viral, microbial, and eukaryotic

RefSeq files. All incomplete sequences were identified as having

descriptions containing words such as ‘‘shotgun’’, ‘‘contig’’,

‘‘partial’’, ‘‘end’’ and ‘‘part’’, and were removed from the

database.

A taxonomy file containing only the taxonomic ID of the

sequences in these three databases was produced using the NCBI

Taxonomy classification. Sequences with a description matching

the following words were excluded from that file unless the

chromosomal sequences were also available for the same

organism: ‘‘plasmid’’, ‘‘transposon’’, ‘‘chloroplast’’, ‘‘plastid’’,

‘‘mitochondrion’’, ‘‘apicoplast’’, ‘‘macronuclear’’, ‘‘cyanelle’’ and

‘‘kinetoplast’’. The complete viral, microbial, and eukaryal

sequence files with accompanying taxonomic IDs are available

at http://biome.sdsu.edu/gaas/data/.

Mapping to phylogenetic trees
Similarly to the Interactive Tree Of Life (ITOL) [40] and

MetaMapper (http://scums.sdsu.edu/Mapper), GAAS is able to

graph the relative abundance of viral, microbial or eukaryotic

species on phylogenetic trees such as the Viral Proteomic Tree

(VPT) or Tree Of Life (http://itol.embl.de). The Viral Proteomic

Tree was constructed using the approach introduced in the Phage

Proteomic Tree and extending it to the .3,000 viral sequences

present in the NCBI RefSeq viral collection (Edwards, R. A.;

unpublished data, 2009).

Benchmark using simulated viral metagenomes
Simulated metagenomes were created to test the validity and

accuracy of the GAAS approach using the free software program

Grinder (http://sourceforge.net/projects/biogrinder), which was

developed in conjunction with GAAS. Grinder creates metagen-

omes from genomes present in a user-supplied FASTA file. Users

can simulate realistic metagenomes by setting Grinder options

such as community structure, read length and sequencing error

rate. Over 9,500 simulated metagenomes based on the NCBI

RefSeq virus collection were generated using Grinder. The viral

database was chosen since its large amount of mosaicism and

horizontal gene transfer represents a worst-case scenario. There-

fore, benchmark results using the viral database are expected to be

valid for higher-order organisms such as Bacteria, Archaea and

eukaryotes. The parameters used were a coverage of 0.5 fold, and

a sequencing error rate of 1% (0.9% substitutions, 0.1% indels).

Half of the simulated metagenomes had a uniform rank-

abundance distribution, while the other half followed a power

law with model parameter 1.2. Sequence length in the artificial

metagenomes was varied from 50 to 800 bp for the analysis of

read length effects on GAAS estimates.

For each simulated viral metagenome, GAAS was run

repeatedly with different parameter sets (relative alignment length

and percentage of identity). The maximum E-value was fixed to

0.001 in order to remove similarities due to chance alone. Each set

of variable parameters was tested on a minimum of 1,200 different

Grinder-generated metagenomes. All computations were run on

an 8-node Intel dual-core Linux cluster.

Due to the limited number of whole genome sequences

available, a great majority of the sampled organisms in a

metagenome cannot be assigned to a taxonomy. To evaluate the

effect of sequences from novel organisms on GAAS estimates, the

taxonomy of 80% randomly chosen organisms in the database was

made inaccessible to GAAS rendering them ‘‘unknown’’. A

control simulation with 100% known organisms was run for

comparison (Figure S2).

The accuracy of GAAS estimates was evaluated by comparing

GAAS results to actual community composition and average

genome size of the simulated metagenomes. The relative error for

average genome size was calculated as r ~ jx{xej = x, where x

and xe are the true and estimated values respectively. For the

composition, the cumulative error was calculated as

R ~
jrj 2

n
~

ffiffiffiffiffiffiffiffiffiPn

i

r2
i

r

n , where ri is the relative error on the relative

abundance of the target genome i and n is the total number of

sequences in the database.

Because the benchmark results were not normal, non-parametric

statistical tests were used for all pairwise (Mann-Whitney U test)

and multi-factor comparisons (Friedman test) of average errors.

Non-parametric correlations were calculated using Kendall’s tau.

Benchmark using simulated microbial metagenomes
GAAS was also tested on the three simulated metagenomes

available at IMG/m (http://fames.jgi-psf.org). Parameter setting

and data processing were conducted as in viral benchmark

experiments. Points on the IMG/m microbial benchmark graphs

represent the average of 58 repetitions.

Microbial strains typically have a largely identical genome, with

a fraction coding for additional genes and accounting for

differences in genome length. An additional simulation was

performed to investigate how the presence of closely related

genomes influences the accuracy of the GAAS estimates. The 15

Escherichia coli strains present in the NCBI RefSeq database,

ranging from 4.64 to 5.57 Mb in genome size, were used to

produce ,4,500 shotgun libraries with Grinder. The parameters

used were the same as for the simulated viral metagenomes, but

with a coverage of 0.0014 fold (.1,000 sequences). Half of the

simulated metagenomes were treated as in the viral benchmark,

using the GAAS approach and assuming no unknown species. The

other half were treated similarly but taking only the top similarity.

Points on the graph of the microbial strain benchmark represent

the average of .2,200 repetitions.

Meta-analysis of 169 metagenomes
The composition and average genome size for 169 metagen-

omes were calculated using GAAS. Most of these metagenomes

were publicly available from the CAMERA [41], NCBI [42], or

MG-RAST [43] (Table S2), and a few dozens were viromes and

microbiomes newly collected from solar saltern ponds, chicken

guts, different soils and an oceanic oxygen minimum zone

(Protocol S1). The metagenomes used here therefore represent

viral, bacterial, archaeal, and protist communities sampled from a

diverse array of biomes and were categorized as one of the

following: ‘‘aquatic’’, ‘‘terrestrial’’, ‘‘sediment’’, ‘‘host-associated’’,

and ‘‘manipulated / perturbed’’. The large number of aquatic

metagenomes was further subdivided into: ‘‘ocean’’, ‘‘hypersa-

line’’, ‘‘freshwater’’, ‘‘hot spring’’ and ‘‘microbialites’’. Sampling,

filtering, processing and sequencing methods differed among

compiled metagenomes. Table 1 provides a summary of the

number of metagenomes from each biome (a list of the complete

dataset is presented in detail in Table S2).

For all metagenomes, GAAS was run using a threshold E-value

of 0.001, and an alignment relative length of 60%. In addition, for

Genome Relative Abundance and Average Size
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bacterial, archaeal and eukaryotic metagenomes, similarities were

calculated using BLASTN with an alignment similarity of 80%.

Due to the low number of similarities in viral metagenomes using

BLASTN, TBLASTX was used for viruses, with a threshold

alignment similarity of 75%. All average genome length estimates

produced from less than 100 similarities were discarded to keep

results as accurate as possible. Manipulated metagenomes were

ultimately not used in the meta-analysis because they do not

accurately represent environmental conditions. Statistical pairwise

differences between average genome lengths across biomes were

assessed using Mann-Whitney U rank-sum tests.

The average genome length and relative abundance results

obtained for all metagenomes with our GAAS method were

compared to the ‘‘standard’’ analytical approach where: 1) only

the top similarity for each metagenomic sequence is kept, 2)

there is no filtering by alignment similarity or relative length,

and 3) no normalization by genome length is carried out. The

virome from the Sargasso Sea was chosen to illustrate in detail

the difference between the results obtained with the two methods

(Figure 3).

Correlation between viral and microbial average genome
length

Average genome lengths were calculated for 25 pairs of

microbial and viral metagenomes sampled from the same location

at the same time. The statistical relationship between viral and

microbial average genome length in paired metagenomes was

evaluated using Kendall’s tau, since lengths were not normally

distributed. Regression analysis was performed with Generalized

Linear Models (GLM). Interactions between genome lengths and

biome classifications were not significant and were not included in

final models.

Statistical analyses
All statistical analyses of the GAAS benchmark results,

environmental genome length and genome length correlations

described above were performed using the free statistical software

package R (http://www.R-project.org/) [44].

Supporting Information

Protocol S1 Sample collection and metagenome sequencing

Found at: doi:10.1371/journal.pcbi.1000593.s001 (0.32 MB PDF)

Table S1 Biome averaged genome length estimated by GAAS

for the metagenomes of each environment. The numbers reported

are: mean (median) 6 standard deviation.

Found at: doi:10.1371/journal.pcbi.1000593.s002 (0.22 MB PDF)

Table S2 Detail of the 169 metagenomes used for the meta-

analysis and their average genome size estimated by GAAS.

Accession numbers: CA, CAMERA Accession; GB, NCBI

GenBank; GP, NCBI Genome Project; GSS, NCBI Genome

Survey Sequence; MG: MG-RAST Accession; SRA, NCBI Short

Read Archive.

Found at: doi:10.1371/journal.pcbi.1000593.s003 (0.24 MB PDF)

Figure S1 Sampling bias toward larger genomes in metage-

nomic libraries. Larger genomes will produce more fragments of a

given size, and are more likely to be sampled even if they occur in

the same abundance as small genomes.

Found at: doi:10.1371/journal.pcbi.1000593.s004 (0.17 MB TIF)

Figure S2 Accuracy of the GAAS estimates when no species are

unknown. Error on the relative abundance (top) and average

genome size estimates (bottom) when: (A) 80% of the species were

treated as unknown, (B) no species were assumed to be unknown.

The simulated viromes were made of 100 bp sequences.

Found at: doi:10.1371/journal.pcbi.1000593.s005 (0.29 MB TIF)

Figure S3 Accuracy of GAAS estimates for microbial metagen-

omes. GAAS relative abundance error (top), average genome size

error (middle) and number of similarities (bottom) for the JGI

simulated microbial metagenomes (,1,200 bp/read). 80% of the

species were treated as unknown.

Found at: doi:10.1371/journal.pcbi.1000593.s006 (0.39 MB TIF)

Figure S4 Effect of using all similarities for microbial strains.

The error on community composition (top) and average genome

length (bottom) for simulated metagenomes made of 15 Esche-

richia coli strains was estimated by GAAS. Sequence length was

100 bp and no strains were treated as unknown.

Found at: doi:10.1371/journal.pcbi.1000593.s007 (0.27 MB TIF)

Figure S5 Effect of metagenomic sequence length on the

accuracy of GAAS estimates. Error was calculated for the relative

abundance (top) and average genome length (bottom) estimates.

80% of the species in the viral simulated metagenomes were

treated as unknown.

Found at: doi:10.1371/journal.pcbi.1000593.s008 (0.64 MB TIF)

Table 1. Summary of metagenomes by type used in the meta-analysis.

Biome Sub-biome
Number of viral
metagenomes

Number of bacterial and
archaeal metagenomes

Number of protist
metagenomes

Aquatic (total) - 34 45 17

Aquatic Ocean 15 26 17

Aquatic Hypersaline 10 10 0

Aquatic Freshwater 4 4 0

Aquatic Hot spring 2 2 0

Aquatic Microbialites 3 3 0

Sediments - 3 2 0

Terrestrial (soil) - 4 19 2

Host-associated - 17 11 0

Manipulated / perturbed - 7 8* 0

*The five manipulated coral metagenomes also contained sequences from eukaryotic genomes as described in [31].
doi:10.1371/journal.pcbi.1000593.t001
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Figure S6 Error surfaces for Figure S5. The two surfaces of each

graph correspond to the average error 6 the standard deviation

for the .1,200 simulated metagenomes.

Found at: doi:10.1371/journal.pcbi.1000593.s009 (0.62 MB TIF)

Figure S7 The relative alignment length filtering parameter.

The relative alignment length is defined as the ratio of the length

of the alignment over the length of the query sequence length,

expressed in percent.

Found at: doi:10.1371/journal.pcbi.1000593.s010 (0.14 MB TIF)
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Pulsed-field gel electrophoresis analysis of virus assemblages present in a
hypersaline environment. Int Microbiol 3: 159–164.

15. Raes J, Korbel J, Lercher M, von Mering C, Bork P (2007) Prediction of effective

genome size in metagenomic samples. Genome Biol 8: R10.

16. Sandaa R, Foss Skjoldal E, Bratbak G (2003) Virioplankton community

structure along a salinity gradient in a solar saltern. Extremophiles 7: 347–351.

17. Wommack KE, Ravel J, Hill RT, Chun J, Colwell RR (1999) Population
dynamics of Chesapeake bay virioplankton: total-community analysis by pulsed-

field gel electrophoresis. Appl Environ Microbiol 65: 231–40.

18. Ranea JAG, Buchan DWA, Thornton JM, Orengo CA (2004) Evolution of

protein superfamilies and bacterial genome size. J Mol Biol 336: 871–87.

19. Rohwer F, Edwards RA (2002) The Phage Proteomic Tree: a genome-based
taxonomy for phage. J Bacteriol 184: 4529–35.

20. Hugenholtz P, Tyson GW (2008) Microbiology: metagenomics. Nature 455:
481–483.

21. Wommack KE, Bhavsar J, Ravel J (2008) Metagenomics: read length matters.

Appl Environ Microbiol 74: 1453–1463.

22. Rosario K, Duffy S, Breitbart M (2009) Diverse circovirus-like genome

architectures revealed by environmental metagenomics. J Gen Virol 90:
2418–2424. doi:10.1099/vir.0.012955-0.

23. Lauro FM, McDougald D, Thomas T, Williams TJ, Egan S, et al. (2009) The

genomic basis of trophic strategy in marine bacteria. Proc Nat Acad Sci USA
106: 15527–15533.

24. Konstantinidis KT, Tiedje JM (2004) Trends between gene content and genome
size in prokaryotic species with larger genomes. Proc Nat Acad Sci USA 101:

3160–3165.
25. Willner D, Thurber RV, Rohwer F (2009) Metagenomic signatures of 86

microbial and viral metagenomes. Environ Microbiol 11: 1752–1766.

26. Hewson I, Winget DM, Williamson KE, Fuhrman JA, Wommack KE (2006)
Viral and bacterial assemblage covariance in oligotrophic waters of the West

Florida shelf (Gulf of Mexico). J Mar Biol Assoc UK 86: 591–603.
27. Dinsdale EA, Pantos O, Smriga S, Edwards RA, Angly F, et al. (2008) Microbial

ecology of four coral atolls in the northern Line Islands. PLoS ONE 3: e1584.

28. DasSarma P, DasSarma S (2008) On the origin of prokaryotic ‘‘species’’: the
taxonomy of halophilic Archaea. Saline Syst 4: 5.

29. Dyall-Smith M, Tang S, Bath C (2003) Haloarchaeal viruses: how diverse are
they? Res Microbiol 154: 309–313.

30. Vega Thurber RL, Barott KL, Hall D, Liu H, Rodriguez-Mueller B, et al. (2008)
Metagenomic analysis indicates that stressors induce production of herpes-like

viruses in the coral Porites compressa. Proc Nat Acad Sci USA 105:

18413–18418.
31. Thurber RV, Willner-Hall D, Rodriguez-Mueller B, Desnues C, Edwards RA,

et al. (2009) Metagenomic analysis of stressed coral holobionts. Environ
Microbiol 11: 2148–2163.

32. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local

alignment search tool. J Mol Biol 215: 403–10.
33. Rasko D, Myers G, Ravel J (2005) Visualization of comparative genomic

analyses by BLAST score ratio. BMC Bioinformatics 6: 2.
34. Sadreyev R, Grishin N (2003) COMPASS: a tool for comparison of multiple

protein alignments with assessment of statistical significance. J Mol Biol 326:

317–336.
35. Karlin S, Altschul SF (1990) Methods for assessing the statistical significance of

molecular sequence features by using general scoring schemes. Proc Nat Acad
Sci USA 87: 2264–2268.

36. Zybailov B, Mosley AL, Sardiu ME, Coleman MK, Florens L, et al. (2006)
Statistical analysis of membrane proteome expression changes in Saccharomyces

cerevisiae. J Proteome Res 5: 2339–2347.

37. Florens L, Carozza MJ, Swanson SK, Fournier M, Coleman MK, et al. (2006)
Analyzing chromatin remodeling complexes using shotgun proteomics and

normalized spectral abundance factors. Methods 40: 303–311.
38. Paoletti AC, Parmely TJ, Tomomori-Sato C, Sato S, Zhu D, et al. (2006)

Quantitative proteomic analysis of distinct mammalian mediator complexes

using normalized spectral abundance factors. Proc Nat Acad Sci USA 103:
18928–18933.

39. Bentley SD, Parkhill J (2004) Comparative genomic structure of prokaryotes.
Annu Rev Genet 38: 771–92.

40. Letunic I, Bork P (2007) Interactive Tree Of Life (iTOL): an online tool for
phylogenetic tree display and annotation. Bioinformatics 23: 127–8.

41. Seshadri R, Kravitz SA, Smarr L, Gilna P, Frazier M (2007) CAMERA: a

community resource for metagenomics. PLoS Biol 5: e75.
42. Wheeler DL, Chappey C, Lash AE, Leipe DD, Madden TL, et al. (2000)

Database resources of the National Center for Biotechnology Information.
Nucleic Acids Res 28: 10–4.

43. Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, et al. (2008) The

metagenomics RAST server - a public resource for the automatic phylogenetic
and functional analysis of metagenomes. BMC Bioinformatics 9: 386.

44. R Foundation for Statistical Computing, Vienna, Austria (n.d.) R: A language
and environment for statistical computing. .

Genome Relative Abundance and Average Size

PLoS Computational Biology | www.ploscompbiol.org 10 December 2009 | Volume 5 | Issue 12 | e1000593


