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Abstract

This genome-scale study analysed the various parameters influencing protein levels in cells. To achieve this goal, the model
bacterium Lactococcus lactis was grown at steady state in continuous cultures at different growth rates, and proteomic and
transcriptomic data were thoroughly compared. Ratios of mRNA to protein were highly variable among proteins but also,
for a given gene, between the different growth conditions. The modeling of cellular processes combined with a data fitting
modeling approach allowed both translation efficiencies and degradation rates to be estimated for each protein in each
growth condition. Estimated translational efficiencies and degradation rates strongly differed between proteins and were
tested for their biological significance through statistical correlations with relevant parameters such as codon or amino acid
bias. These efficiencies and degradation rates were not constant in all growth conditions and were inversely proportional to
the growth rate, indicating a more efficient translation at low growth rate but an antagonistic higher rate of protein
degradation. Estimated protein median half-lives ranged from 23 to 224 min, underlying the importance of protein
degradation notably at low growth rates. The regulation of intracellular protein level was analysed through regulatory
coefficient calculations, revealing a complex control depending on protein and growth conditions. The modeling approach
enabled translational efficiencies and protein degradation rates to be estimated, two biological parameters extremely
difficult to determine experimentally and generally lacking in bacteria. This method is generic and can now be extended to
other environments and/or other micro-organisms.
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Introduction

In the era of ‘‘omics’’, systems biology has emerged with the

availability of genome-wide data from different levels, i.e. genome,

transcriptome, proteome, metabolome [1,2]. This approach aims at

integrating omics data, mainly through computational and

mathematical models [3,4] so as to decipher biological systems as

a whole [5]. The integration of transcriptomic and proteomic results

is a huge challenge by itself. The literature usually exploits these two

approaches as complementary tools and does not often provide a

correct confrontation of the two datasets. Until now, only a few

researchers, mainly interested in yeast physiology [6,7], have been

working on this aspect and the results typically revealed modest

correlations between those two datasets [8–10]. These weak

correlations between transcript and protein levels can be the

consequence of the involvement of post-transcriptional regulations

[11], such as translation control and protein degradation as

evidenced by Brockmann et al. [12]. Translation regulations are

believed to be involved in protein level control but are generally

studied at the level of controlling specific molecular mechanisms

and not at the genome scale [13–15]. Although polysome profile

analysis allows translation efficiencies to be experimentally deter-

mined for the various transcripts simultaneously, this technique has

been only rarely used and almost exclusively for S. cerevisiae [16].

Protein stability can also influence intracellular protein level and the

correlation between transcript and protein [10,17,18]. However

protein stability is rarely studied at the genome scale and data are

only available for S. cerevisiae [19,20]. Finally, the rate of protein

disappearance due to protein dilution by cellular growth is also

potentially involved in protein level modifications but this physical

phenomenon is generally neglected. More generally, even if

translation efficiency, protein degradation and dilution rate can all

influence protein levels, these parameters are not usually studied

simultaneously. The role of each parameter in a whole cellular

adaptation process has not been elucidated and it is not clearly

known today which parameter is preponderant and if the control is

constant or not when environmental conditions are modified.

The aim of this study was to analyse the control of intracellular

protein level taking into account all the parameters of this control,

in a prokaryotic organism, the model of lactic acid bacteria,

Lactococcus lactis. To achieve this purpose, transcriptomic and

proteomic analyses were performed with cells from the same
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culture. Transcriptomic data were already available [21] and the

corresponding proteome measurement was performed. The whole

protein related processes including translation, dilution rate and

protein degradation were modelled, and, since biological data

were obtained at steady state, equations describing the protein

levels equilibrium were solved. This modeling approach allowed

translation efficiency and protein degradation to be estimated and

the relative involvement of all the various parameters of protein

control to be analysed.

Results

Transcriptomic - Proteomic data
L. lactis was grown in continuous culture at different growth

rates in the conditions previously described [21] and samples were

taken for both transcriptome and proteome analysis at three

dilution rates, i.e. 0.09, 0.24 and 0.47 h21: the lowest growth rate

(m= 0.09 h21) was chosen as reference. Despite the small size of

the L. lactis genome (2310 genes [22]), a total of 346 different

proteins were quantified corresponding to 308 different proteins

measured in each repetition for each of the 3 steady states. Among

these proteins, 193 showed differential profiles in response to a

growth rate increase: 88 with reduced level and 105 with higher

level. All the proteins displaying a significant level of modification

for at least one of the dilution rates are listed in Table 1. In

accordance with what has previously been found with transcrip-

tome analysis [21], increased levels of proteins related to

biogenesis were observed when the growth rate was increased,

i.e. proteins related to transcription (GreA, NusA, QueA, RpoA),

translation and more specifically ribosomal proteins (GatA, GatB,

RplE, RplI, RplJ, RplK, RplM, RplN, RpmE, RpsA, RpsF,

RpsT), enzymes related to fatty acid and phospholipid metabolism

(AccA, AccD, FabD, FabF, FabG1, FabH, FabZ1, HmcM, ThiL,

YdiD, YscE), two proteins involved in cell division (FtsY, FtsZ),

and some proteins associated with purine, pyrimidine, nucleoside

and nucleotide metabolism (Add, Adk, Apt, DeoB, GuaA, GuaC,

Hpt, NrdE, PydA, PyrC, PyrE, RmlA, RmlB, Upp).

Proteome profiles differed between the various stress-related

proteins. On one hand, the two chaperones DnaK and GroEL, the

superoxide dismutase associated to oxygen stress SodA, and DpsA,

were found in higher quantity, while on the other hand, the cold

shock associated protein CspE, ClpC and the adaptation related

peroxidase Tpx, had decreased levels in response to growth rate

increase. Besides those opposite punctual regulations, other

proteins encoding important functions involved in stress protection

such as ATPases or peptidases (excepting PepP), were present at

constant levels, independently of the growth rate. This lack of

general tendency observed here at proteomic level was also

observed at transcriptomic level [21]. In contrast, a wide down-

regulation of genes involved in stress protection was observed in

yeast when growth rate was increased [23,24]. Finally, one can

notice that the two single phage-related proteins measured in those

proteomics experiments showed significantly reduced levels at high

growth rate. This last observation can be connected with the

previously described massive down regulation of the expression of

phage-related genes [21].

Transcriptomic and proteomic analyses were performed with

cells collected simultaneously from the same fermentor; thus data

can be strictly compared. Proteins and their corresponding

transcript levels were compared individually. Transcriptomic data

were already available [21] but were nevertheless re-processed so

as to obtain concentrations rather than abundances (see Materials

and methods). For proteomic data, concentration and abundance

values are expected to be similar (see Materials and methods). For

each growth rate, transcriptomic and proteomic mean values with

their standard deviations are given in supplementary data (Table

S1). The mRNA/protein ratios were not constant for the different

genes since, at a given growth rate, data were spanned among five

orders of magnitude (Figure 1C). These variations were linked

both to protein and mRNA changes though protein concentra-

tions were globally more spanned than mRNA concentrations (4

and 2 log of magnitude respectively; see figure 1A and 1B).

mRNA/protein ratios were compared between two conditions

using the lowest growth rate (0.09 h21) as reference (Figure 1D)

and they globally increased with the growth rate. This tendency

was confirmed when we analyzed similarly data corresponding to

the maximum growth rate of 0.88 h21. These last data, also

available in our group, were obtained in batch culture during the

exponential growth phase, since this high growth rate could not be

reached in continuous culture without any wash out of the cells

from the chemostat [25].

Modeling of cellular process
What normally occurs in bacterial cells is the transcription of

genes into mRNA, which are then translated into proteins that can

be either diluted by growth or degraded (Figure 2). Hence, protein

concentration is determined not only by translation rates but also

by dilution and degradation, therefore the following balance

equation can be written:

d protein½ �
dt

~ k0 mRNA½ �{m protein½ �{k00 protein½ � ð1Þ

Rates of mRNA translation or protein degradation/dilution are

assumed to be not constant and related to mRNA or protein

concentration respectively. Biological rates were expressed as first

order kinetics of their substrate concentration as previously

postulated in L. lactis [26,27] but also in yeast strains [19,28].

Such modeling approach at the genomic scale is rare in the

literature and dynamic experimental data allowing more elabo-

rated kinetics to be hypothesized are not available. Making more

complex those rate expressions would thus not make sense today.

Dilution constant corresponds to the growth rate (m), degradation

Author Summary

This work is in the field of systems biology. Via an in-depth
comparison of proteomic and transcriptomic data in
various culture conditions, our objective was to better
understand the regulation of protein levels. We have
demonstrated that bacteria exert a tight control on
intracellular protein levels, through a multi-level regulation
involving translation but also dilution due to growth and
protein degradation. We have estimated translational
efficiencies and protein degradation rates by modeling.
These two biological parameters are extremely difficult to
measure experimentally and have not been previously
determined in bacteria. We have found that they are
growth rate dependent, indicating a fine control of
translation and degradation processes. We have worked
with the small genome bacterium Lactococcus lactis on a
limited number of mRNA-protein couples but keeping in
mind that this approach could be extended to other
micro-organisms and biological phenomena. We have
exhibited that mathematical modeling associated to
experimental steady-states cultures is a powerful tool to
understand microbial physiology.

Translation Regulation Modeling

PLoS Computational Biology | www.ploscompbiol.org 2 December 2009 | Volume 5 | Issue 12 | e1000606



constant (k0) is proportional to protein half-life (t1/2 = ln(2)/k0) and

k9 represents the translation efficiency. At steady state, the various

concentrations are expected to remain constant, the time

derivative of the protein concentration is equal to zero and the

previous equation can be simplified and reorganized as follows:

mRNA½ �
protein½ �~m

.
k
0
zk00

.
k
0 ð2Þ

In the chemostat cultures at the various growth rates, cells are at

steady state; similarly, during the exponential growth phase, cells

are physiologically stable and are also considered to be at steady-

state [29]. The previous observation, establishing a relationship

between mRNA/protein ratios and the growth rate for these four

steady states (see above), is in accordance with this last equation

(2). 171 different mRNA and protein couples were available in

each repetition of the various steady states (intersection of 308

couples in the 3 chemostat steady states and 191 in the batch). For

only a few proteins were probes missing on the microarray; hence

it was not possible to rebuild these couples. In order to estimate

translation efficiency and protein degradation rate, the best

mathematical solution to the equation (2) was sought, using

numerical estimations performed on Matlab. The k9 and k0 values

were postulated to be positive, in accordance with biological

Table 1. List of proteins ordered by functional category and changing when growth rate increases from 0.09 to 0.24 and 0.47 h21

during continuous culture of L. lactis.

+

Proteins significantly over-
expressed in response to
growth rate increase 2

Proteins significantly
under-expressed in
response to growth
rate increase

FUNCTIONAL CATEGORY 0.24 h21/0.09 h21 0.47 h21/0.09 h21 0.24 h21/0.09 h21 0.47 h21/0.09 h21

AMINO ACID BIOSYNTHESIS AroH1.60, IlvA1.66, IlvD1.61,
LeuA1.92, LeuD2.20, SerB1.50

AroE1.16, IlvD1.43, ThrC1.13 AspB0.74, GlnA0.25, LysA0.48,
ProA0.81

AspC0.57

BIOSYNTHESIS OF COFAC-
TORS, PROSTHETIC GROUPS,
AND CARRIERS

CobQ2.26, IspB1.82 IspB1.69 DfpA0.42, GshR0.59 DfpA0.44

CELL ENVELOPE MurC1.42, MurD1.49 MurC1.68 MurE0.36

CELLULAR PROCESSES DnaK1.35, FtsZ1.83, SodA1.44 FtsY1.64, GroEL1.59 AhpC0.77, SecA0.70 SecA0.70

CENTRAL INTERMEDIARY
METABOLISM

GlmS1.94, MetK1.23 MetK1.28 GlgD0.53

ENERGY METABOLISM ArcC21.51, CitC1.54, DxsB1.27,
Glk1.99, GpdA1.38, Mae1.49,
NdrI2.32, Pyk1.44, TpiA1.47,
YpjF1.56, YpjH2.19

CitE1.20, EnoB1.45, GpdA1.41,
Mae1.04, Pmg1.14, TpiA1.52

AckA20.37, ArcA0.28, CitF0.60,
NifS0.62, PdhA0.56, PdhB0.72,
PdhC0.44, Pfl0.58, RpiA0.78,
YpdB0.50, YpdC0.49, YpdD0.57,
YrcA0.51, YrjC0.39

AckA20.32, AldC0.73,
ArcT0.65, GadB0.73, GalE0.98,
PdhA0.78, PdhB0.71,
PdhC0.38, Pfl0.93, Pgk0.85,
PycA0.57, ScrK0.78, YbiE0.79,
YpdB0.58, YpdD0.51,
YrbA0.73, YrcA0.50

FATTY ACID AND
PHOSPHOLIPID METABOLISM

AccA2.50, AccD1.82, FabD2.45,
FabH1.47, HmcM1.61, YdiD2.07

FabF1.01, FabG11.16, FabH1.54,
FabZ11.06, ThiL1.69

PlsX0.67 YscE0.86

PURINES, PYRIMIDINES,
NUCLEOSIDES AND
NUCLEOTIDES

Adk1.46, Apt2.40, GuaC2.43,
Hpt1.34, NrdE1.57, PyrC1.31,
PyrE1.77, RmlA1.71, RmlB1.14

Add1.49, Apt2.84, GuaA1.52, Hpt1.31,
PydA1.18, PyrC1.42, RmlB1.29

Pdp0.80, PurB0.47 DeoB0.92, PurB0.38, Upp0.80

REGULATORY FUNCTIONS LlrC1.33, ObgL1.44, PurR1.17,
PyrR1.67

ObgL1.28 CcpA0.87, EraL0.57, FhuR0.75 EraL0.61, FhuR0.81, LlrA0.81,
YsxL0.88

REPLICATION SsbB1.64 HslA0.67, ParC0.34 HslA0.63, ParC0.34

TRANSCRIPTION GreA1.17, NusA1.28 QueA1.31, RpoA1.08 - -

TRANSLATION Frr1.54, LeuS1.66, PpiB1.79,
PrfA1.48, RplE1.38, RplJ2.81,
RplM1.23, RplN1.34, RpmE1.07,
RpsA1.20, RpsF1.45, RpsT1.19,
SerS1.27, TrpS1.77, Tsf1.16, Tuf1.11,
TyrS1.45

FusA1.37, GatA1.35, GatB1.35,
RplE1.40, RplK1.07, Tsf1.26

ArgS0.55, GltX0.62, PepP0.19,
ProS0.68, RplA0.73, SerS0.74

ArgS0.84, KsgA0.24, LeuS0.79,
LysS0.42, PrfC0.63, RplI0.75,
RpsB0.60

TRANSPORT AND BINDING
PROTEINS

GlnQ1.20, OptD1.71, PtsI1.57,
PtsK1.38, YsfB1.30

GlnQ1.19, OptD1.80, PtsI1.94,
YjgE1.44, YsfB1.39

BusAA0.30, PtsH0.71 BusAA0.22, PtsH0.70

OTHER CATEGORIES ClpC0.25, CspE0.62, Pi1020.74,
Pi1250.47

CspE0.66, DpsA0.85,
Pi1020.63, Tpx0.67

UNKNOWN YbdD1.70, YciC1.22, YcjB1.60,
YejH1.20, YjgF1.37, YjhD1.28,
YraB1.88, YshC1.66, YtfB1.48,
YtjH1.28, YuhE2.32

YbdD1.48, YcjB1.54, YgbD1.17, YjgF1.33,
YjhD1.24, YlaC1.17, YnhC1.26, YraB1.79

YahB0.60, YgdA0.46, YhjA0.27,
YlaF0.76, YnfC0.32, YpdB0.50,
YpdC0.49, YpdD0.57, YrjD0.49,
YtgH0.47, YtjA0.76, YtjH0.75,
YwcC0.37, YxbE0.23

YahB0.61, YcdB0.58, YeiJ0.68,
YgdA0.51, YgiI0.25, YgiK0.33,
YiiH0.56, YkhD0.84, YpdB0.58

YpdD0.51, YqfE0.77, YseF0.93,
YtaA0.81

Protein expression ratios are indicated as exponent.
doi:10.1371/journal.pcbi.1000606.t001
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reality. Different solutions with k9 and/or k0 constant, directly or

inversely proportional to m were investigated. Estimation of the

best fitting solution was based on the least square criterion [30].

For the 171 couples, the mean sum of the squared residuals

(difference between a ratio and its estimation) associated to every

combination are given in Table 2. Considering the lower mean

sum of the squared residuals, the best solution was obtained when

both k9 and k0 were proportional to 1/m (k9 = a/m and k0 = b/m).

Hence the equation (2) could be written as follows:

mRNA½ �
protein½ �~m2=azb=a ð3Þ

The mRNA/protein ratios were thus linked to the growth rate

(m) through a polynomial function of order two (m2), which is

consistent with the visual observation of the various curves (not

shown). For each mRNA–protein couple the reliability of the two

estimated constants a and b was evaluated by their associated R2.

All regression coefficients are listed in Table 3. The mean linear

coefficient (R2) associated to this model was 0.8360.04. Finally,

the consistency of our modeling approach was checked when

removing the data of the batch exponential growth phase from the

analysis. A high mean R2 of 0.7760.12 was still obtained using

chemostat data exclusively. On the contrary, data not at steady

state coming from other growth phases in batch cultivation could

not be included. Indeed when taking into account mRNA/protein

values during growth deceleration or during stationary phase, R2

was strongly affected and dropped to 0.2160.03 and 0.2460.04

respectively.

The model (1) states that translation rate is proportional to the

concentration of mRNA species which assumes that translation is

mRNA-limited. An alternative hypothesis, would be the saturation

of the ribosome with mRNA, as previously postulated in E coli

Figure 1. Distributions of protein and mRNA data for different growth rates in L. lactis. Protein concentrations (A), mRNA concentrations
(B), mRNA/protein ratios (C) and their ratios between two different growth conditions (D) ranked in increasing order.
doi:10.1371/journal.pcbi.1000606.g001

Figure 2. Modeling of the cellular process. Translation, dilution
and degradation rates expressed respectively by k9[mRNA]), m[protein]
and k0[protein] where k9 is the translation efficiency, m the growth rate
and k0 the degradation rate constant.
doi:10.1371/journal.pcbi.1000606.g002
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[31], which implicitly suggests competition of any specific mRNA

with all others to be the determining factor in synthesis of the

corresponding protein. We have thus tested the model (2) with

mRNA abundances rather than concentration values. The

modeling approach was robust since similar k9 and k0 dependen-

cies to the growth rate (k9 = a/m and k0 = b/m) were obtained

(Table 2; data in italic). However the expression of individual

protein/mRNA as a function of m2 (3) had generally lower R2

(only 48 couples with R2$0.90 compared to 130 with concentra-

tions), indicating the modeling approach with abundances was less

satisfactory than with concentrations.

Model predictions and biological relevance
In order to carry on our modeling approach, the data

corresponding to mRNA concentrations were filtered and only

couples with R2$0.90 (130) were retained for further analyses

(Table 3). It could be noticed that among the 41 eliminated

couples, 15 displayed non monotonous evolutions of their mRNA/

protein ratios against m2 and 20 had very low mRNA/protein

ratios, which were thus more sensitive to errors.

The k9 and k0 coefficients were numerically calculated for each

protein and in each growth condition from the values of a and b
(Table 2) by the relation k9 = a/m and k0 = b/m. Value distribu-

tions (Figure 3) demonstrate the wide variability of k9 and k0

among proteins but also between growth conditions. The k0

decreases when growth rate increases which is consistent with the

general idea that protein degradation is high in stationary phases

[32]. Protein half-lives were calculated and median values of t1/2

were respectively 23, 61, 119 and 224 min for 0.09, 0.24, 0.47 and

0.88 h21. These values are in the same order of magnitude as

those obtained recently for S. cerevisiae (mean 43 min at a growth

rate of 0.1 h21 [19]). Like k0, the translation efficiency k9 is also

expressed as 1/m function, indicating that, when the degradation

process increases at low growth rate, the translation efficiency is

also increasing in order to attenuate this negative biological effect.

Due to the restricted size of the dataset but also to the non-

uniform distribution of detected proteins in the various functional

categories, it was not possible to use statistical tests to rigorously

determine functional enrichments in extreme values of k9 or k0.

However, among the 15 genes that are translated the most

efficiently (highest a values in Table 3), one can notice the over-

representation of genes involved in major cellular processes: the

Tig chaperone [33] and proteins involved in replication (HslA,

which can unwind DNA and plays a role in its supercoiling, [34]),

and translation (ribosomal proteins: RplA, RplF, RplK, RplN,

RpsT). Carbon metabolism is also represented by 7 proteins

(GapB, EnoA, FbaA, Pmg, Pyk, TpiA, Ldh), all belonging to

glycolysis which is the major metabolic pathway for energy

production in L. lactis. The extremely stable proteins correspond to

null values of b, and consequently k0, were represented by a group

of 26 proteins. Remarkably, half of them were related to stress

responses: ClpE protease, PepC and PepP peptidases, three

reductases that are usually linked to oxidative stress (AhpC,

TrxB1, YpjH), but also MurF, involved in parietal structure,

YtgH, which is homolog to Staphylococcus aureus alkaline stress

protein [35], YtaA and YahB two hypothetical protein sharing

homologies with E. coli universal stress protein Usp [36], YuhE,

whose E. coli homologue is involved in copper resistance [37], and

two cysteine desulfurases (YeiG and YseF) whose corresponding

genes in E. coli are involved in oxygen and copper stress responses

[38]. Moreover, those extremely stable proteins are rather in the

last third for translation efficiency. Thus L. lactis may limit

degradation of stress-related proteins so as to maintain a minimal

pool ready to use in case of emergency, which is biologically

relevant.

Biological determinants of translation efficiency and protein

stability were investigated through correlation studies. Correlations

providing a Spearman coefficient (RSpearman) with associated p-

values lower than 0.05 were considered as significant. The codon

adaptation index (CAI) positively correlates with k9 (RSpearman =

0.57). Since CAI directly reflects translation efficiency during the

elongation step [39], this result validates our translation efficiency

estimations. Translation efficiency is also tightly related to the

amino acid composition of proteins. A negative correlation of k9 was

obtained with tyrosine, cysteine, histidine, aspartic acid and

isoleucine frequencies while lysine and alanine richness had a

positive influence (Table 4). The amino acids the most used have a

positive influence on k9 whereas those with a negative effect are the

less frequent ones (Table 4). The single exception is for isoleucine,

but since it is the limiting nutrient it is not surprising to find it

negatively correlated with translation efficiency, despite its high

frequency in L. lactis proteins. This amino acid bias, together with

the codon bias (CAI), shows that translation efficiency is strongly

dependent of the gene sequence. This optimized functioning state is

probably the result of a long evolutionary process. Finally it was

found that translation efficiency is affected by protein length: the

longer the protein, the more k9 decreases (RPearson of 20.18). This

negative correlation with length has already been reported for yeast

[19] and can possibly be explained by a decrease of the ribosome

density on long mRNA as previously shown for S. cerevisiae [40]. The

only apparent correlation emerging for protein degradation

constants k0 is a negative influence of cysteine richness (Table 4).

Controlling mechanisms
Degradation and dilution by growth are both involved in

protein disappearance and are competitive reactions. The

Table 2. Mean sum of squared residuals associated to different solutions to solve equation (2).

k0 = b k0 = b*m k0 = b/m

k9 = a 1.80E+08+/21.21E+08 2.06E+08+/21.24E+08 1.79E+08+/21.21E+08

8.85E+05+/25.21E+05 2.00E+06+/21.03E+06 1.48E+06+/21.25E+06

k9 = a*m 7.13E+08+/24.21E+08 7.14E+08+/24.21E+08 7.12E+08+/24.21E+08

2.68E+06+/2 1.67E+06 2.20E+06+/21.27E+06 2.71E+06+/21.69E+06

k9 = a/m 7.80E+07+/24.15E+07 1.13E+08+/25.28E+07 4.80E+07+/22.97E+07

1.79E+06+/21.00E+06 2.62E+06+/21.42E+06 5.69E+05+/24.48E+05

Transcriptomic data were expressed as mRNA concentrations and abundances (data in italic). The lowest mean sum of squared residuals, revealing the solution that
best fits, is indicated in bold.
doi:10.1371/journal.pcbi.1000606.t002
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Table 3. Modeling of the mRNA/protein ratios by a linear
relation of m2/a+ b/a.

Protein and Functional
category a b R2

AMINO-ACID BIOSYNTHESIS

AROH 4.51151E-05 0.1646825 0.97121488

GLTD 1.85762E-05 0.00241775 0.97233168

GLYA 4.22229E-05 0.01354879 0.93404229

HOM 1.68474E-05 0.28617974 0.86672614

ILVD 7.93403E-05 0 0.93524863

LYSA 1/a = 0 1/a = 0 0

THRC 0.000284821 0.29820117 0.98839848

CELLULAR PROCESSES

AHPC 5.10745E-05 0 0.97664571

DNAK 0.001061111 0.35860785 0.93348064

FTSA 4.56985E-05 0.05202765 0.9606819

FTSZ 5.8834E-05 0.00130416 0.92637554

SECA 2.17858E-05 0 0.97642785

SODA 0.0001363 0.1338211 0.97950777

TIG 0.001348633 0.2948733 0.98174986

BIOSYNTHESIS OF COFACTORS, PROSTHETIC GROUPS, AND
CARRIERS

MENB 2.73156E-05 0 0.93563899

NADE 0.000116486 0.15449175 0.99604123

TRXB1 8.19857E-05 0 0.96026851

CELL ENVELOPE

DDL 8.25457E-05 0.11519472 0.96225747

GLMU 7.37934E-05 0.09190161 0.99637455

MURC 0.001375775 2.67713991 0.42558387

MURD 0.000185444 2.21919112 0.31988696

MURF 2.2806E-05 0 0.93893948

FATTY ACID AND PHOSPHOLIPID METABOLISM

ACCC 2.58433E-05 0.00441038 0.95136582

FABF 0.000184132 0.11832197 0.96441487

FABG1 0.007749352 19.3686308 0.00359184

FABZ1 0.00099817 1.03586823 0.8424436

HMCM 4.85365E-05 0.1262591 0.91591656

LPLL 6.97982E-05 0.32322579 0.90681314

THIL 4.11396E-06 0 0.92850481

CENTRAL INTERMEDIARY METABOLISM

GLMS 0.000107736 0.58029666 0.70310455

METK 3.24175E-05 0.08257955 0.99050511

ENERGY METABOLISM

ACKA1 7.48258E-05 0.10443145 0.98553347

ACKA2 3.87311E-05 0.00463101 0.96562819

ALS 3.63408E-05 0.1298218 0.99148164

ARAT 1.02213E-05 0.17625044 0.98935052

BCAT 0.000106471 0.19579547 0.98752533

CITE 0.000631153 1.91842211 0.33567603

CITF 0.000141916 0.21345432 0.89438864

DXSB 2.22939E-05 0.01305167 0.96347158

ENOA 0.001448014 0.50011755 0.9812687

FBAA 0.001567707 0.58952655 0.92631253

Protein and Functional
category a b R2

GALE 1.51579E-05 0.08891695 0.96369781

GAPA 6.96015E-05 0.01558052 0.98304437

GAPB 0.005918802 0.34027767 0.95321111

GLK 9.40795E-05 3.25489872 0.07096222

GPDA 2.89337E-05 0.01358186 0.95337614

LDH 0.001985093 0.19145278 0.99659282

MAE 0.000203098 0.11729054 0.94812409

NIFS 0.000102282 0.2123659 0.94633073

PDHA 0.000208532 0.07344591 0.99091991

PDHB 4.80055E-05 0.16285919 0.99397297

PDHD 0.0001525 0.10948091 0.99214624

PFL 6.25985E-05 0.08619004 0.99383945

PGK 0.000724945 0.18072841 0.99732793

PMG 0.00120216 0.52424582 0.95549172

PYCA 0.000229023 0.62375415 0.67646518

PYK 0.001608755 0.27146917 0.99772835

TKT 0.000162636 0.24758748 0.98112816

TPIA 0.001187986 0.562022 0.99194516

YPDB 0.000110296 0.17219254 0.93840544

YPDD 0.000120767 0.06394114 0.99533841

YPJH 2.02435E-05 0 0.90640904

YRBA 3.46086E-05 0.40668707 0.87944016

YRCA 4.99377E-05 0.2788185 0.95535145

ZWF 0.000467917 0.33052248 0.99925746

OTHER CATEGORIES

CLPB 4.1254E-05 0.11738861 0.99444661

CLPE 1.97662E-05 0 0.95854444

CSPE 0.000210856 0.88526205 0.54952575

DPSA 0.000339167 0.14740893 0.99853144

PURINES, PYRIMIDINES, NUCLEOSIDES AND NUCLEOTIDES

ADK 0.000134926 0.62963333 0.86713456

DEOD 0.000465012 1.68108849 0.52943563

GUAA 0.000155463 0.23586297 0.96859337

HPT 0.000108095 0.49984413 0.99936199

PDP 2.47401E-05 0.02445447 0.96991137

PRSB 0.000112449 0.15467248 0.91947476

PURB 0.000804327 1.72339847 0.24260508

PYRB 1/a = 0 1/a = 0 0

PYRC 8.87977E-05 0.28528728 0.93021038

PYRE 1/a = 0 1/a = 0 0

PYRH 6.38656E-06 0.0322555 0.95142351

RMLA 6.81773E-05 0.32316896 0.93695889

RMLB 0.001325841 0.99636334 0.88101663

RMLC 1.28376E-05 0.03849101 0.98656712

THYA 5.59309E-06 0 0.95171946

REGULATORY FUNCTIONS

CCPA 0.000406211 0.12171163 0.96201171

CODY 8.46992E-05 0.13250482 0.98384633

LLRA 4.62605E-05 0.52331337 0.92153533

Table 3. Cont.
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degradation and dilution constants, k0 and m, can be directly

compared. The k0 is higher than m at low growth rate but becomes

lower after a critical value of 0.39 h21 (Figure 4). The role of the

degradation may thus be major at low growth rate while dilution

may become the main phenomenon at fast growth.

Protein and Functional
category a b R2

LLRC 0.013424621 15.5080356 0.10463244

PURR 0.000103485 0.03276367 0.94032578

PYRR 0.028302603 16.3995592 0.00734326

TYPA 0.000229966 0.69467632 0.90710663

REPLICATION

DNAN 0.00066181 0.27185813 0.99667727

HSLA 0.003874397 0.14399314 0.98785442

PCRA 7.04126E-05 0.47756787 0.69922849

RECA 0.000347948 0.29995273 0.97437563

SSBB 4.73141E-05 0.06933065 0.96506692

TRANSLATION

ARGS 0.001086633 1.61719244 0.08263897

ASPS 0.000293319 0.78275625 0.91713371

DEF 1.14893E-05 0.03005374 0.97404273

FMT 3.34181E-05 0 0.94159277

FRR 0.001064713 2.12697168 0.32948552

FUSA 0.017698731 19.1276933 0.01754756

GATB 0.000154178 0.16452557 0.97872462

LEUS 0.000196012 0.87373537 0.39629741

LYSS 0.000190963 1.59349084 0.12786788

METS 4.66627E-05 0.33966148 0.83515216

PEPC 2.36902E-05 0 0.92969273

PEPDB 0.000204376 0.2243337 0.99552578

PEPN 1/a = 0 1/a = 0 0

PEPO 0.000147934 0.15508792 0.99642862

PEPP 1.72239E-05 0 0.91413837

PEPT 1/a = 0 1/a = 0 0

PEPV 0.00071641 0.29661492 0.99715732

PHET 0.000187455 0.76933426 0.98165509

PPIB 4.99542E-05 0.24407188 0.97980974

PRFA 3.0659E-05 0.58910602 0.85034465

PRFC 5.60905E-05 0.30692988 0.95144129

PROS 8.83818E-05 0.11998473 0.99431058

RPLA 0.001100954 0.29255803 0.93892795

RPLC 0.002415577 0.86045223 0.31939893

RPLF 0.020868509 0.57572422 0.92991859

RPLI 0.00053669 0 0.96573657

RPLJ 0.006454043 1.31313441 0.34869518

RPLK 0.007187335 0.15914489 0.98448783

RPLN 0.002583908 0.42853325 0.9592895

RPLQ 0.000971518 0.16634258 0.99841319

RPME 0.000391868 0.73950729 0.77695301

RPSA 0.001602607 0.73935178 0.85488589

RPSB 0.00107443 3.19530018 0.01500431

RPSC 0.000377121 0 0.95023628

RPSD 0.000400639 0.00974974 0.99060528

RPSE 0.001769065 0.47234255 0.8144781

RPSF 9.14703E-05 0.48098276 0.9965725

RPSG 0.004263125 0.78803197 0.87015105

Table 3. Cont.

Protein and Functional
category a b R2

RPSH 0.000342902 0.17581565 0.98687861

RPSJ 0.000193424 0 0.95720261

RPST 0.001476284 0.3612539 0.97646346

SERS 0.088336502 91.1163917 0.0004214

TRPS 2.10306E-05 0 0.95229578

TSF 0.00086506 0.31609137 0.97370399

TYRS 0.001325453 0.49617209 0.94131316

TRANSCRIPTION

GREA 0.000177242 0.18909676 0.94390233

NUSA 0.000550647 0.23668226 0.97440049

QUEA 0.000373228 6.34517377 0.0865523

RPOA 3.42628E-05 0.13144055 0.98711891

TRANSPORT AND BINDING PROTEINS

PTNAB 0.000173226 0.13096684 0.97180887

PTSH 1/a = 0 1/a = 0 0

PTSI 0.000457181 0.23653753 0.90691365

PTSK 4.97924E-05 0.00417517 0.95466442

YAHG 6.35546E-05 0.32396408 0.94254081

YNGE 4.06269E-05 0.02850911 0.955139

YSFB 4.93442E-05 0.14214495 0.96437898

UNKNOWN

YAHB 3.18423E-05 0 0.97419179

YBJJ 1.86559E-05 0 0.92494911

YCGE 9.62931E-05 0.24684603 0.98565885

YCIC 0.000121264 0.33790758 0.97435427

YDJD 2.16629E-05 0.04413265 0.95721016

YEIG 5.2701E-06 0 0.92020873

YNIH 5.57972E-05 0.24822788 0.93523297

YPDC 2.62297E-05 0.05529531 0.97485946

YRAB 0.000214255 0.05292201 0.94877672

YSEF 1.45972E-05 0 0.97271095

YTAA 1.42892E-05 0 0.92865164

YTDB 4.44976E-05 0.12699478 0.99961866

YTGG 7.14082E-06 0.07061493 0.99826851

YTGH 1.26964E-05 0 0.92451445

YTHC 6.60287E-05 0 0.95043811

YTJH 4.18078E-05 0.23305714 0.98316698

YUHE 1.12397E-05 0 0.91482774

YWCC 0.000120121 0.04546948 0.9672213

YWED 1.52202E-05 0 0.92566783

a and b estimations and the determination coefficient (R2) are given for the 171
genes for which both transcriptomic and proteomic data were available. a and
b are directly proportional to translation and degradation rates respectively
(k9 =a/m and k0 = b/m). Proteins that do not match the selection criteria
(R2$0.90) are italicized.
doi:10.1371/journal.pcbi.1000606.t003
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More generally, variations in protein concentration between

two conditions can be related to changes in the three rates: protein

synthesis, degradation and dilution. In order to better understand

this regulatory node and identify which are the major controls, the

quantitative involvement of the different actors was analyzed.

Regulation coefficients corresponding to the protein level control

were estimated with a method based on the one developed on S.

cerevisiae [41,42]. Derivation of equation (2) leads to the following

relationship:

d ln k0 � mRNA½ �ð Þð Þ
d ln protein½ �ð Þð Þ {

d ln mzk00ð Þð Þ
d ln protein½ �ð Þð Þ~1 ð4Þ

The term
d ln k0 � mRNA½ �ð Þð Þ

d ln protein½ �ð Þð Þ of the equation (4) represents

translation control on protein concentration and is called rt while

the term 2
d ln mzk00ð Þð Þ

d ln protein½ �ð Þð Þ, named rd, includes both the dilution

and the degradation and represents protein control by disappear-

ance. rt and rd were estimated for each growth rate interval

(between 0.09 and 0.24 h21; between 0.24 and 0.47 h21; between

0.47 and 0.88 h21). The values of rt were used to elucidate the

nature of the control and are given in supplementary data (Table

S2). If rt#0, protein disappearance is the major controlling

mechanism; if rt$?
1, it is translation; and if 0?, rt?, ?

1, the control

of protein is shared. The nature of the control for a given protein

and its strength differed in the various the growth rate intervals.

However a constant control by disappearance was observed for 6

proteins distributed all over the metabolism (Als, GreA, LplL,

PyrC RplQ, ThrC, see Table 3 for associated functions). Inversely

the unknown protein YpdC was the single one constantly

controlled by translation process. Independently of the growth

rate, protein levels are mostly controlled by disappearance

Figure 3. Distribution of translation efficiency and degradation
rate constant for different growth rates in L. lactis. Histograms for
translation efficiency, k9, (A) and protein degradation rate, k0, (B) with
coloured bars (black for m= 0.88 h21, dark grey for m= 0.47 h21, grey for
m= 0.24 h21 and white for m= 0.09 h21) and lines indicating the
Gaussian tendency curves.
doi:10.1371/journal.pcbi.1000606.g003

Table 4. Correlation analysis between amino-acid usage in L.
lactis proteins and translation efficiencies or degradation rates.

Amino-acid

Mean usage
frequency (%/
protein)

Correlation with
translation
efficiency
(RSpearman)

Correlation with
degradation
rate (RSpearman)

Cysteine 0.5 20.29 20.19

Tryptophan 1.1

Histidine 1.8 20.22

Methionine 2.6

Proline 3.0

Tyrosine 3.6 20.21

Glutamine 3.6

Arginine 3.7

Phenylalanine 4.8

Aspartic acid 5.1 20.17

Asparagine 5.1

Threonine 5.5

Glycine 6.2

Serine 6.4

Valine 6.5

Alanine 7.0 0.23

Glutamic acid 7.1

Isoleucine 7.9 20.19

Lysine 7.9 0.24

Leucine 10

These correlations were independent of the growth rate. Significant RSpearman

with p-value,0.05 are listed in the table.
doi:10.1371/journal.pcbi.1000606.t004

Figure 4. Competition between dilution and degradation rates
for protein control. Comparison of growth rate (m: straight line) and
median value of the degradation constant (k0: dotted line).
doi:10.1371/journal.pcbi.1000606.g004
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(Table 5). Translation control strongly decreases, and protein level

control becomes less specific and more and more shared with

increasing growth rates. Similar conclusions were valid when rd

was used for the control analysis instead of rt (data not shown).

Discussion

The comparison of mRNA and protein ratios revealed a strong

heterogeneity among genes but also for a given gene, at different

growth conditions. Variability among genes has recently been

reported for the model yeast S. cerevisiae but these ratios remained

constant between the two studied conditions, i.e. a rich and a poor

media [43]. Though lacking in this publication, the maximum

growth rates of S. cerevisiae were estimated to be 0.46 and 0.35 h21

respectively in a rich and a poor media (Parrou J.L., personal

communication). Thus it is postulated that the growth rate

difference between these two conditions was too small to induce

changes in mRNA/protein ratios.

The combination of two modeling approaches, one based on

biological knowledge and the other on experimental data fitting, has

enabled translation efficiency and protein degradation rate to be

determined for each protein, phenomena which have been shown to

be protein specific and growth rate dependant. The positive

correlation of translation efficiency with codon bias in L. lactis is

consistent with the results obtained for the yeast, though translation

efficiencies have been calculated differently [12]. The presence of

genes related to major cellular processes essential for growth were

marked among the best translated. This finding corroborates what

was found in archaebacteria for ribosomal proteins [44]. In L. lactis,

the growth-rate dependant variations in translation efficiency are

probably not related to changes in the amount of intracellular

ribosomes if the constant ratio between mRNA and ribosomal RNA

(see Material and methods) is taken into account. However one has

to bear in mind that rRNA does not necessarily means assembled

and/or active ribosomes. It is known for example that E. coli

ribosome activity can be modulated by the inter-conversion

between a functional 70S and a dimerized 100S inactive form

[45]. To resolve this question, it will be necessary to investigate

genome-wide ribosomal activity via polysome distribution which

would provide key information to decipher the regulatory processes

controlling translation. Polysome profile technology is already

available for yeast but may be difficult to adapt to bacteria due to the

co-localisation of transcription and translation in the cytoplasm.

Protein half-lives for the whole genome have never been

determined nor estimated in any bacteria and data are only available

in the literature for S. cerevisiae. However studies disagreed in terms of

average half-life values: 31 h for Pratt et al. against 43 min for Belle

et al. [19,20]. Those differences could be explained by methodological

reasons since one study used pulse chase experiments [20] whereas

the other one consisted in a direct measurement of each epitope-

tagged proteins [19]. In our study, for L. lactis, protein median half-

lives ranged from 23 to 224 min. These low values are in good

agreement with most recent values obtained for S. cerevisiae [19] and

indicate that protein degradation is considerably more rapid than was

once believed. Degradation rates in L. lactis were negatively correlated

to cysteine content in proteins. In yeast, stable proteins were

previously found to have a higher valine density whereas unstable

ones are enriched in serine [19]. It is difficult to strictly compare those

results since amino acid bias may be species specific and reflect the

particularities of proteases involved in protein degradation. The

negative correlation with cysteine could nevertheless be related to the

potential formation of disulfide bridges known for stabilizing proteins

[46]. The current work also revealed the presence of stress related

proteins among the most stable. This last observation differs from

results obtained in yeast indicating that ribosomal proteins and

enzymes from amino-acids metabolism have the higher half-life [19].

This high stability of stress protein together with the lack of global

transcriptional stress response observed in L. lactis when the growth

rate is changed clearly underlines differences of stress adaptation

mechanisms between the two micro-organisms.

Protein degradation exerts a major role in the cellular adaptation

process since protein half-live data depend on the growth rate (1/m
function). Moreover, the degradation rate is even higher than dilution

rate at low growth rate (Figure 4). Considering that protein

degradation is an ATP consuming process [47], high protein

degradation at slow growth rate may contribute to the increase of

maintenance energy that is generally observed in such conditions

[48]. Like protein degradation, translation efficiency is also increased

at slower growth rates. Effects of translation efficiency and protein

degradation are thus antagonist and this mode of regulation is

probably dedicated to attenuate biological changes. Inversely,

proteins with the lowest degradation rates also corresponded to low

translation efficiencies. The analysis of the regulation involved in the

control of protein concentrations demonstrated that it is not constant

in the different ranges of growth rate. At low growth rates,

disappearance seems to be the main controlling mechanism, which

could be attributed to high degradation rate. At high growth rate, the

control becomes more complicated with some proteins regulated at

the level of synthesis, disappearance or both (shared control). This

increased complexity is consistent with cells approaching their

maximum growth performance.

With this modeling approach, we have estimated translational

efficiencies and protein degradation rates. These two biological

parameters are extremely difficult to measure experimentally and

have even never been previously determined in bacteria. The

method was based on an in depth comparison of proteome and

transcriptome data and was developed with the small genome

bacterium L. lactis on a limited number of mRNA - protein couples

(171). It will be possible in the future to broaden these couples

since other proteomic methodologies, such as the APEX

technology [8], allow more proteins to be detected. The approach

remains generic and can be applied to all microorganisms.

Modelling equations were solved because steady-states cultures

were used: chemostat fermentation technology enabling steady

states to be studied has thus proved to be a powerful tool to

understand microbial physiology. We have demonstrated that

bacteria exert a sharp control on intracellular protein levels,

through a multi-level regulation involving three growth rate

dependant actors: translation, dilution and degradation. Here, the

growth rate was changed via chemostat cultures, but such growth

rate modifications are also encountered in nature when cells have

to face new environments. In this case, the adaptation process

involves growth rate adaptation as well as other specific metabolic

adaptations. It remains to be determined how the protein control

is exerted in such natural environment.

Table 5. Protein control analysis in the different ranges of
growth rate based on rt calculation.

Growth rates
intervals

Translation control
of protein levels

Disappearance
control of protein
levels

Shared
control of
protein level

0.09–0.24 h21 38% 60% 2%

0.24–0.47 h21 33% 56% 11%

0.47–0.88 h21 14% 47% 39%

doi:10.1371/journal.pcbi.1000606.t005
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Materials and Methods

Growth conditions
Lactococcus lactis ssp. lactis IL1403, whose genome has been

entirely sequenced [22], was grown as previously described [21].

Briefly, three different growth rates have been studied, namely

0.09, 0.24 and 0.47 h21 during anaerobic chemostat cultures

(under nitrogen atmosphere and regulated pH) on a chemically

defined medium limited by isoleucine concentration. For each

steady-state, samples have been harvested in at least quadruplicate

with a minimum delay of five doubling time between each

sampling.

Transcriptomic data reprocessing
Transcriptomic data (geo platforms GSE10256 [21] for

chemostat culture and GSE12962 for batch exponential phase)

were already available. Briefly, these transcriptomic analyses had

been obtained with a constant amount (10 mg) of total RNA

(mRNA, ribosomal RNA and transfer RNA) labeled by retro-

transcription (33P) and hybridized on nylon membrane as

previously described [49]. Three independent biological repeti-

tions were used. These transcriptomic data had been normalized

by all spots’ mean intensity and thus corresponded to mRNA

abundances. They were reprocessed here in order to calculate

mRNA concentrations with the method previously described [49].

Raw data were first standardized by the all spots’ mean intensities

of the reference membrane (and not with its proper membrane) in

order to eliminate the bias of the radioactivity level between the

various repetitions and then corrected by total RNA concentration

in order to take into account changes in intracellular RNA yield in

the cells. Consistent with previous results [50], this yield increased

significantly with the growth rate in L. lactis (3.5860.39,

4.9260.52, 7.3460.28 and 11.0660.23 g for 100 g cell dry

weight at m= 0.09, 0.24, 0.47 and 0.88 h21 respectively). Since the

amount of RNA to perform transcriptomic analysis is maintained

constant in order to avoid retro-transcription labelling bias, these

RNA yield changes are completely hidden by the technology.

The total raw intensity of the membrane without any

normalisation represents the amount of mRNA in the RNA

sample used for transcriptomic analysis (10 mg). This total intensity

was constant at each growth rate and lower than the saturation

threshold (mean value of 16606584, 14626383, 13896366,

14746367, 14966425 at m= 0.09, 0.24, 0.47 and 0.88 h21

respectively). Thus, it can be deduced that the ratio mRNA/total

RNA was constant and assuming that ribosomal RNA is the major

component of total RNA we can postulate that the fraction

mRNA/ribosomal RNA is independent of the growth rate.

Proteomic analyses
For each condition, three repetitions were performed with

independent cultures, extractions and electrophoresis. Bacteria

were harvested from the cultures and cell pellets were washed

twice with ice-cold 200 mM Na-phosphate, pH 6.4 and re-

suspended in 4 ml of 20 mM Na-phosphate buffer, pH 6.4,

1 mM EDTA, 10 mM tributylphosphine, a cocktail of protease

inhibitors (P8465; Sigma Aldrich, St Louis, MO) 20-fold diluted

and catalase 40 U/ml (C3155; Sigma Aldrich, St Louis, MO) to

limit isoform formation. The cell suspension (approximately 35

units of optical density at 600 nm [OD600]/mL,) was transferred

to the pre-cooled chamber of a BASIC Z cell disrupter (Celld,

Warwickshire, United Kingdom) and was subjected to a pressure

of 2,500 bars. The suspension was centrifuged at 5,0006g for

20 min at 4uC to remove unbroken cells and large cellular debris.

The supernatant was collected and centrifuged at 220,0006g for

30 min at 4uC. The total protein concentration in the resulting

supernatant (cytosolic fraction) was determined with the Coomas-

sie protein assay reagent (Pierce, Rockford, IL) using bovine serum

albumin as standard and was included between 1 and 2 mg/mL.

The cytosolic fraction was aliquoted and stored frozen at 220uC.

2-Dimensional electrophoresis. A volume of cytosolic

fraction corresponding to 350 mg or 500 mg (for basic gels) of

proteins was incubated with nuclease (benzonase, Novagen 70664-

3; 25 U for 100 mL of cytosolic fraction) for 30 min at 37uC and

then chilled on ice and precipitated with 75% (vol/vol) methanol.

The protein pellet was resuspended in 500 mL (for pH 4.5–5.5 and

5–6 gels) or 100 mL (for pH 6–11 gels) of isoelectric focusing (IEF)

buffer 1, consisting of 7 M urea, 2 M thiourea, 4% CHAPS{},

100 mM dithiothreitol or 4 mM tributylphosphine and DeStreak

(1.2% v/v, Amersham Biosciences, GE Healthcare) (for basic gels),

and 0.5% pH 4.5 to 5.5 or 5 to 6 or 6 to 11 immobilized pH

gradient (IPG) buffer (Amersham Biosciences, GE Healthcare).

The sample was loaded on 24 cm pH 4.5 to 5.5 or 5 to 6 IPG strip

(Amersham Biosciences, GE Healthcare) which was previously

rehydrated at 50 V for 11 h. IEF was carried out for 65,000 V.h

at a maximum of 8,000 V, using the Protean II IEF cell (Bio-Rad,

Hercules, CA). Analysis of basic proteins was performed with

18 cm pH 6–11 IPG strip. After passive rehydration of the strip in

buffer 1, the protein sample was loaded on sample cups and IEF

was carried out for 20,000 V.h at a maximum of 3,500 V using

the IPGphor device (Amersham Biosciences, GE Healthcare).

Before the second dimension, IPG strips were incubated for

15 min with shaking in 150 mM Tris-HCl pH 8.8, 0.1% w/v

SDS. The IPG strip was then positioned on sodium dodecyl

sulfate-polyacrylamide gels, using 1% low-melting-point agarose in

150 mM Tris-HCl, pH 8.8. Second-dimension electrophoresis

was performed on 12% polyacrylamide gels (24 by 20 by 0.1 cm)

in 25 mM Tris, 192 mM glycine, 0.1% sodium dodecyl sulfate,

pH 8.3, using the Ettan-Dalt II apparatus. Electrophoresis was run

at 1 W/gel for 16 h at 15uC. The gels were stained with BioSafe

colloidal Coomassie blue (Bio-Rad) for 1 h and destained with

three successive washes in deionized water.

Images files were recorded at 65536 gray levels (16 BitsPer-

Pixel). Image manipulation and analysis were performed with

Samespot V2 software (Nonlinear Dynamics). Protein abundances

were given using arbitrary units which correspond to spot volumes

and which were calculated as follows: spot area x spot pixel

intensity - background intensity.

Protein identification. Protein identification was carried out

at the PAPPSO platform (INRA, Jouy-en-Josas) using MALDI-

TOF mass spectrometry (MS). Protein spots were excised from

Coomassie blue-stained gels and in-gel digested with trypsin. Gel

pieces were placed in Eppendorf tubes and washed with 30 mL

25 mM ammonium carbonate, 50% acetonitrile. The

supernatants were discarded and gel pieces were dried at 37uC
for 15 min. The gels were rehydrated with 20 mL 50 mM

ammonium carbonate containing 100 ng of porcine trypsin

(Promega, Madison, WI, USA). The solutions were incubated

overnight at 37uC. The supernatants containing peptides were

directly analyzed by MALDI-TOF Mass spectrometry on a

Voyager DE STR Instrument (Applied Biosystems, Framingham,

CA, USA). The a-cyano-4-hydroxycinnamic acid matrix was

prepared at 4 mg/mL in 0.1% TFA, 50% acetonitrile. An equal

volume (1 mL) of matrix and sample were spotted onto the

MALDI-TOF target plate. Spectra were acquired in the reflector

mode with the following parameters: 2,000 laser intensity, 20 kV

accelerating voltage, 62% grid voltage, 120 ns delay. The mass

gates used were 840–3500 Da. Internal calibration was performed

by using the trypsin peptides at 842.5 and 2,211.1 Da. Database
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searches were conducted with the MS-Fit software (http://

prospector.ucsf.edu) either on an L. lactis-specific protein database.

The few spots which could not be identified by MALDI-TOF

were analysed by LC-MS/MS using an Ultimate 3000 LC system

(Dionex, Voisins le Bretonneux, France) connected to a linear ion

trap mass spectrometer (LTQ, Thermo Fisher, USA) by a

nanoelectrospray interface to realize the separation, ionisation

and fragmentation of peptides, respectively. The supernatant of

trypsin hydrolysis was transferred to a new tube and the gel pieces

were extracted with a) 25 mL of buffer B (50 mM ammonium

carbonate) and b) two times buffer C (Formic acid 0.1%

acetonitrile 50%). For each extraction, the gel pieces were

incubated for 15 min at room temperature while shaking. The

supernatants of each extraction were pooled with the original

trypsin digest supernatants and dried for 2 h in a Speed-Vacuum

concentrator. The peptides were then re-suspended in 25 mL of

precolumn loading buffer (0.08% TFA and 2% ACN in water).

LC-MS/MS analysis was performed on an Ultimate 3000 LC

system (Dionex, Voisins le Bretonneux, France) connected to

linear ion trap mass spectrometer (LTQ, Thermo Fisher, USA)

by nanoelectrospray interface for separation, ionisation and

fragmentation of all peptides. Four mL of tryptic peptide mixtures

were loaded at flow rate 20 mL/min onto precolumn Pepmap

C18 (0.365 mm, 100 Å, 3 mm; Dionex). After 4 min, the

precolumn was connected with the separating nanocolumn

Pepmap C18 (0.0756150 mm, 100 Å, 3 mm, Dionex) and the

gradient was started at 300 nL/min. All peptides were separated

on the nanocolumn using a linear gradient from 2 to 36% of

buffer B, over 18 min. Eluting buffer A: 0.1% Formic acid, 2%

acetonitrile and eluting buffer B: 0.1% Formic acid, 80%

acetonitrile. Including the regeneration step, each run was

50 min in length. Ionization was performed on liquid junction

with a spray voltage of 1.3 KV applied to non-coated capillary

probe (PicoTip EMITER 10 mm ID; New Objective, USA).

Peptides ions were analysed by the Nth-dependent method as

follows: (i) full MS scan (m/z 300–2000), (ii) ZoomScan (scan of

the 3 major ions), (iii) MS/MS on these 3 ions with classical

peptides fragmentation parameter: Qz = 0.25, activation

time = 30 ms, collision energy = 40%. Proteins identifications

were performed with Bioworks 3.3 software. The raw data were

converted and filtered in peak lists with default data generation

parameters for LTQ mass spectrometer. All peak lists of

precursor and fragment ions were matched automatically against

a Lactococcus lactis IL 1403 protein database. The Bioworks search

parameter included: trypsin specificity with one missed cleavage,

variable oxydation of methionine and the mass tolerance was

fixed to 1.4 Da for precursor ion and 0.5 Da for fragment ions.

The search results were filtered using Bioworks 3.3. A multiple

threshold filter applied at the peptide level consisted of the

following criteria: Xcorr magnitude up to 1.7, 2.5 and 3.0 for

respectively mono-, di- and tri-charged peptides; peptide

probabilities lower than 0.01; DCn greater than 0.1 and only

the first match result for each identified peptide.

Statistical treatment. Raw spot volumes were normalized

by the mean intensity of the corresponding gel. A total of 542 spots

corresponding to 352 different proteins were detected. Some of the

spots corresponded to proteins mixture and were not considered.

The intensities of spots corresponding to protein isoforms in a

same gel were summed so as to represent the level of a single

protein independently of post-transcriptional modifications. 15

proteins identified both on 4.5–5.5 and 5–6 pH ranges displayed

very different amounts. We considered that the best protein level

estimation was given by the highest signal.

Since total protein concentrations remain stable whatever the

growth rate (4266 g protein per 100 g cell dry weight), the

abundance data are considered to be equivalent to concentrations.

Ratios were calculated using the slowest growth phase as a

reference. The statistical significance of ratios were evaluated using

Student test and False Discovery Rates (FDR, calculated

according to Benjamini-Hochberg method [51]) calculated with

R free statistical software. Proteins with ratio associated to a False

Discovery Rate (FDR) lower than 20% were considered as

differentially regulated (see Table 1).

Mathematical treatments
R2 calculations and equations resolution were perform with

MATLAB software.

Correlation calculations
Correlations were estimated using R free statistical software to

calculate Spearman rank correlation coefficient and the associated

p-value.

Supporting Information

Table S1 Transcriptomic and proteomic raw data and their

corresponding standard deviation

Found at: doi:10.1371/journal.pcbi.1000606.s001 (0.24 MB

DOC)

Table S2 Regulatory coefficients calculated between the differ-

ent growth rates

Found at: doi:10.1371/journal.pcbi.1000606.s002 (0.16 MB XLS)

Acknowledgments

We thank Nic Lindley for useful discussions.

Author Contributions

Conceived and designed the experiments: IQ MCB. Performed the

experiments: CD CG. Analyzed the data: CD VM IQ MCB. Wrote the

paper: CD PL VM IQ MCB.

References

1. Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems

biology. Annu Rev Genomics Hum Genet 2: 343–372.

2. Kitano H (2002) Systems biology: a brief overview. Science 295: 1662–1664.

3. Kitano H (2002) Computational systems biology. Nature 420: 206–210.

4. Williamson MP (2005) Systems biology: will it work? Biochem Soc Trans 33:

503–506.

5. Joyce AR, Palsson BO (2006) The model organism as a system: integrating

‘omics’ data sets. Nat Rev Mol Cell Biol 7: 198–210.

6. Greenbaum D, Colangelo C, Williams K, Gerstein M (2003) Comparing protein

abundance and mRNA expression levels on a genomic scale. Genome Biol 4:

117.

7. Washburn MP, Koller A, Oshiro G, Ulaszek RR, Plouffe D, et al. (2003) Protein

pathway and complex clustering of correlated mRNA and protein expression

analyses in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 100:

3107–3112.

8. Lu P, Vogel C, Wang R, Yao X, Marcotte EM (2007) Absolute protein

expression profiling estimates the relative contributions of transcriptional and

translational regulation. Nat Biotechnol 25: 117–124.

9. Nie L, Wu G, Culley DE, Scholten JC, Zhang W (2007) Integrative analysis of

transcriptomic and proteomic data: challenges, solutions and applications. Crit

Rev Biotechnol 27: 63–75.

10. Wu G, Nie L, Zhang W (2008) Integrative analyses of posttranscriptional

regulation in the yeast Saccharomyces cerevisiae using transcriptomic and

proteomic data. Curr Microbiol 57: 18–22.

11. Mata J, Marguerat S, Bahler J (2005) Post-transcriptional control of gene

expression: a genome-wide perspective. Trends Biochem Sci 30: 506–514.

Translation Regulation Modeling

PLoS Computational Biology | www.ploscompbiol.org 11 December 2009 | Volume 5 | Issue 12 | e1000606



12. Brockmann R, Beyer A, Heinisch JJ, Wilhelm T (2007) Posttranscriptional

expression regulation: what determines translation rates? PLoS Comput Biol 3:

e57.

13. El-Sharoud WM, Graumann PL (2007) Cold shock proteins aid coupling of

transcription and translation in bacteria. Sci Prog 90: 15–27.

14. Kaberdin VR, Blasi U (2006) Translation initiation and the fate of bacterial

mRNAs. FEMS Microbiol Rev 30: 967–979.

15. Proud CG (2007) Signalling to translation: how signal transduction pathways

control the protein synthetic machinery. Biochem J 403: 217–234.

16. Arava Y, Boas FE, Brown PO, Herschlag D (2005) Dissecting eukaryotic
translation and its control by ribosome density mapping. Nucleic Acids Res 33:

2421–2432.

17. Nie L, Wu G, Brockman FJ, Zhang W (2006) Integrated analysis of

transcriptomic and proteomic data of Desulfovibrio vulgaris: zero-inflated
Poisson regression models to predict abundance of undetected proteins.

Bioinformatics 22: 1641–1647.

18. Nie L, Wu G, Zhang W (2006) Correlation of mRNA expression and protein

abundance affected by multiple sequence features related to translational
efficiency in Desulfovibrio vulgaris: a quantitative analysis. Genetics 174:

2229–2243.

19. Belle A, Tanay A, Bitincka L, Shamir R, O’Shea EK (2006) Quantification of

protein half-lives in the budding yeast proteome. Proc Natl Acad Sci U S A 103:
13004–13009.

20. Pratt JM, Petty J, Riba-Garcia I, Robertson DH, Gaskell SJ, et al. (2002)

Dynamics of protein turnover, a missing dimension in proteomics. Mol Cell

Proteomics 1: 579–591.

21. Dressaire C, Redon E, Milhem H, Besse P, Loubiere P, et al. (2008) Growth rate

regulated genes and their wide involvement in the Lactococcus lactis stress

responses. BMC Genomics 9: 343.

22. Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, et al. (2001) The

complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp.

lactis IL1403. Genome Res 11: 731–753.

23. Brauer MJ, Huttenhower C, Airoldi EM, Rosenstein R, Matese JC, et al. (2008)
Coordination of growth rate, cell cycle, stress response, and metabolic activity in

yeast. Mol Biol Cell 19: 352–367.

24. Regenberg B, Grotkjaer T, Winther O, Fausboll A, Akesson M, et al. (2006)

Growth-rate regulated genes have profound impact on interpretation of
transcriptome profiling in Saccharomyces cerevisiae. Genome Biol 7: R107.

25. Calcott PH Continuous culture of cells; Data LoCCiP, editor: CRC Press. 191 p.

26. Even S, Lindley ND, Cocaign-Bousquet M (2001) Molecular physiology of sugar
catabolism in Lactococcus lactis IL1403. J Bacteriol 183: 3817–3824.

27. Even S, Lindley ND, Cocaign-Bousquet M (2003) Transcriptional, translational

and metabolic regulation of glycolysis in Lactococcus lactis subsp. cremoris MG

1363 grown in continuous acidic cultures. Microbiology 149: 1935–1944.

28. Beyer A, Hollunder J, Nasheuer HP, Wilhelm T (2004) Post-transcriptional

expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale.

Mol Cell Proteomics 3: 1083–1092.

29. Fishov I, Zaritsky A, Grover NB (1995) On microbial states of growth. Mol

Microbiol 15: 789–794.

30. Van Zandt T (2000) How to fit a response time distribution. Psychon Bull Rev 7:

424–465.

31. Jensen KF, Pedersen S (1990) Metabolic growth rate control in Escherichia coli

may be a consequence of subsaturation of the macromolecular biosynthetic

apparatus with substrates and catalytic components. Microbiol Rev 54: 89–100.

32. Goldberg AL, St John AC (1976) Intracellular protein degradation in

mammalian and bacterial cells: Part 2. Annu Rev Biochem 45: 747–803.
33. Kaiser CM, Chang HC, Agashe VR, Lakshmipathy SK, Etchells SA, et al.

(2006) Real-time observation of trigger factor function on translating ribosomes.

Nature 444: 455–460.
34. Swinger KK, Rice PA (2004) IHF and HU: flexible architects of bent DNA.

Curr Opin Struct Biol 14: 28–35.
35. Kuroda M, Ohta T, Hayashi H (1995) Isolation and the gene cloning of an

alkaline shock protein in methicillin resistant Staphylococcus aureus. Biochem

Biophys Res Commun 207: 978–984.
36. Nystrom T, Neidhardt FC (1994) Expression and role of the universal stress

protein, UspA, of Escherichia coli during growth arrest. Mol Microbiol 11:
537–544.

37. Gupta SD, Lee BT, Camakaris J, Wu HC (1995) Identification of cutC and cutF
(nlpE) genes involved in copper tolerance in Escherichia coli. J Bacteriol 177:

4207–4215.

38. Outten FW, Wood MJ, Munoz FM, Storz G (2003) The SufE protein and the
SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur

transfer pathway for Fe-S cluster assembly in Escherichia coli. J Biol Chem 278:
45713–45719.

39. Sharp PM, Li WH (1987) The codon Adaptation Index–a measure of directional

synonymous codon usage bias, and its potential applications. Nucleic Acids Res
15: 1281–1295.

40. Arava Y, Wang Y, Storey JD, Liu CL, Brown PO, et al. (2003) Genome-wide
analysis of mRNA translation profiles in Saccharomyces cerevisiae. Proc Natl

Acad Sci U S A 100: 3889–3894.
41. Daran-Lapujade P, Rossell S, van Gulik WM, Luttik MA, de Groot MJ, et al.

(2007) The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are

predominantly regulated at posttranscriptional levels. Proc Natl Acad Sci U S A
104: 15753–15758.

42. ter Kuile BH, Westerhoff HV (2001) Transcriptome meets metabolome:
hierarchical and metabolic regulation of the glycolytic pathway. FEBS Lett

500: 169–171.

43. Tuller T, Kupiec M, Ruppin E (2007) Determinants of protein abundance and
translation efficiency in S. cerevisiae. PLoS Comput Biol 3: e248.

44. Lange C, Zaigler A, Hammelmann M, Twellmeyer J, Raddatz G, et al. (2007)
Genome-wide analysis of growth phase-dependent translational and transcrip-

tional regulation in halophilic archaea. BMC Genomics 8: 415.
45. Wada A (1998) Growth phase coupled modulation of Escherichia coli ribosomes.

Genes Cells 3: 203–208.

46. Vogl T, Brengelmann R, Hinz HJ, Scharf M, Lotzbeyer M, et al. (1995)
Mechanism of protein stabilization by disulfide bridges: calorimetric unfolding

studies on disulfide-deficient mutants of the alpha-amylase inhibitor tendamistat.
J Mol Biol 254: 481–496.

47. Ogura T, Wilkinson AJ (2001) AAA+ superfamily ATPases: common structure–

diverse function. Genes Cells 6: 575–597.
48. Russell JB, Cook GM (1995) Energetics of bacterial growth: balance of anabolic

and catabolic reactions. Microbiol Rev 59: 48–62.
49. Redon E, Loubiere P, Cocaign-Bousquet M (2005) Role of mRNA stability

during genome-wide adaptation of Lactococcus lactis to carbon starvation. J Biol
Chem 280: 36380–36385.

50. Maaløe O, Kjeldgaard NO (1966) Control of macromolecular synthesis. New

York: W.A. Benjamin. 284 p.
51. Benjamini YH, Y (1995) Controlling the false discovery rate: a practical and

powerful approach to multiple testing. J R Statist Soc B: 289–300.

Translation Regulation Modeling

PLoS Computational Biology | www.ploscompbiol.org 12 December 2009 | Volume 5 | Issue 12 | e1000606


