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Abstract

The AraC family transcription factor MarA activates ,40 genes (the marA/soxS/rob regulon) of the Escherichia coli
chromosome resulting in different levels of resistance to a wide array of antibiotics and to superoxides. Activation of marA/
soxS/rob regulon promoters occurs in a well-defined order with respect to the level of MarA; however, the order of
activation does not parallel the strength of MarA binding to promoter sequences. To understand this lack of
correspondence, we developed a computational model of transcriptional activation in which a transcription factor either
increases or decreases RNA polymerase binding, and either accelerates or retards post-binding events associated with
transcription initiation. We used the model to analyze data characterizing MarA regulation of promoter activity. The model
clearly explains the lack of correspondence between the order of activation and the MarA-DNA affinity and indicates that
the order of activation can only be predicted using information about the strength of the full MarA-polymerase-DNA
interaction. The analysis further suggests that MarA can activate without increasing polymerase binding and that activation
can even involve a decrease in polymerase binding, which is opposite to the textbook model of activation by recruitment.
These findings are consistent with published chromatin immunoprecipitation assays of interactions between polymerase
and the E. coli chromosome. We find that activation involving decreased polymerase binding yields lower latency in gene
regulation and therefore might confer a competitive advantage to cells. Our model yields insights into requirements for
predicting the order of activation of a regulon and enables us to suggest that activation might involve a decrease in
polymerase binding which we expect to be an important theme of gene regulation in E. coli and beyond.
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Introduction

Transcription factors control cellular protein production by

binding to DNA and changing the frequency with which mRNA

transcripts are produced. There are hundreds of transcription

factors in Escherichia coli and while most of these target only a small

number of genes, there are several that regulate expression of ten

or more genes. Taken together, such global transcription factors

directly regulate more-than half of the ,4,300 genes in E. coli and

their regulatory interactions yield important insights into the

organization of the genetic regulatory network [1,2,3]. Because

they regulate so many genes, global transcription factors also play

a large role in controlling cellular behavior; however, insights into

behavior are currently limited by a lack of quantitative

information about how transcription factors differentially regulate

target genes.

One important global transcription factor is MarA, an AraC

family protein that activates ,40 genes (the marA/soxS/rob

regulon) of the Escherichia coli chromosome resulting in different

levels of resistance to a wide array of antibiotics and superoxides

(see [4] for references). The effect of MarA at different promoters

can vary due to changes in the detailed sequence of the DNA-

binding site and its distance from and orientation with respect to

the promoter [5,6]. These variations can influence the order in

which the promoters respond to increasing concentrations of

MarA and presumably have important functional consequences

for E. coli.

To characterize quantitative variations in MarA regulation at

different promoters, we recently placed the expression of MarA

under the control of the LacI repressor, determined the

relationship between isopropyl b-D-1-thiogalactopyranoside

(IPTG) concentration and the intracellular concentration of

MarA, and examined the expression of 10 promoters of the

regulon as a function of activator concentration [7]. We found that

activation of marA/soxS/rob regulon promoters occurs in a well-

defined order with respect to the level of MarA, enabling cells to

mount a response that is commensurate to the level of threat

detected in the environment. We also found that only the marRAB,

sodA, and micF promoters were saturated at the highest level of

MarA. In contrast with a commonly held assumption, we found
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that the order of activation does not parallel the strength of MarA

binding to promoter sequences. This finding suggested that

interactions between MarA and the RNA polymerase transcrip-

tional machinery play an important role in determining the order

of activation, but the data did not immediately reveal what the

nature of these interactions might be at the various promoters.

Here, we have developed a computational model of promoter

activity to understand how interactions between MarA and

polymerase activate transcription at the marRAB, sodA, and micF

promoters – of the 10 we examined previously, these three

promoters are the only ones that exhibited saturation, which

provides an important constraint for the modeling. The model was

specifically designed to compare a strict recruitment model in

which MarA increases polymerase binding but does not increase

the rate of post-binding events [8,9], with a more general model in

which activator can either increase or decrease polymerase

binding, and can either increase or decrease the rate of post-

binding events. For each promoter, we evaluated the agreement of

both the strict recruitment model and the general model with the

data at many points within a physically reasonable region of

parameter space. The model successfully explains why the order of

promoter activation does not parallel the strength of MarA-DNA

binding. For all promoters, the best fit of the general model was

better than that of the strict recruitment model. Comparison to the

strict recruitment model and full analysis of the goodness-of-fit

landscape suggest that MarA does not increase polymerase

binding but does increase the rate of post-binding events at these

promoters. Moreover, the analysis for the micF promoter suggests

that MarA activation can involve a decrease in polymerase binding

that is associated with low latency in gene regulation. We discuss

the broader significance of these findings.

Results

Model
Our model choice was tailored to the in vivo activity data for the

marRAB, sodA, and micF promoters; these data were obtained from

batch cultures that were periodically diluted to maintain

logarithmic growth [7]. The activity assays were performed after

many generations and represent quasi-steady-state levels that are

well-matched to a steady-state model of promoter activity. We

therefore based our model on a statistical-thermodynamic model

that was originally developed to study steady-state transcriptional

repression by l phage repressor [10]. In our model, the promoter

exists in a number of distinct states, each of which has a

corresponding free energy and activity. The statistical weight of

each state in a batch culture ensemble of promoters is given by

Boltzmann factors that correspond to thermal equilibrium, and the

total promoter activity is calculated as the weighted sum of the

individual promoter state activities.

Our model considers four promoter states enumerated as

follows (Fig. 1). In State 0, the promoter is free. This is the

reference state with energy DG0~0 and no activity. In State A,

MarA is bound at the operator sequence OA, yielding free energy

DGA and no activity; in State R, polymerase is bound at the

promoter P, yielding free energy DGR and activity aR; and in State

X, both MarA and polymerase are bound, yielding free energy

DGX ~DGAzDGRzer, and activity aX. The term er is a

recruitment energy that captures the interaction between MarA

and polymerase on the DNA: a value er = 0 indicates no influence

of MarA on the affinity of polymerase, a value er,0 indicates that

MarA increases the affinity of polymerase, and a value er.0

indicates that MarA decreases the affinity of polymerase for the

promoter. Unlike a strict recruitment model [11], to enable us to

evaluate the likelihood of alternative mechanisms, our model

allows for different activities in the presence or absence of MarA,

and even allows for the possibility that the promoter activity might

be smaller in the presence of MarA.

The free energies of the states with either MarA (DGA) or

polymerase (DGR) bound are defined for 1 M concentrations of

free MarA and polymerase, respectively. These free energies are

related to corresponding dissociation constants via

DGA~kBT ln KA and DGR~kBT ln KR where the dissociation

constants KA and KR are in molar units. The dissociation constants

in turn determine the statistical state weights pi via the following

Figure 1. Illustration of promoter states in the model, with
corresponding activities and standard free energies.
doi:10.1371/journal.pcbi.1000614.g001

Author Summary

When environmental conditions change, cell survival can
depend on sudden production of proteins that are
normally in low demand. Protein production is controlled
by transcription factors which bind to DNA near genes and
either increase or decrease RNA production. Many puzzles
remain concerning the ways transcription factors do this.
Recently we collected data relating the intracellular level of
a single transcription factor, MarA, to the increase in
expression of several genes related to antibiotic and
superoxide resistance in Escherichia coli. These data
indicated that target genes are turned on in a well-defined
order with respect to the level of MarA, enabling cells to
mount a response that is commensurate to the level of
threat detected in the environment. Here we develop a
computational model to yield insight into how MarA turns
on its target genes. The modeling suggests that MarA can
increase the frequency with which a transcript is made
while decreasing the overall presence of the transcription
machinery at the start of a gene. This mechanism is
opposite to the textbook model of transcriptional activa-
tion; nevertheless it enables cells to respond quickly to
environmental challenges and is likely of general impor-
tance for gene regulation in E. coli and beyond.

Model of Activation by MarA
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equations:

pA~
A½ �

KA

p0,

pR~
R½ �

KR

p0,

pX ~
A½ � R½ �

KAKReer=kBT
p0, and

p0~
1

1z A½ �=KAz R½ �=KRz A½ � R½ �=KAKReer=kBT
:

ð1Þ

In Eqs. (1), the first three equations follow from the definition of

the dissociation constants and free energies, and the last equation

follows from the normalization condition
P

i pi~1.

A novel feature of our model is that it considers the interaction

between free MarA and polymerase away from the promoter. This

interaction is known to be significant from in vitro experimental

binding studies [12,13]; Heyduk et al. [14] found a similar

interaction between CRP and polymerase. The equilibrium

between free MarA (A) and polymerase (R) and the MarA-

polymerase complex (A:R) is modeled assuming steady-state

equilibration characterized by dissociation constant KAR:

AzR
KAR

A:R ð2Þ

To account for other interactions such as nonspecific binding of

polymerase to DNA, we also let polymerase be sequestered by a

background pool of nonspecific binding partners (B) with

dissociation constant KBR:

BzR
KBR

B:R ð3Þ

We assume that interactions with the promoter do not significantly

influence the equilibrium. This is a reasonable assumption given

that the chromosomal lacZ reporter fusions used in Martin et al [7]

have a copy number of at most 5 per cell. The model leads to the

following equations

KAR~ A½ � R½ �= A:R½ �,
KBR~ B½ � R½ �= B:R½ �,
R½ �T~ R½ �z A:R½ �z B:R½ �,
A½ �T~ A½ �z A:R½ �, and

B½ �T~ B½ �z B:R½ �,

ð4Þ

where R½ �T , A½ �T , and B½ �T are the total levels of polymerase,

MarA, and the background pool in the cell, respectively. Eqs. (4)

yield a cubic equation for R½ � with a positive real root (Text S1).

The equation A½ �~ A½ �T KAR

�
KARz R½ �ð Þ then follows from the

first and fourth equations in Eqs. (4). Finally, the expressions for

[R] and [A] may be used to calculate the state weights in Eqs. (1)

given values of R½ �T , A½ �T , and B½ �T .

The total promoter activity is a weighted sum of the activities in

each state. No transcription occurs in states 0 or A, in which

polymerase is absent from the promoter. Transcription occurs in

state R with activity aR, and in state X with activity caR;

polymerase is present at the promoter in both of these states. The

equation for the total activity a is therefore

a~aR pRzcpXð Þ: ð5Þ

Eq. (5) represents the general promoter activity model; in the

strict recruitment limit, the value of c is equal to 1 indicating that

polymerase activity is the same in the presence vs. the absence of

MarA. We assume that the total promoter activity a in Eq. (5) is

proportional to the measured b-galactosidase activity resulting

from in vivo lacZ reporter expression.

Calibration of IPTG against MarA
We calibrated IPTG levels against MarA levels using analyses of

Western blots in multiple lanes from a single gel [7]. Such

calibration is rarely performed even in highly quantitative studies

of gene regulation; however, here the calibration is the key to

enabling the mechanistic insights that we sought in the modeling.

The MarA vs. IPTG data are well-described using the equation

A½ �T~ A½ �minz A½ �max{ A½ �min

� � I½ �h

I½ �hzKh
I

, ð6Þ

where [I] is the extracellular IPTG concentration, [A]T is the total

cellular MarA concentration that appears in Eqs. (4), A½ �min = 20

molecules cell21, A½ �max = 20,486 molecules cell21, KI = 18.98 mM,

and h = 2.46 (Figure S1). Due to errors in quantifying small MarA

levels, we were unable to obtain a good estimate of A½ �min from the

data; however, we believe that there is some expression of MarA

from the plasmid in the absence of IPTG because the basal activity

of the lacZ fusions is slightly higher in cells carrying the MarA

plasmid than in cells carrying a control plasmid. The value

A½ �min = 20 molecules cell21 is consistent with the 1,000-fold

induction of the wild-type lac system and yields reasonable fits to

the data. To account for differences between the plasmid expression

system and the wild-type system, we tried values as high as

A½ �min = 200 molecules cell21; however, such models agreed poorly

with the promoter activity data. We therefore used A½ �min = 20 for

the modeling studies described below.

Simulation of promoter activity profiles
The experimental data consist of measurements of b-galactosidase

activity coupled with standard errors at defined concentrations of

external IPTG (Table S1). To model the data for a given promoter,

simulated activity profiles were obtained by calculating the activity at

each IPTG concentration using Eqs. (1), (4), and (5). Values of KAR,

KBR, KA, KR, er, [B]T and [R]T were sampled from allowed ranges

defined with guidance both from the literature and by our

measurements (Methods), and values of [A]T for each IPTG level

were obtained using Eq. (6) which was constrained by the calibration.

Values of pR and pX were then calculated using Eqs. (1) and (4).

The weights pR and pX determine the activity values through Eq.

(5), which includes additional parameters aR and c. The values of

these parameters may vary among promoters. To simulate

promoter activity for a strict recruitment model, the value of c
was set to 1, and linear regression was used to find the value of aR

in Eq. (5) that minimized a standard x2 goodness-of-fit statistic

calculated between the simulated and measured activity values. To

simulate promoter activity for the more general model of

activation, we performed a linear regression to simultaneously

find the best-fit values of aR and c. To further sample the fitting

landscape, we then randomly sampled five values of c that differed

from the optimum by up to a factor of 100, finding the best-fit

value of aR in each case.

Modeling approach
At this point it would be typical to seek the combination of

parameter values that minimize the value of x2 and draw some

Model of Activation by MarA
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conclusions based on the resulting best-fit model. However, we

were concerned about the possibility that many combinations of

parameter values might yield reasonable (if not optimal) fits to the

data and therefore adopted a more rigorous modeling approach.

We note that this concern did not come from comparing the

number of data points to the number of parameters: the model has

9 parameters, whereas we made multiple measurements of each

promoter’s activity at 10 or more different IPTG levels (Table S1).

This is adequate to constrain a fit. Rather, our concern was that all

of the measured activation profiles have a similar S shape that

might be described using ,4 parameters (minimal activity;

maximal activity; IPTG level at the midpoint; and slope in the

regulatable region), suggesting that our 9-parameter model might

reasonably fit the data for a wide range of parameter values.

Instead of drawing conclusions based on the properties of a

single best-fit model, we therefore sought more robust results by

adopting a Bayesian approach (Methods). In our approach, we

began by defining a range of physically reasonable parameter

values for KAR, KBR, KA, KR, KX, [B]T, and [R]T, and randomly

sampled a large number (10,000 or more) of combinations of

parameter values from within the allowed range (Methods;

Table 1). For each such combination, as described above, we

explored values of c and aR using either a strict recruitment model

or a more general promoter activity model. (In practice, we found

that a certain fraction of the parameter value combinations

samples yielded unphysical models in which activation required a

negative value of c; these samples were removed in the analysis.)

We treated the resulting x2 as an indicator for the quality of a

model and used it to define a goodness-of-fit landscape in

parameter space. Sampling the landscape in this way permitted

us to identify entire regions of parameter space that correspond to

reasonable models, and to further determine whether models

within the identified region share common mechanisms of

activation. This approach therefore enables a much more robust

suggestion of activation mechanisms than would conclusions

drawn by examining the properties of a single best-fit model.

The general activation model yields better fits than the
strict recruitment model

The best-fit activity profiles for the models of each promoter are

illustrated in Fig. 2; the parameters of these models are listed in

Table 2. The quality of the fits indicates that the general activation

model is entirely consistent with the observed IPTG-dependent

activity of the marRAB, sodA and micF promoters: the x2 values of

these fits are 9.15, 6.72, and 2.49, respectively. The strict

recruitment model yielded larger x2 values of 14.43, 11.33, and

622.3, respectively. Overall, the general activation model was more

consistent with the promoter activity data; in particular, the strict

recruitment model was inconsistent with the micF data whereas the

general model was consistent with these data. Table 2 also includes

asymmetric errors (Methods) that indicate the degree to which

parameter values are constrained by the data. These errors indicate

that parameter values of the micF model are well-constrained

compared to parameter values for the marRAB and sodA models. The

magnitude of these errors suggests that analysis of just the best-fit

model would not yield robust conclusions concerning mechanisms

of activation: for example, the best-fit value of er for the marRAB

model is 20.44 kBT, but the span of the error includes positive

values of er. In the following sections, rather than relying on analysis

of the best-fit model, we use analysis of the full fitting landscape to

suggest mechanisms of activation of these promoters.

MarA accelerates polymerase kinetics
To determine whether polymerase activity increases or

decreases when MarA is bound to the promoter, we analyzed

the parameter c, which is equal to the ratio of polymerase activity

in the presence vs. the absence of activator (Eq. (5)). It is

convenient to perform the analysis using the acceleration energy,

ea, defined as

ea~{kBT ln c: ð7Þ

The acceleration energy defined in Eq. (7) is equivalent to the

activator-induced change in the activation energy of a lumped

transcription initiation process, under the assumption that

initiation follows an Arrhenius law with the same attack frequency

in the presence or absence of activator. A value ea = 0 corresponds

to an unchanged polymerase activity; this condition is consistent

with a strict recruitment model of transcriptional activation, in

which activator increases the occupancy of polymerase at the

promoter but does not alter polymerase activity [8,9]. Models with

ea,0 exhibit acceleration and models with ea.0 exhibit retarda-

tion of polymerase activity in the presence of activator.

For each promoter, the model with the lowest x2 value has a

negative acceleration energy (Table 2). Scatter plots of x2 vs. ea for

parameter samples indicate that other models with low x2 values

also tend to have negative acceleration energies (Fig. 3, left panels).

To quantify this trend, we used Bayesian methods to estimate

cumulative distribution functions C(ea) for the posterior probability

of ea values (Methods). (It is important to keep in mind that these

distributions do not indicate absolute probabilities as their

calculation entails certain assumptions about the likelihood

function and the prior distribution of parameter values (Methods);

nevertheless, given these assumptions, the distributions provide a

valuable means of interpreting the modeling results.) The

distributions indicate that nearly all of the density lies within the

region ea,1 (Fig. 4A): the value of the distribution function at

ea = 0 is essentially 1 for the marRAB and micF models, and is 0.99

Table 1. Parameter values used to model activation of marRAB, sodA, and micF promoters by MarA.

Parameter marRAB sodA micF

KAR [mM] 0.3, 1.0, 10, 21a, 100 0.3, 1.0, 10, 21a, 100 0.3, 1.0, 10, 21a, 100

KA [nM] 75a, (0.25–2,500) 2,000a, (0.25–2,500) 50a, (0.25–2,500)

KR [nM] (1–10,000)a; (100–106) (1–10,000)a; (100–106) (1–10,000)a; (100–106)

er/kBT (24.6–+4.6)a (24.6–+4.6)a (24.6–+4.6)a

[R]T [Molec cell21] 1,000; 3,000a 1,000; 3,000a 1,000; 3,000a

aNominal parameter values used to create Figs. 3–5.
doi:10.1371/journal.pcbi.1000614.t001

Model of Activation by MarA
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for the sodA model. The modeling therefore suggests that activator

increases polymerase activity at the marRAB, sodA, and micF

promoters.

MarA increases polymerase affinity but not occupancy at
the marRAB promoter

To determine whether the affinity of polymerase for the

promoter changes in the presence vs. the absence of MarA, we

analyzed the recruitment energy er. As mentioned above, a value

er = 0 indicates no influence of MarA on the affinity of polymerase,

a value er,0 indicates that MarA increases the affinity of

polymerase, and a value er.0 indicates that MarA decreases the

affinity of polymerase for the promoter.

For marRAB, the model with the lowest x2 has er = 20.44 kBT

(Table 2). A scatter plot indicates that other models with low x2

tend to have negative values of er (Fig. 3A, right panel). The

cumulative distribution function C(er) also shows that most of the

probability density corresponds to negative values of er (Fig. 4B):

the value is 0.978 at er = 0. The modeling therefore suggests that

MarA activation of marRAB involves an increase in the affinity of

polymerase at the promoter.

It is important to note that an increase in affinity of polymerase

for the promoter does not always translate into a significant

increase in occupancy. For example, if polymerase is already

bound with essentially unit occupancy in the absence of activator,

even a large increase in affinity will result in an insignificant

increase in occupancy. We therefore analyzed and compared the

total occupancy of polymerase at the promoter,

pRX ~pRzpX , ð8Þ

at low (p{
RX ) and high (pz

RX ) levels of MarA. For marRAB, the basal

occupancy p{
RX for the best-fit model is 0.995, and the occupancy

ratio pz
RX

�
p{

RX is 1.00. Scatter plots indicate that the fits are

relatively insensitive to the precise value of p{
RX (Fig. 5A, left

panel), but that the low-x2 values of pz
RX

�
p{

RX are more sharply

centered on 1.00 (Fig. 5A, right panel). The cumulative

distributions quantify these trends: in C p{
RX

� �
, the cumulative

probability increases slowly and steadily from about p{
RX = 0.1 all

the way to p{
RX = 1.0, and half of the probability density lies below

p{
RX = 0.93 (Fig. 4C). In C pz

RX

�
p{

RX

� �
, there is little density below

pz
RX

�
p{

RX = 1.0, the distribution increases sharply in the neigh-

borhood of pz
RX

�
p{

RX = 1.0, and 79% of the density lies below

pz
RX

�
p{

RX = 1.05 (Fig. 4D). Overall, the model does not strongly

indicate whether polymerase is bound or unbound at the promoter

in the absence of MarA but it does weakly suggest that MarA does

not increase the occupancy of polymerase at the promoter.

MarA decreases both polymerase affinity and occupancy
at the sodA and micF promoters

For both sodA and micF, the models with the lowest x2 have er.0

(Table 2). The scatter plot for sodA indicates that other low x2

models also tend to have positive values of er (Fig. 3B, right panel). In

the case of micF, the scatter plot indicates that all models have

positive er. This requires some explanation, as our sampling did

produce a roughly equal number of models with positive and

negative er. As mentioned above, some of the parameter value

combinations were eliminated because they yielded unphysical

models with a negative optimal value of c. This is the reason for the

different number of points that is apparent for different promoters in

Figs. 3 and 5. In the case of micF, the number of unphysical samples

was especially high, and included all those with negative er.

The cumulative distributions C(er) for these promoters support

the trends seen in the scatter plots (Fig. 4B). In the case of sodA,

88% of the density lies within er.0. In the case of micF, all of the

density lies within er.0. Activation in this model therefore involves

a decrease in the affinity of polymerase for both the sodA and micF

promoters.

Analysis of pz
RX

�
p{

RX and p{
RX suggest that binding of MarA

decreases the occupancy of polymerase at both sodA and micF. In

Figure 2. Fits of the best models of promoter activity. A)
marRAB; B) sodA; C) micF. Error bars for the data correspond to the
standard error of the mean calculated from multiple trials (Table S1).
Corresponding x2 and parameter values are given in Table 2.
doi:10.1371/journal.pcbi.1000614.g002

Model of Activation by MarA
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the case of sodA, the best-fit model is misleading, as p{
RX = 0.996

and pz
RX

�
p{

RX = 0.998 for this model (Table 2), suggesting no

influence of activator on polymerase occupancy. However, scatter

plots show that the value of p{
RX is poorly constrained (Fig. 5B, left

panel), and that there are many low-x2 models with pz
RX

�
p{

RX ,1

(Fig. 5B, right panel). These observations are supported by the

cumulative distributions C p{
RX

� �
and C pz

RX

�
p{

RX

� �
: there is a

relatively steady increase in C p{
RX

� �
between 0.03 and 1 (Fig. 4C),

and 89% of the C pz
RX

�
p{

RX

� �
distribution lies within pz

RX

�
p{

RX ,1,

with 70% below 0.95 (Fig. 4D). In the case of micF the results are

more clear-cut: all physically reasonable models have p{
RX v1 and

pz
RX

�
p{

RX v1 (Figs. 4C, 4D, and 5C).

Results are robust to parameter variation
In addition to the nominal parameter variations in Table 1, we

examined the sensitivity of the results to wider parameter variation

(Methods). The variations explored were: changing the value of

[R]T to 1,000 copies per cell; changing the value of KAR to 0.3, 1,

10, and 100 mM; and, instead of fixing the value of KA for each

promoter, sampling this parameter randomly between 0.25–

2,000 nM. We also repeated the entire analysis, including these

variations, using [B]T = 0 which eliminates the sequestering of free

polymerase by other interaction partners. Thus, the above

sampling and analysis approach was applied 13 additional times

for each of the promoters. For the general model, all of these

variations still yielded at least some promoter activation curves

with reasonable values of x2. With the exception of one variation,

the general model yielded significantly better fits than the strict

recruitment model for all promoters. The only exception was

KAR = 100 mM, which yielded best-fit strict recruitment models of

marRAB (x2 = 9.67) and sodA (x2 = 8.02) that were similar in quality

to the general model; however, this was not so for micF (x2 = 536),

and this value of KAR is at least a factor of five higher than the

values measured in vitro [12,13]. Using [B]T = 0 yielded only poor

fits in the strict recruitment limit (e.g., x2 values of 542, 63.8, and

1071 for the best-fit models of marRAB, sodA, and micF using

otherwise nominal parameter values from Table 1), and favored

models of sodA in which MarA does not change polymerase

occupancy.

Further validation of the model using CRP activation data
Given the results obtained for the MarA activation data, we

wondered whether our model would yield expected results when

applied to a transcription factor that is known to increase the

occupancy of polymerase at target promoters. We therefore

further validated the model by analyzing published data on

transcriptional activation of the lac operon by cAMP-CRP [15].

The cAMP-CRP-dependent relative promoter activity was

represented using the equation y~1z49x= xz5ð Þ, where x is

the concentration of the active CRP dimer in nM; this expression

is consistent with the data published in Bintu et al. [15]. We used a

strict recruitment model with c = 1, KA = 5 nM, KAR = 0.3 mM

[14], and parameters otherwise the same as the nominal values in

Table 1. Consistent with expectations [9], we found that the

recruitment model was entirely consistent with the CRP-

dependent lac promoter activity (Figure S2). Thus, our modeling

method is able to distinguish situations where recruitment applies

(e.g., lac) from those described here where it does not apply.

Discussion

The major conclusion of our study is that transcriptional

activation can involve a decrease in polymerase binding at the

promoter. Our model specifically predicts this is the case for MarA

activation of sodA and micF. The model also predicts that MarA

does not increase the occupancy of polymerase at the marRAB

promoter. For all of these promoters, the model predicts that

activation occurs largely through an increase in polymerase

activity when MarA is bound.

These predictions are consistent with two genome-wide studies

of polymerase interactions with the E. coli chromosome [16,17].

Grainger and coworkers [16] reported detection of polymerase at

the sodA promoter but not the marRAB promoter; that study did

not consider interactions at the micF promoter which controls

expression of an antisense mRNA transcript. In addition, we cross-

referenced the oligonucleotide coordinates of Herring et al. [17] to

transcriptional start sites annotated in the EcoCyc database [18],

and found strong-binding 50 bp DNA sequences correctly

positioned with respect to sodA (sequence beginning at 4,098,720

upstream of 4,098,780 start) and micF (sequence beginning at

2,311,050 upstream of 2,311,106 start), but not marRAB (only

weakly binding sequences near 1,617,117 start). The presence of

polymerase at sodA and micF in uninduced cells strongly suggests

that an increase in the affinity of polymerase is not needed to

activate these promoters which is consistent with the mechanisms

of MarA activation suggested here.

Although the possibility of activation involving decreased

polymerase binding might at first seem surprising, a decrease in

polymerase binding should really be seen as a natural consequence

of accelerated polymerase kinetics. Using a Michaelis-Menten

equation to describe transcription initiation with a lumped forward

rate kf, the value of KM = (koff+kf)/kon increases when kf increases

and the polymerase binding and dissociation rates kon and koff

remain constant. Thus, the apparent affinity of polymerase for the

promoter decreases when the forward rate of the reaction

Table 2. Properties of models with the lowest value of x2.

marRAB sodA micF

x2
min

9.15 6.72 2.49

aR 5.79(+1084)(24.43) 1017(+6357)(230) 157(+8)(29)

ea=kBT 26.08(+2.79)(22.33) 21.06(+0.50)(24.00) 26.21(+2.57)(20.29)

er=kBT 20.44(+0.70)(20.59) +0.37(+4.38)(20.81) +8.94(+0.12)(22.67)

p{
RX 0.995(+0.001)(20.334) 0.996(+0.003)(20.493) 0.979(+0.007)(20.005)

pz
RX

�
p{

RX
1.00(+1.87)(20.17) 0.998(+1.049)(20.681) 0.089(+0.264)(20.014)

Parameter values were sampled using nominal values and ranges in Table 1. Values of xmin are listed with asymmetric errors s+x and s2x as xmin(+s+x)(2s2x) (errors are
defined in Eq. (11)).
doi:10.1371/journal.pcbi.1000614.t002
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increases. Along these lines, it is also important to note a second

potentially counterintuitive possibility: activation might involve

retardation of polymerase kinetics when accompanied by a

sufficiently large increase in polymerase binding. This is also a

natural association because an attraction between activator and

polymerase at the promoter has the potential to hinder clearance.

Mechanisms of transcriptional activation have long been an

important subject of research and debate. The textbook

mechanism for activation of s70 promoters is recruitment

[8,9,19], in which activator merely increases the binding of

RNA polymerase at the promoter [20], and the classic example is

activation of the lac operon by cAMP-CRP [8]. The simplicity of

the recruitment model is appealing; however, it has long been

known that transcriptional activation by l phage repressor can

occur through acceleration of post-binding events leading to

promoter clearance [21,22,23], and that it is even possible for an

activator to directly stimulate polymerase transcription without

binding to DNA [24]. In addition, s54-polymerase binds at

promoters and is activated by enhancers that utilize nucleotides to

melt DNA, leading to open complex formation [25]. This use of

enhancers in activation of s54-polymerase is reminiscent of

activation of stalled polymerase in eukaryotes [26]; the similarity

is limited, however, since polymerase stalling in eukaryotes occurs

after transcription has already begun [27]. Aspects of the interplay

Figure 3. Dependence of x2 of promoter activity models on the acceleration energy and recruitment energy. A) marRAB; B) sodA; C)
micF. The value of x2 is plotted on the y-axis in all panels. The left panels plot acceleration energy (ea) and right panels plot recruitment energy (er) on
the x-axis. Points correspond to 10,000 different sets of parameter values, sampled using the nominal values in Table 1. Points with the lowest x2

value correspond to the systems in Table 2.
doi:10.1371/journal.pcbi.1000614.g003
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between the energetics of binding and post-binding events and

how they govern regulation of transcription have been examined

previously [28]. In this regard, the main novel outcome of our

work is not the finding that mechanisms other than increasing

polymerase binding might be important for transcriptional

activation, but rather the suggestion that activation might involve

a decrease in polymerase binding.

Another important outcome of our work is a model that

explains why the strength of MarA binding to promoters does not

parallel the order in which promoters are activated with increasing

MarA. A critical feature of our model in this respect is explicit

consideration of polymerase interactions with MarA and the

promoter. Because of these interactions, the shape of the activation

profile is not merely governed by KA, the MarA-DNA dissociation

constant, but is strongly influenced by er which characterizes the

interaction between DNA and the MarA-polymerase complex

(Eqs. (1)). The model therefore quite generally indicates that the

strength of activator binding is not expected to parallel the order of

activation. This finding not only runs counter to common

assumptions in modeling of gene regulation, but also has

important implications for prediction of regulon behavior, i.e.,

one cannot expect to predict the order of regulon activation in vivo

by measuring the affinity of activator for promoter DNA

sequences in vitro. By contrast, we expect interactions with

polymerase to be less important when a repressor decreases

expression by interfering with polymerase binding at the promoter.

Such interference corresponds to very large values of er in our

model which increases the importance of KA in determining the

promoter activity profile (Eqs. (1)). As a consequence, we expect

that it might be possible to exploit in vitro DNA-binding data to

predict the order of repression (or derepression) of a regulon.

It is important to note that our model was developed using data

from marRAB- rob- strains [7], in which the repressor MarR is

absent. In wild-type E. coli, MarR not only blocks polymerase

binding but also blocks MarA binding at marRAB [29]. We therefore

do not expect polymerase to bind at the marRAB promoter in the

absence of inducers that relieve MarR repression. On the other

hand, in wild-type E. coli, we do expect polymerase to be bound at

the sodA and micF promoters in the absence of inducers, as supported

by the chromatin immunoprecipitation experiments cited above

[16,17]. Rob is also missing in the marRAB- rob- strains. Rob is

constitutively expressed [30,31] and might recruit polymerase to the

sodA and micF promoters. However, in the absence of inducers, such

as dipyridyl, which bind to Rob and stimulate activation of target

promoters [32], Rob is mostly sequestered in inclusion bodies [33]

and cannot access the DNA [34]. Therefore evidence exists that

polymerase binds at the sodA and micF promoters in wild-type cells

without recruitment by Rob or MarA.

Finally we note that activation involving a decrease in polymerase

binding decreases latency in both activation and de-activation of

gene expression. In the case of activation, as noted in the above

argument assuming Michaelis-Menten reaction kinetics, the

decrease in polymerase binding is associated with acceleration

through an increase in the rate of transcription initiation. In the case

Figure 4. Cumulative probability distribution functions used to interpret the modeling results. The panels show plots of C(x), where the
x-axis corresponds to A) acceleration energy; B) recruitment energy; C) basal occupancy of polymerase at the promoter; and D) polymerase
occupancy ratio in the presence vs. absence of MarA. Results for marRAB (solid line), sodA (dashed line), and micF (dotted line) are plotted together in
each panel.
doi:10.1371/journal.pcbi.1000614.g004
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of de-activation, a decrease in polymerase binding is associated with

acceleration through an increase in the polymerase off rate.

Decreases in gene regulation latency can confer a competitive

advantage to E. coli in an ecological context [35]. We therefore

expect activation involving a decrease in polymerase binding to be

an important theme of gene regulation in E. coli and beyond.

Methods

Parameter values
We used a wide range of parameter values to model the MarA-

dependent activity of the marRAB, sodA, and micF promoters

(Table 1). These values were obtained as follows:

KAR. Using a liquid chromatography assay, Martin et al. [13]

measured a 0.3 mM dissociation constant for MarA-polymerase

complex formation in a crystallization buffer. Dangi et al. [12]

obtained a value of 21 mM in low-salt conditions using NMR.

Because we consider the NMR measurement to be more reliable,

we selected a nominal value of 21 mM for KAR. However, we are

uncertain about the correct value to use in vivo. To account for

uncertainty in KAR, we explored values of 0.3 mM, 1.0 mM, 10 mM,

and 100 mM. We expect the value of KAR to be promoter-

independent, and therefore only compare models across

promoters using the same value of KAR.
KA. The nominal value of 75 nM for the MarA-mar promoter

dissociation constant was obtained from the gel retardation assay

Figure 5. Dependence of x2 of promoter activity models on the basal occupancy of polymerase at the promoter, and the occupancy
ratio in the presence vs. the absence of MarA. A) marRAB; B) sodA; and C) micF. The value of x2 is plotted on the y-axis in all panels. The left
panels plot the basal occupancy (p{

RX ) and right panels plot the occupancy ratio (pz
RX

�
p{

RX ) on the x-axis. Parameter values were sampled as for Fig. 3,
using the nominal values in Table 1.
doi:10.1371/journal.pcbi.1000614.g005
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in Martin et al. [13]. The nominal value of 2,000 nM for sodA was

chosen to be consistent with the lack of binding observed in Martin

et al. [13]. The nominal value of 50 nM for micF was chosen from a

range of measured values from 8 nM to 80 nM, depending on the

preparation (R.G. Martin, unpublished results). To determine

whether the qualitative conclusions about activation mechanisms

are sensitive to the particular value of KA, we also analyzed the

model using a wide range of values for each promoter, 0.25–

2,500 nM.

KR. The value of the dissociation constant for polymerase

binding to the promoter is unknown and can vary depending on

the promoter. Marr & Roberts [36] measured a dissociation

constant of 3 nM for the s70 holoenzyme binding to a 19 bp

oligonucleotide containing the TATAAT consensus sequence. For

the nominal ranges in Table 1, we analyze models with a range of

values from 1 nM (strong binding) to 10,000 nM (weak binding).

For the recruitment model, following the expectation that

polymerase is bound with less than unit occupancy in the

absence of MarA, we considered a higher range of values

extending from 100 nM to 106 nM.

er. The free energy of interaction between MarA and

polymerase at the promoter is unknown and can vary depending

on the promoter. We found reasonable fits by analyzing models in

which er varies from 24.6 kBT to 4.6 kBT.

[R]T. Ishihama [37] and Meuller-Hill [38] estimate the total

number of polymerase molecules in the E. coli cell at 2,000 and

3,000, respectively. Although marRAB, micF, and sodA are s70

promoters, polymerase is distributed among holoenzymes that

contain different s factors in E. coli. We used a nominal value of

3,000 copies per cell, and analyzed the sensitivity of the fits to a

smaller value of 1,000 copies per cell.

KBR and [B]T. Similar to Bintu et al. [11], we assume that

polymerase binds nonspecifically to DNA with dissociation

constant KBR = 10 mM. However, instead of simply using a value

of 56106 binding sites (the approximate number of base pairs in

the E. coli chromosome), we allow for diffusion of polymerase on

DNA between binding and unbinding events which decreases the

effective number of sites. Guided by single-molecule studies of this

process for lac repressor [39,40], we assume polymerase diffuses

about 50 bp between binding and unbinding, yielding a reduced

estimate of [B]T = 105 sites. In our models, these values of KBR and

[B]T cause polymerase levels to be buffered, keeping the level

nearly unchanged at about 100 copies per cell when [R]T = 3,000

copies per cell, even as the concentration of MarA increases and

polymerase is diverted into the MarA-polymerase complex. We

also consider the sensitivity of our results to this effect by

eliminating it altogether, setting [B]T = 0.

aR and c. For each sample, we evaluated the model in the

strict recruitment limit, c = 1, and found the value of c that

minimized the value of x2 in the general model. We then

randomly sampled five additional values of c within a factor of 100

of the optimum. The scale factor aR captures numerous physical

effects and was always calculated to minimize the value of x2.

Optimal models were found by linear regression using Eq. (5).

For each model of each promoter, we randomly sampled 10,000

sets of parameter values from the nominal ranges in Table 1 and

calculated simulated IPTG-dependent activation profiles. The

strict recruitment model only used the value c = 1. For the general

model, aside from the optimal value of c, we sampled five

additional values. Thus, 10,000 sets of parameter values were

sampled for each strict recruitment model and 60,000 sets of

parameter values were sampled for each general model of

promoter activity. Parameter values were sampled in a log

uniform manner except for er, which was sampled linearly. We

explored a wider range of parameter values as described in the

manuscript; we used the above sampling scheme for each of these

variations. Fits were evaluated using a standard x2 statistic.

Analysis of fitting landscapes
The values of x2 determined for different parameter value

combinations represent samples in a fitting landscape. We used

Bayesian methods to analyze the fitting landscape, assuming a

likelihood function e{x2
i =2 for a sample with parameter combina-

tion i. In using this likelihood function, we assume that the errors

in measurements of mean promoter activity are independent and

normally distributed with widths equal to the standard error of the

mean (error values in Table S1). The probability Pi of the sample i

given the data is estimated as

Pi~e{x2
i =2

,X
j

e{x2
j =2, ð9Þ

where the index j is summed over all samples. The cumulative

distribution function C(x) for a parameter x is then given by

C xð Þ~
X

i:xivx

Pi, ð10Þ

where xi is the value of parameter x in sample i, and the sum is

restricted to samples i where xi,x. C(x) is interpreted as an estimate

of the probability that the parameter has a value less than x, given

all of the assumptions of the modeling, including the sampling

scheme.

To quantify the degree of uncertainty in estimated parameter

values within the nominal range, we calculated asymmetric errors

of parameter values with respect to the optimum (Table 2). The

squared errors for parameter x were calculated using the equation

s2
zx~

X
i:xiwxmin

xi{xminð Þ2Pi

s2
{x~

X
i:xivxmin

xi{xminð Þ2Pi,
ð11Þ

where xmin is the value of x in the sample with the lowest value of

x2.

Supporting Information

Figure S1 Calibration of IPTG levels against MarA levels. The

data (boxes) are well-described by Eq. (6) (line).

Found at: doi:10.1371/journal.pcbi.1000614.s001 (0.02 MB PDF)

Figure S2 Fit of the recruitment model to CRP-dependent

activity of the lac promoter. The data were generated using a Hill

equation based on previously measured promoter activity data

from Ref. [15], and the error bars were arbitrarily assigned for the

fitting.

Found at: doi:10.1371/journal.pcbi.1000614.s002 (0.02 MB PDF)

Table S1 Promoter activity data.

Found at: doi:10.1371/journal.pcbi.1000614.s003 (0.07 MB PDF)

Text S1 Equation for the free polymerase concentration

obtained by solving Eqs. (4) in the text. (It is a complex expression,

but evaluates to a real number for parameter values used in this

study).

Found at: doi:10.1371/journal.pcbi.1000614.s004 (0.03 MB PDF)
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