
Combining Structure and Sequence Information Allows
Automated Prediction of Substrate Specificities within
Enzyme Families
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Abstract

An important aspect of the functional annotation of enzymes is not only the type of reaction catalysed by an enzyme, but
also the substrate specificity, which can vary widely within the same family. In many cases, prediction of family membership
and even substrate specificity is possible from enzyme sequence alone, using a nearest neighbour classification rule.
However, the combination of structural information and sequence information can improve the interpretability and
accuracy of predictive models. The method presented here, Active Site Classification (ASC), automatically extracts the
residues lining the active site from one representative three-dimensional structure and the corresponding residues from
sequences of other members of the family. From a set of representatives with known substrate specificity, a Support Vector
Machine (SVM) can then learn a model of substrate specificity. Applied to a sequence of unknown specificity, the SVM can
then predict the most likely substrate. The models can also be analysed to reveal the underlying structural reasons
determining substrate specificities and thus yield valuable insights into mechanisms of enzyme specificity. We illustrate the
high prediction accuracy achieved on two benchmark data sets and the structural insights gained from ASC by a detailed
analysis of the family of decarboxylating dehydrogenases. The ASC web service is available at http://asc.informatik.uni-
tuebingen.de/.
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Introduction

The number of protein sequences in public databases has been

growing almost exponentially due to great advances in sequencing

technologies and a decline in sequencing costs. However, as the

number of experimentally characterised sequences does not grow

at the same speed, the fraction of protein sequences without any

functional annotation also increases. An experimental investiga-

tion of all these new sequences would be too time-consuming and

too costly. Consequently, the fraction of enzyme sequences in

current databases with experimentally characterised function is

around 5% only [1]. Therefore, automated computational

methods are needed to assign a putative function to unchar-

acterised sequences reliably.

To predict the putative function of a protein, currently

established methods rely on the fact that two proteins with

similarities between their sequences have similar structures and

also a similar function [2]. An uncharacterised enzyme sequence

can often be associated with a putative function by searching

against sequences of functionally characterised enzymes, using

BLAST [3] or Hidden Markov Models (HMMs) [4,5] and

annotating the query sequence with the function of the best hit.

There were several studies that tried to find a critical point for

the minimum degree of similarity that is required to make a

transfer of function safe when using such sequence-based tools to

infer enzymatic function by similarity [6–8]. In general, one can

assume an accuracy of at least 90% when transferring the function,

as defined by the full enzyme commission (EC) number, between

sequence pairs that have at least 60% sequence identity [1,8]. For

sequence identities below 60% the accuracy decreases quite

rapidly, making transfer of function by homology increasingly

error prone. At 40% sequence identity the accuracy of function

transfer already dropped to 50%. This is due to the fact that at

high sequence identity, most pairs are genuine orthologous

sequence pairs. However, at a lower sequence identity the

probability that paralogs get paired with the query sequence

increases, because the nearest ortholog to the query sequence

might be missing in the set of annotated sequences and so the

nearest paralog is chosen instead. This was also pointed out by

Chen and Jeong [9], who concluded that the crucial task of finding

annotated orthologous sequences to infer enzyme function should

be solved using detailed information about the residues lining the

active site or other residues identified by experiment. They argued

that in this way one can reliably separate orthologs from paralogs,

thereby making the transfer of functional annotation safe.

Incorporation of structural information into the process of

building a predictive model for enzyme specificity was also

suggested by Stachelhaus et al. [10] and Challis et al. [11] for
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Nonribosomal Peptide Synthetases (NRPS). They tried to infer a

specificity-conferring code of the active site, which could predict

what substrate would be used, based on the residues lining the

active site and sequence data. Subsequently, Rausch et al.

combined these approaches with Support Vector machines

(SVMs) for classification and achieved significantly improved

prediction performance [12].

Similarly, the EFICAz method devised by Tian et al. [13]

operates on functionally discriminating residues (FDR) that are

detected by analysing homofunctional and heterofunctional

multiple sequence alignments (MSAs) of members of an enzyme

family using information theoretic measures. However, no

structural information is used when determining those FDRs.

Prediction of enzyme function is then based on these FDRs and

combined with PROSITE pattern matches and familiy specific

thresholds for sequence identity.

The recent extension of this method named EFICAz2 further

added a SVM-based component built upon the positions of the

query sequence aligned to the MSA of the enzyme family [14] and

also a final Decision Tree model to increase the prediction

accuracy when making predictions for sequences that are more

distant to the training set. An approach similar to the FDR-based

method of EFICAz was devised by Hannenhalli and Russell and

based predictions of class membership only on those columns of a

family MSA that had a positive relative entropy (sub-profile

method) [15].

In this work, we propose a generalisation of the approach by

Stachelhaus and Challis to base function predictions on active site

residues and make it amenable to any enzyme family that has

associated structural information. Thus, classification errors

induced by using only the simple descriptor of global sequence

identity, which often fails when predicting more distant sequences,

could be ameliorated by the incorporation of additional structural

information about the active site configuration of the enzymes.

Our new approach, called Active Site Classification (ASC), can be

used for a family of enzyme sequences where all members perform

the same type of reaction but with different substrates. The only

requirement is a training set of annotated sequences and one

homologous crystal structure. The program will then train a SVM

model that can be used to predict the specificity of unclassified

sequences. Furthermore, the model can be used to infer which

residues and properties are important for each sub-specificity.

In the following sections we will show the very good

performance of ASC on two benchmark data sets and that the

performance gain is achieved by concentrating on the active site

residues. We will also show how the determined ASC model can

be used to learn more about the importance of each active site

residue and interpret their putative function in the structural

context of the active site.

Materials and Methods

Acquisition of sequence data
All sequences used in this study were extracted from the

UniProt release 15.8 from September 2009 [16]. SwissProt served

us as a source of reliable EC number assignment for the training

sequences used in this study. Sequences annotated as fragment,

tagged as probable or annotated with multiple EC numbers were

removed.

Benchmark data sets
The first benchmark data set was used by Hannenhalli and

Russel [15] to evaluate their sub-profile method and is a set of

enzyme classification problems that have clearly defined subtypes,

which are not easily discernible by sequence comparison or

phylogenetic analysis of the MSAs. This data set contains

nucleotidyl cyclases (EC 4.6.1.1, 4.6.1.2), eukaryotic protein

kinases (EC 2.7.11.-, 2.7.10.-), trypsin-like serine proteases (EC

3.4.21.70, 3.4.21.71, 3.4.21.1, 3.4.21.4) and lactate/malate

dehydrogenases (EC 1.1.1.27, 1.1.1.37). For the kinase family we

used the alignments of the Protein Kinase Resource [17] and all

other sequences were retrieved from SwissProt according to their

EC number.

The second benchmark was extracted from a data set compiled

by Capra and Singh [18]. Their data set contains MSAs of EC

annotated sequences that share a specific Pfam domain. Each

MSA contains two subtypes of an enzyme family, which share the

first three digits but differ in the fourth digit. Furthermore,

columns within the MSAs are also annotated whether they are in

proximity to a substrate in a representative template structure, the

distance cutoff is 5 Å. With this information we could extract the

active site residues and train our SVM models to benchmark ASC

on this data set. Of the original 284 pairs of subtype MSAs we

selected all MSAs with at least 15 sequences in each class to be

able to train statistical meaningful models during model validation.

After this filtering step we had 48 MSAs for benchmarking ASC.

1-NN classifier
The nearest neighbour classifier (1NN) is an instance-based

classifier. The 1NN classifier makes predictions for a test data

point xt by searching for the nearest data point xNN , according to

some distance function, in the training set and reports the label of

xNN as the predicted label for the test data point xt. The distance

between two enzymes is defined as the number of mismatching

residues in a sequence alignment of the complete enzyme

sequences.

Support vector machines
SVMs are supervised classification models that can be used to

train a classification model on a given set of m training samples

(xi,yi) where yi[fz1,{1g is the class label of the data point

xi[Rn. The SVM model consists of a hyperplane that partitions Rn

into two half-planes, one for each class. The functional form of the

SVM model is given by f (xt)~sgn(
P

i aiK(xt,xi)zb) in its dual

formulation. The hyperplane is determined using the maximum-

margin concept, thereby making the SVM model per design more

resilient to overfitting than many other classification models [19].

The training problem of the SVM model in its dual formulation

can be solved efficiently using quadratic programming routines or

Author Summary

Prediction of enzymatic function of experimentally un-
characterised sequences is an important task in annotation
of sequence databases. While all the information on an
enzyme’s specificity is necessarily contained in its se-
quence, prediction methods using sequence alone often
do not perform all that well. Obviously, structural
information – if available – will yield precious hints on
the function and relative importance of specific sequence
positions with respect to substrate specificity. We propose
a novel method (Active Site Classification, ASC) for enzyme
classification bringing together structural information and
sequence information. Our ASC web server allows users to
build predictive models in an automated way focused on
relevant enzyme residues and furthermore to interpret the
models to gain insights into the mechanism of enzyme
substrate specificity.

Active Site Classification
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specialised SVM libraries. We used the popular LIBSVM

implementation [20] to train the SVM models. Another advantage

of SVMs is the easy step from linear to non-linear classification

models by the use of kernels [21]. Multiclass classification

problems are solved by training
n(n{1)

2
pairwise classification

models Mij and then using a test sequence with all pairwise models

Mij that give votes for either class i or class j. In a final step, all

votes are summed and the class receiving most of the votes is the

predicted class label.

Sequence kernels
Kernel methods like SVMs can also operate directly on the

objects to classify without prior encoding of these objects into

numerical feature vectors. This is made possible by the use of

kernel functions that are defined on those objects and represent a

similiarity measure. Within ASC we make use of several kernel

functions that are defined on the set of signature sequences. The

first one is a simple string kernel KS that uses the number of

matching symbols as a similarity measure. The second kernel is the

BLOSUM kernel KB that uses the summed similarity score of the

BLOSUM62 matrix between pairs of signature sequences as a

kernel. The BLOSUM62 matrix B has to be transformed from its

log-odds form back into the substitution probability form M [22]

to construct a valid Mercer kernel k(x,y)~xtMy defined on

aligned pairs of amino acids, where x and y are indicator vectors

encoding the two aligned amino acids. The kernel KB on

sequences can then be defined by summing the kernel values

k(x,y) over all aligned positions of two signature sequences [23].

The third kernel KC can be defined by using the positive semi-

definite chemical similiarity matrix MCLA720101 from the

AAindex database instead of the transformed BLOSUM matrix

[24]. Our last kernel KW is defined by encoding each signature

amino acid into three descriptors z1,z2,z3 and using the scalar

product between the feature vectors in the space of encoded

sequences as a kernel function. The descriptors were derived by

Wold et al. [25] and encode information about hydrophobicity,

size and electronic properties. For comparison purposes we also

made use of the RBF kernel defined on the full MSA as introduced

by Arakaki et al. [14].

Interpretation of SVM models
Importance of specific signature positions for the classifcation

models can be either quantified by calculating the primal weight

vector w of the SVM model and then sort the weights by absolute

magnitude to get a ranking of the importance of each variable and

its corresponding signature position. This can only be done with

kernels having a primal representation, like the Wold kernel KW

and the simple string kernel KS . For kernels that are defined in the

dual space only, one can quantify the influence of a signature

position by restricting kernel computation to a single column of the

signatures during a full cross-validation (CV) run. The importance

of each position is then given by its achieved classification

accuracy. In a multiclass setting the accuracy of each pairwise

classification model Mij is taken as the score of a signature position

for discriminating between the two respective classes.

Training and performance measures
We evaluated the performance of our ASC method in a fashion

similar to the evaluation of the EFICAz method by ensuring that the

training set sequences are not too similar to the test sequences

(according to sequence identity) [14]. The similarity of the test and

training set sequences is controlled by the maximum training to

testing sequence identity (MTTSI). We used the sequence identity

computed over all aligned residues as similarity measure. The models

were trained using nested cross-validation (CV). The outer CV-loop

leaves one data point out and does model-selection on all remaining

data points that do not have a sequence identity higher than a given

MTTSI value by using 5-fold cross-validation in the inner loop. The

model-selection routine in the inner loop searches for the

hyperparameter C[f10{2,10{1,1,101, . . . ,103g that yields the

best SVM model using only the retained data. Model selection is

guided by the accuracy estimated in the inner CV-loop.

The selected model is then used to predict the class of the left-out

data point. The generalisation capability of the SVM model is

estimated by computing for each class the precision~tp=(tpzfp)
and recall~tp=(tpzfn) and averaging these statistics over all classes.

The overall accuracy of a model is then given by the harmonic mean

of these two measures F~2(prec|rec)=(preczrec), called the

F-measure.

The ASC method
The ASC method utilises SVMs to build a model that discriminates

between two or more classes of enzymatic activity. It starts with training

data in the form of sequences from each sub-specificity class and a PDB

structure [26] that serves as a structural template. The location of the

enzyme’s active site is identified by specifying a certain residue or

substrate contained in the template PDB structure. If there is no co-

crystal structure with substrate available, but the spatial location of the

active site is known, three dimensional coordinates can be supplied

alternatively to define the active site.

In a preprocessing step, all sequences with a sequence identity to

the template that is too low (v20%) are discarded. In the first step

the five most diverse sequences from each class are chosen and

aligned using 3D-Coffee [27] to get a guide MSA to which all

other sequences are subsequently aligned (Figure 1A). In the

second step, all residues that are close enough to the active site of

template structure (normally within 6 Å) and receive a high CORE

score by 3D-Coffee (w4) are extracted (Figure 1B) [28]. These

signature subsequences from each sequence represent residues

occupying spatially equivalent regions in the active site (Figure 1C).

The active site signatures are then transformed into numeric

feature vectors by encoding each amino acid from a signature into

the three descriptors z1, z2 and z3 (Figure 1D). Gaps are encoded

by three zeros. The resulting labelled feature vectors are then used

to train a SVM to get the final classification model (Figure 1E).

Alternatively, kernel functions can be used to work directly on the

signature sequences. The weights are sorted according to their

absolute magnitudes, yielding a ranking of the importance of the

active site residues. Residues whose descriptors receive higher

weights are more important for the classification of the enzymes.

Results/Discussion

Previous studies already showed that functional annotation of a

test sequence is easy, if the sequence identity to an annotated

sequence is above 60%, since the probability of error when

transferring the annotated function of the hit to the query sequence

is rather low [8,14]. Thus, we assessed the performance of ASC by

trying to predict the function of test sequences that are more distant

to the training set. Therefore, we choose a MTTSI that is generally

below 60%. However, the exact value where function annotation

becomes trivial depends also on the enzyme family under study.

Tian et al. [8] already defined family-dependent sequence identity

thresholds (SIT) for each EC class where annotation based on

sequence identity becomes very reliable. Thus, we tried to choose

the MTTSI threshold below these determined SITs. However, we

also had to ensure that the MTTSI is not too low to have enough

Active Site Classification
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training sequences to build our ASC models during the nested

validation runs. We compared ASC to the 1NN classifier, serving as

our baseline. The 1NN classifier can be seen as a more sophisticated

BLAST classifier, since the alignment of the query is based on the

full MSA and is not a simple pairwise alignment. To rule out that

improvements of ASC over the 1NN classifier are not simply due to

the use of SVMs, we also give the performance of the SVM classifier

based on the whole MSA. This classifier can be seen as an ASC

model with infinite cutoff distance. Arakaki et al. [14] already

observed a performance increase when using SVM classifiers based

on the MSA within EFICAz2 compared to the FDR-based classifier

used in the first version of EFICAz. We applied all defined kernels,

including the RBF kernel of EFICAz2, when building the ASC and

MSA-based SVM models, and report only the performance of the

best model. In this way we can also compare the performance of

ASC to the best performing classification component of the

EFICAz2 system by including the performance of the SVM based

on the full MSA. In both benchmarks the performance is given by

the F-measure achieved by the classifiers. Detailed tables containing

F-measure, precision, recall and best performing kernels can be

found in the supplementary material (Text S1, Text S2).

Hannenhalli benchmark
Overall, the ASC model had three wins against the 1NN

classifier and two wins against the SVM classifier based on the full

MSA (Table 1). Thus, ASC clearly outperformed the sequence-

distance based 1NN classifier, delivering very good performance in

all four cases. Moreover, the classification improvement was

achieved by using the active-site signatures instead of the full

MSA, because the MSA-based model is also outperformed by the

ASC model in two cases. The residues found most relevant for the

ASC model were those that were already identified by experiment

and also detected by the sub-profile method. We will describe the

ASC results on the four enzyme families in more detail now.

Protein kinase family
We used the crystal structure of the ternary complex of a protein

kinase (PDB-Id: 1ATP, [29]) to determine the active site residues

that are within 6 Å of the substrate ATP. The kinase family was

modelled well with a maximal F-measure of 100% by all three

methods. The 1NN classifier already achieved optimal perfor-

mance on this family (Table 1). However, the ASC model also

achieved optimal performance using only a fraction of the

residues. The three most important residues for the ASC model

were positions Thr201 (accuracy = 99.6%), Lys168 (accura-

cy = 99.2%) and Glu170 (accuracy = 97.7%). The importance of

each signature position is given by the accuracy of the ASC model

trained on solely this position. These residues were also detected

by the sub-profile method devised by Hannenhalli and are known

as putative modulating positions [30,31].

Nucleotidyl cyclase family
Clear performance improvements achieved by the ASC method

over the two baseline classifiers can be seen for the cyclase family.

Figure 1. Graphical overview of the ASC method. (A) In the first step training sequences are aligned using 3DCoffee to get an MSA. (B) In a
second step residues lining the active site are extracted from the template structure. (C) The third step maps the extracted residues along the MSA to
get a signature of the active site for each sequence. (D) These signatures are then encoded into feature vectors using the three descriptors z1{z3 .
Alternatively, kernels may be used. (E) The final ASC model is trained using the generated feature vectors.
doi:10.1371/journal.pcbi.1000636.g001

Table 1. ASC performance on Hannenhalli benchmark.

Family 1NN ASC K WDL ASC MSA K WDL MTTSI N

Cyclase 0.66 0.97 B W 0.97 0.38 B W 0.2 137

Kinase 1.00 1.00 S D 1.00 1.00 S D 0.4 294

Dehydrogenase 0.95 0.98 B W 0.98 0.98 B D 0.4 376

Trypsin 0.81 0.90 W W 0.90 0.80 W W 0.5 78

F-measures of the nearest neighbour classifier, the ASC classifier and the best classifier based on the full MSA are given in the columns 1NN, ASC and MSA, respectively.
The first part of the table compares ASC with the 1NN classifier and the column WDL gives the wins, draws and losses of the pairwise comparisons. The best performing
kernels are given in the columns labelled K. Similarly, the second part of the table compares ASC with the SVM classifier based on the full MSA. The last columns give the
used MTTSI value and the number of available sequences.
doi:10.1371/journal.pcbi.1000636.t001
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The ASC model was built using the crystal structure of an adenyly

cyclase (PDB-Id: 1AB8, [32]) and a distance cutoff of 5 Å. The

1NN classifier and the classifier based on the full MSA failed to

achieve satisfying F-measures, whereas the ASC classifier achieved

a very high F-measure of 97% (Table 1). The four most important

residues, according to their influence on the ASC classification

model, were Asp1018 (accuracy = 98.5%), Ile1019 (accura-

cy = 97.7%), Trp1020 (accuracy = 93.9%) and Lys938 (accura-

cy = 87.4%). These residues are known to have influence on the

substrate specificity of nucleotidyl cyclases as shown by Tucker

et al. [33]. These residues were also detected by the sub-profile

method [15].

Trypsin family
The ASC model for the trypsin family was built using a crystal

structure of a serine protease (PDB-Id: 1AQ7, [34]) and a distance

cutoff of 5 Å. The ASC classifier achieved a satisfying F-measure

of 90%, whereas the 1NN and MSA-based classifier achieved a F-

measure of roughly 80% only (Table 1). The three top-ranking

residues that discriminate between chymotrypsin and trypsin were

positions Asp189 (accuracy = 98.2%), Gly226 (accuracy = 92.4%),

Gly219 (accuracy = 90%) and Ala221 (accuracy = 84.4%). Asp189,

Gly226 and Ala221 were also detected by the sub-profile method

and two of them, namely Asp189 and Ala221, are long known

modulators of protease specificity [15].

Malate/lactate dehydrogenase family
The ASC model for the dehydrogenase family was built using

the crystal structure of a malate dehydrogenase from E. coli (PDB-

Id: 1EMD, [35]) and a distance cutoff of 5 Å. Generally, this

family was modelled well by all three classifiers with F-measures

above 90% and there were only minor differences among the

models. The residues with the greatest influence on the ASC

model were Met227 (accuracy = 98.2%) and Arg81 (accura-

cy = 97.4%). Especially, the Arg81 residue is a proven specificity

modulating position because mutating this residue to glutamine is

known to confer lactate specificity [36].

Capra benchmark
To get a better impression of the performance of our new

method, we applied the ASC, 1NN and full MSA classifiers to a

larger benchmark data set of 48 enzyme pairs extracted from the

data set compiled by Capra and Singh [18]. Table 2 gives the

performance of the classifiers as quantified by the F-measure. The

first striking fact is that the 1NN classifier was quite competitive

even in MTTSI ranges below 70%. There are 22 enzyme pairs

where ASC and the 1NN classifier performed equally well.

However, there were also 21 cases where the ASC model

outperformed the 1NN classifier along with only 5 losses. The

SVM models based on the full MSA were also quite competitive

having 16 cases of equal performance with ASC and 8 cases where

ASC performed worse. However, there are 24 cases where ASC

outperformed the MSA-based classifier. The averaged F-measures

of the MSA-based classifier, 1NN and ASC were 90%, 92% and

95%, respectively. Thus, the ASC method based on active site

signatures is a clear step to more accurate function prediction

especially for sequences with a greater distance to the training set.

This is exemplified by the 11 cases where the ASC models could

perfectly discriminate between the classes with a F-measure of

100% whereas the 1NN classifier clearly failed to achieve the same

performance on these cases. Most often the simple string kernel KS

sufficed to build the best ASC or MSA-based model, with the

other kernels showing similar performance. However, for some

cases only one kernel excelled over the others. Some cases could be

better modelled by the BLOSUM kernel, whereas other cases

were better modelled by the Wold kernel KW . Thus, it is advisable

to try all kernel functions when building ASC models and keep the

best performing one.

Decarboxylating dehydrogenases
To exemplify the interpretability of the ASC models we present

a full analysis of the family of decarboxylating dehydrogenases.

This family features enzymes that catalyse the dehydration and

decarboxylation of several malate derivatives, namely isocitrate, 3-

isopropylmalate and tartrate [37]. The substrates have a malate in

common but differ in their c-substituents. It was shown that the 3-

isopropylmalate dehydrogenase (IPMDH) does not utilise isocit-

rate as substrate and also that the isocitrate dehydrogenase

(ICDH) does not utilise isopropylmalate as substrate [37].

Furthermore, IPMDH shows a relaxed specificity for alkylmalates,

and accepts a wide range of substrates alkylated at the c-site [37].

We could extract 61, 286 and 8 sequences from SwissProt that

were annotated as isocitrate (EC 1.1.1.42), 3-isopropymalate (EC

1.1.1.85) or tartrate dehydrogenases (EC 1.1.1.93), respectively.

EC class 1.1.1.83 contains enzymes that are also members of this

family and utilise D-malate. But they were not included as a

separate class in this set, since these enzymes seem to be equivalent

to the enzymes from EC class 1.1.1.93. The tartrate enzymes

readily utilise D-malate as substrate, according to the Km and kcat

values given by the BRENDA database [38] for the enzymes of

class 1.1.1.93. Hence, we put the eight tartrate- and eight D-

malate-specific sequences into one class. For the ASC analysis of

this set of sequences, we used the crystal structure of a 3-

isopropymalate dehydrogenase from Thiobacillus ferrooxidans (PDB-

Id: 1A05, [37]) as the structural template and extracted all residues

within 6 Å of the cognate substrate 3-isopropylmalate. Because it is

known that IPMDH forms homo-dimeric complexes, we chose

this crystal structure of the homo-dimeric form of the enzyme to

enable ASC to select residues from all chains of the enzyme that

are in contact with the substrate [37]. In the initial filtering step,

333 sequences could be aligned with sufficient sequence identity to

the template sequence and a reliable guide MSA with an overall

CORE score of 69 could be built. From this MSA, 17 residues

lining the active site were extracted (Table 3). The resulting ASC

model, using the string kernel KS , achieved a F-measure of 99%

(precision = 99%, recall = 100%) when evaluated at an MTTSI of

60%.

Model interpretation: Isocitrate vs. isopropylmalate
specificity

The two top-ranked features of the model discriminating

isocitrate-specific enzymes from isopropylmalate-specific enzymes

were residues Leu91 (accuracy = 98.2%) and Val193 (accura-

cy = 97.2%) in the template structure 1A05. The enzymes acting

on isocitrate, with its charged c-site that accepts hydrogen bonds,

prefer asparagine residues at position Leu91. Whereas enzymes

acting on isopropylmalate prefer leucine. When inspecting the

superimposed structures of the two enzymes shown in Figure 2, the

preference of replacing Leu91 with asparagine in the isocitrate

dehydrogenase can be explained by the hydrogen bond formed

between the carboxylate group at the c-site of isocitrate and the

terminal amino group of asparagine. The isopropylmalate

enzymes replace the hydrogen bonding asparagine with the

hydrophobic Leu91, which can interact optimally with the

aliphatic c-site of isopropylmalate.

At position Val193, the ICDH enzymes prefer an isoleucine

whereas IPMDH enzymes prefer valine. One possible explanation

for these preferences might be that the isocitrate c-site is more

Active Site Classification
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Table 2. ASC performance on Capra benchmark.

EC pair 1NN ASC WDL ASC MSA WDL MTTSI

1.1.1.100/1.1.1.62 0.72 0.76 W 0.76 0.85 L 0.40

1.1.1.103/1.1.1.284 1.00 1.00 D 1.00 1.00 D 0.40

1.1.1.1/1.1.1.103 0.96 1.00 W 1.00 1.00 D 0.40

1.1.1.1/1.1.1.284 0.56 0.82 W 0.82 0.74 W 0.60

1.1.1.41/1.1.1.42 0.94 0.72 L 0.72 0.94 L 0.50

1.1.1.41/1.1.1.85 1.00 1.00 D 1.00 0.96 W 0.60

1.1.1.42/1.1.1.85 0.98 1.00 W 1.00 0.98 W 0.60

1.2.1.3/1.2.1.71 1.00 1.00 D 1.00 1.00 D 0.50

1.2.1.3/1.2.1.8 0.92 0.93 W 0.93 0.83 W 0.60

1.4.1.3/1.4.1.4 1.00 1.00 D 1.00 1.00 D 0.60

1.8.1.4/1.8.1.7 1.00 1.00 D 1.00 1.00 D 0.60

2.1.2.2/2.1.2.9 0.88 1.00 W 1.00 1.00 D 0.30

2.1.3.2/2.1.3.3 0.77 1.00 W 1.00 0.91 W 0.30

2.2.1.1/2.2.1.7 0.99 1.00 W 1.00 0.98 W 0.50

2.3.1.16/2.3.1.9 0.81 0.93 W 0.93 0.96 L 0.50

2.4.2.10/2.4.2.7 0.84 1.00 W 1.00 0.90 W 0.30

2.4.2.22/2.4.2.8 1.00 1.00 D 1.00 1.00 D 0.40

2.4.2.8/2.4.2.9 1.00 1.00 D 1.00 0.91 W 0.40

2.5.1.10/2.5.1.29 0.42 0.75 W 0.75 0.34 W 0.40

2.5.1.1/2.5.1.10 0.52 0.58 W 0.58 0.65 L 0.50

2.5.1.1/2.5.1.29 0.53 0.77 W 0.77 0.73 W 0.50

2.6.1.11/2.6.1.62 1.00 1.00 D 1.00 0.88 W 0.40

2.6.1.11/2.6.1.13 0.94 0.94 D 0.94 0.83 W 0.50

2.6.1.11/2.6.1.76 1.00 1.00 D 1.00 0.46 W 0.40

2.6.1.13/2.6.1.62 1.00 1.00 D 1.00 1.00 D 0.40

2.6.1.13/2.6.1.76 1.00 1.00 D 1.00 1.00 D 0.40

2.6.1.1/2.6.1.9 1.00 1.00 D 1.00 1.00 D 0.40

2.6.1.62/2.6.1.76 1.00 1.00 D 1.00 1.00 D 0.40

2.7.2.11/2.7.2.8 1.00 1.00 D 1.00 1.00 D 0.40

2.7.3.2/2.7.3.3 0.96 1.00 W 1.00 0.96 W 0.70

3.1.1.1/3.1.1.7 0.68 1.00 W 1.00 0.85 W 0.40

3.5.3.1/3.5.3.8 0.95 0.95 D 0.95 0.94 W 0.40

3.6.3.6/3.6.3.8 0.98 0.76 L 0.76 0.97 L 0.40

4.1.1.17/4.1.1.20 1.00 1.00 D 1.00 1.00 D 0.40

4.2.1.3/4.2.1.33 0.98 0.99 W 0.99 0.37 W 0.40

4.2.1.3/4.2.1.36 1.00 1.00 D 1.00 0.70 W 0.40

4.3.1.3/4.3.1.5 1.00 1.00 D 1.00 0.93 W 0.40

4.3.2.1/4.3.2.2 1.00 0.97 L 0.97 1.00 L 0.40

5.1.3.2/5.1.3.20 1.00 1.00 D 1.00 1.00 D 0.50

5.4.2.10/5.4.2.2 0.86 0.62 L 0.62 0.96 L 0.40

6.1.1.11/6.1.1.15 1.00 0.97 L 0.97 1.00 L 0.50

6.1.1.12/6.1.1.22 0.94 0.98 W 0.98 0.91 W 0.40

6.1.1.12/6.1.1.6 1.00 1.00 D 1.00 1.00 D 0.40

6.1.1.15/6.1.1.3 0.99 1.00 W 1.00 0.89 W 0.40

6.1.1.17/6.1.1.18 0.98 1.00 W 1.00 0.98 W 0.60

6.3.2.13/6.3.2.8 1.00 1.00 D 1.00 1.00 D 0.40

6.3.2.13/6.3.2.9 0.83 1.00 W 1.00 0.93 W 0.30

6.3.2.8/6.3.2.9 0.85 0.98 W 0.98 0.92 W 0.30

F-measures of the nearest neighbour classifier, the ASC classifier and the best classifier based on the full MSA are given in the columns 1NN, ASC and MSA, respectively.
The first part of the table compares ASC with the 1NN classifier and the column WDL gives the wins, draws and losses of the pairwise comparisons. Similarly, the second
part of the table compares ASC with the SVM classifier based on the full MSA. The last column gives the used MTTSI value.
doi:10.1371/journal.pcbi.1000636.t002
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flexible due to the additional carbon atom and is oriented to the

asparagine residue at position Leu91. The shorter isopropyl lacks

this flexibility and is therefore located near position Val193, where

IPMDH enzymes prefer the smaller valine. The larger isoleucine

placed by ICDH enzymes might function as a further switch to

filter out substrates featuring rigid isopropyl substituents at the c-

site. The c-site of the cognate substrate isocitrate of ICDH would

orient itself to the asparagine, whereas the isopropyl group of

isopropylmalate molecules would clash with the large isoleucine

residue that is preferred at position Val193 by the ICDH enzymes.

Model interpretation: Tartrate vs. isopropylmalate
specificity

The two most important residues in the model that discrimi-

nates between the substrates tartrate and isopropylmalate were

Glu88 (accuracy = 100%) and Val193 (accuracy = 97%). Enzymes

specific for tartrate or malate prefer the large amino acid

tryptophan at the position corresponding to Glu88, whereas the

enzymes specific for substrates with larger substituents at the c-site

prefer amino acids like glutamate or arginine. Tryptophan may act

as a filter to prevent substrates with larger c-substituents to bind

efficiently to the active site. The substitution pattern at site Val193

seems to be coupled to the placement of the tryptophan. Enzymes

having a tryptophan at position Glu88 prefer a glycine or alanine

at the position corresponding to Val193, probably to prevent steric

clashes with the tryptophan now located nearby.

Availability of the predictive web server
The whole workflow for combining sequence and structural data,

building the classification model and interpreting the model parameters

in the context of the enzyme’s structure is made available to users by

the means of a web service. ASC itself is implemented in C++ and

makes use of the BALL library to process protein structures [39]. The

web server also offers a specialised report page for model interpretation,

where the sequence signatures are linked to the structure of the active

site in an interactive fashion using a Jmol applet to visualise the

structure. A typical result page can be found in the supplementary

material (Text S3). When labelled sequence data is scarce a special

extract-only mode of ASC can give a first overview of the active site

conservation by only extracting the active site signatures. The ASC

web service is available at http://asc.informatik.uni-tuebingen.de/.

Conclusion
We have presented our new method ASC for enzyme sequence

classification, which combines sequence data and structural data. By

using structural information, we can focus the classification task on

features that are most likely relevant for modulating substrate

specificity, namely the residues lining the active site. The two

benchmarks showed that classification accuracy can be clearly

improved by concentrating on the extracted active site signatures

and that this improvement is not simply due to the use of SVMs,

because the ASC models also outperformed the SVM models

trained on the full MSA in many cases. Futhermore, ASC also

provides a ranking of the active site residues based on their influence

on the decision function. The application of ASC on the benchmark

data set by Hannenhalli showed that the set of residues found most

relevant for the ASC classification model very often coincided with

those residues found relevant by experimental analysis or detected

by other computational methods like the sub-profile method. Unlike

sequence based classification or FDR-determining methods, ASC

had of course the advantage of using structural information and

could pre-filter the list of putative specificity modulating residues.

Therefore, a direct comparison with those methods would be unfair.

However, we think that using this additional source of information is

essential for building more accurate function prediction models.

In general, one has to keep in mind that ASC can fail in cases

where residues modulate specificity, that are not located in the

vicinity of the active site, since the premise of ASC is to use only

active site residues. This is not necessarily a limitation of the method

though. The absence of any active site signature differences between

enzymes with differing class labels can serve as an indication to

search for allosteric influences on substrate specificity or to check if

the annotation really is correct and both enzymes in reality may be

utilising the same substrates or show some cross-specificity.

Applications for our ASC method lie especially in the use of the

trained models as predictors of enzymatic function within an

enzyme family for sequences that are more remote to the training

set and could be predicted more reliably using the extracted active

site signatures. But also detection of new subtypes is possible by

Figure 2. View on the superimposed active sites of IPMDH and
ICDH. The first chain of the homo-dimeric enzyme is represented by its
solvent-excluded surface. The second chain is depicted in a backbone
representation. The two substrates isocitrate (purple) and isopropylma-
late (green) lie in the interface of the two chains. IPMDH sidechains are
coloured green and sidechains from ICDH (PDB-Id: 1AI2, [40]) are
coloured purple. This figure was created using BALLView [41].
doi:10.1371/journal.pcbi.1000636.g002

Table 3. Decarboxylating dehydrogenases active site
signature.

Number Amino acid CORE score Number Amino acid CORE score

1 Val73 8 10 Lys190* 9

2 Glu88 6 11 Asn192* 9

3 Leu91 7 12 Val193* 7

4 Leu92 8 13 Asp222* 9

5 Arg95 9 14 Asn242 9

6 Arg105 8 15 Asp246 8

7 Arg133 9 16 Asp250 9

8 Leu135 7 17 Glu275 9

9 Tyr140 9

Residue identifiers are taken from the template crystal structure (PDB-Id: 1A05).
Residues highlighted with asterisks are from chain B of the homo-dimeric
enzyme. The CORE scores are those from the family MSA generated by
3DCoffee.
doi:10.1371/journal.pcbi.1000636.t003
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searching for novel active site signatures in the pool of all extracted

signatues of an enzyme family with subsequent experimental

validation. Regarding the applicability of ASC, even remote

structural homologs might suffice to extract active site residues for

novelty detection and classification purposes. Thus, ASC models

might be built for many enzyme families to further improve

annotation accuracy within current genome annotation pipelines.

Moreover, one can try to verify experimentally the findings

gathered in the model interpretation step by mutating residues

found relevant to discriminate between two specificities to design

mutated enzymes with reduced or even switched substrate

specificity. This was exemplified by the dehydrogenase example

where we could pinpoint the influence of the residues found

relevant on a detailed structural level by inspecting the

superimposed active sites of the two enzymes, thereby making

predictions of the model more transparent. Finally, our ASC web

service allows users to interpret the learned ASC model in the

context of the template structure and can yield insight into the

mechanisms of substrate specificity by focusing on residues in

proximity to the active site and analysing the allowed sequence

variation in the corresponding columns of the family MSA.

Supporting Information

Text S1 ASC performance on Hannenhalli benchmark

Found at: doi:10.1371/journal.pcbi.1000636.s001 (0.08 MB PDF)

Text S2 ASC performance on Capra benchmark

Found at: doi:10.1371/journal.pcbi.1000636.s002 (0.09 MB PDF)

Text S3 ASC web server result page of NRPS dataset

Found at: doi:10.1371/journal.pcbi.1000636.s003 (0.19 MB PDF)
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