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Abstract

An object in the peripheral visual field is more difficult to recognize when surrounded by other objects. This phenomenon is
called ‘‘crowding’’. Crowding places a fundamental constraint on human vision that limits performance on numerous tasks.
It has been suggested that crowding results from spatial feature integration necessary for object recognition. However, in
the absence of convincing models, this theory has remained controversial. Here, we present a quantitative and
physiologically plausible model for spatial integration of orientation signals, based on the principles of population coding.
Using simulations, we demonstrate that this model coherently accounts for fundamental properties of crowding, including
critical spacing, ‘‘compulsory averaging’’, and a foveal-peripheral anisotropy. Moreover, we show that the model predicts
increased responses to correlated visual stimuli. Altogether, these results suggest that crowding has little immediate
bearing on object recognition but is a by-product of a general, elementary integration mechanism in early vision aimed at
improving signal quality.
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Introduction

Since Korte [1] originally described perceptual phenomena of

reading in peripheral vision, a substantial number of studies have

shown the important role of spacing for object recognition. The

phenomenon that an object becomes more difficult to recognize

when surrounded by other objects is now popularly known as

‘crowding’ [2] (see [3,4] for two recent reviews).

The strength of the crowding effect depends on the spacing

between objects (Figure 1). The largest spacing at which there is a

measurable effect is commonly referred to as the ‘critical spacing’.

An important and often replicated finding is that the critical

spacing for object recognition is proportional to the viewing

eccentricity [5]. Moreover, critical spacing is found to be highly

invariant to a great variety of stimulus manipulations, such as

contrast and size [6–8]. Critical spacing is the most extensively

studied crowding property and, because of its robustness, now

sometimes considered the defining property of crowding [3].

Crowding is a general phenomenon in vision. It is not confined to

letter and shape recognition, but affects a broad range of stimuli and

tasks, including the identification of orientation [9–11], object size,

hue and saturation of colors [12], recognition of faces [13,14],

reading [15], and visual search [16–18]. Altogether, crowding

emerges as a fundamental limiting factor in vision, making the

question about its neural basis and functional origin rather pressing.

Several theories have been proposed to explain the crowding

effect [4,19]. Currently, there is a growing consensus that

crowding results from feature integration over an area that is

larger than the target object [4]. However, there is a marked

controversy about both the underlying mechanism and the

functional origin of the effect. Some authors assert the existence

of bottom-up hardwired integration fields (e.g., [3]), while others

claim that feature integration arises from limitations related to the

spatial resolution of attention (e.g. [20,21]). Postulated functions of

feature integration include texture perception [10], contour

integration [22], and object recognition [3,23]. In the absence of

quantitative, biologically motivated models, however, it is not clear

whether these theories can also quantitatively account for the

‘mysteries of crowding’ [4], and how plausible they are from a

biological perspective.

Here, we present a quantitative model for spatial integration of

orientation signals. Our model is based on the principles of

population coding [24], which is an approach that mathematically

formalizes the idea that information is encoded in the brain by

populations of cells, rather than by single cells. Motivated by findings

from physiological [25,26] and theoretical [27] studies, we model

feature integration as a (weighted) summation of population codes.

Using simulations, we demonstrate that this approach allows to

explain several fundamental crowding properties in a single, unified

model, including aspects of critical spacing [6,15], compulsory

averaging of crowded orientation signals [10], and an asymmetry

between the effects of foveally and peripherally placed flankers

[28,29]. Moreover, we show that the model predicts enhancement of

signals that encode visual contours, which could facilitate subsequent

contour detection and segmentation and adds support to earlier

findings about a link between crowding and contour integration.

Altogether, our main finding is that feature integration,

implemented in a neurophysiologically plausible way, produces
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crowding as a by-product. Furthermore, our results add support to

an earlier suggested link between crowding and contour

integration, and they point at V4 as a likely locus for feature

integration cells (at least for the orientation domain).

Results

Model
Several different population coding schemes have been

proposed in the literature [30]. Although they differ in their

details, the general idea behind all of them is that variables are

encoded in the brain by entire populations of cells. Our model is

based on the ‘distributional population coding’ (DPC) scheme that

was proposed by Zemel et al. [31]. In this scheme, a population

code explicitly encodes a probability distribution over the stimulus

domain. In this section we will only provide a general overview of

our model. Mathematical details can be found in the Methods

section.

The input to the model consists of a set of stimuli, each one

defined by a location, orientation, contrast, and size (Figure 2a).

The first layer of the model represents full probability distributions

over the input stimuli. These distributions are assumed to be

Gaussian, with a width that depends on the eccentricity, contrast,

and size of the stimuli (Figure 2b). Subsequently, these probability

distributions are used as inputs to the DPC encoder that computes

a population code representation for each of the stimuli (Figure 2c).

The properties of the cells (e.g., tuning width) in the first layer are

chosen such that they closely resemble V1 simple cells (see

Methods for parameter values).

In the second layer, stimulus representations from the first layer

are spatially integrated, in the form of weighted summations of cell

responses (Figure 2d). The integration weights depend on the

cortical distance in primary visual cortex between the locations of

the ‘integration cell’ and the cells encoding the input stimuli (for

details about the weight function and mapping of visual field to

cortical locations, see Methods). This function can be interpreted

as defining a cortical ‘integration field’. The size and shape of

these integration fields can be thought of as representing the

arborization of the dendritic tree, i.e., the distribution of lateral

connections of a physiological integration cell. The weight

function is a 2D Gaussian, thus reflecting that there are many

short-range connections and fewer long-range connections. Unlike

the first layer, which is a simulation of V1 simple cells, it is

currently difficult to link the cells from the second layer to a very

specific cortical area. Nonetheless, if we compare the predictions

that follow from optimization of our model parameters to the

current physiological literature, then we find V4 to be a likely

candidate. We come back to this in the discussion section.

Several of the simulation experiments that we conducted

required that a response be generated (e.g., when simulating

psychophysical experiments involving target tilt estimation). In

those simulations, a maximum-likelihood decoder was used to

decode the post-integration population code associated with the

target position back to a stimulus distribution (Figure 2e). The

number of components of the returned mixture model was

interpreted as the number of distinct orientations perceived at the

location associated with the decoded population code, the mixing

proportions as the amounts of evidence for the presence of an

orientation, the means as estimates of these orientations, and the

standard deviations as the amounts of uncertainty about these

estimates.

Critical regions for crowding
A well-established behavioral finding in human observers is that

identification thresholds for a crowded target decrease as a

function of target-flanker spacing until a certain critical spacing is

reached. Beyond this critical spacing flankers no longer have an

effect (see, for example, the results shown in Figure 1). In our

model, the integration fields are implemented as weight functions

of stimulus spacing in cortex. Consequently, flanker stimuli affect

the identification of a target only when positioned within a certain

distance from the target, yielding a critical region for target

identification.

To examine whether our model can quantitatively account

for critical regions found for human subjects, we performed a

Figure 1. An example demonstrating the crowding phenome-
non. Top: The two B’s are at equal distance from the fixation cross. On
the left, where the center-to-center spacing between the letters is
approximately one half of the eccentricity of the central letter, the ‘‘B’’
can easily be recognized when fixating the cross. Letter spacing on the
right is much smaller, and the ‘‘B’’ appears to be jumbled with
its neighbors. Bottom, left: Human data from a typical crowding
experiment. Crowding diminishes as target-flanker spacing is increased,
up to a certain critical spacing after which flankers have no effect.
Bottom, right: Findings from psychophysical studies show that critical
spacing is a linear function of target eccentricity. Data from [12].
doi:10.1371/journal.pcbi.1000646.g001

Author Summary

Visual crowding refers to the phenomenon that objects
become more difficult to recognize when other objects
surround them. Recently there has been an explosion of
studies on crowding, driven, in part, by the belief that
understanding crowding will help to understand a range
of visual behaviours, including object recognition, visual
search, reading, and texture recognition. Given the long-
standing interest in the topic and its relevance for a wide
range of research fields, it is quite surprising that after
nearly a century of research the mechanisms underlying
crowding are still as poorly understood as they are today.
A nearly complete lack of quantitative models seems to be
one of the main reasons for this. Here, we present a
mathematical, biologically motivated model of feature
integration at the level of neuron populations. Using
simulations, we demonstrate that several fundamental
properties of the crowding effect can be explained as the
by-product of an integration mechanism that may have a
function in contour integration. Altogether, these results
help differentiate between earlier theories about both the
neural and functional origin of crowding.

A Population Code Model for Crowding
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simulation that mimicked the psychophysical experiment by Pelli et

al. [15], who estimated critical regions for letter identification at

several positions in the visual field.

Critical regions predicted by our model were estimated as follows.

For each target position, identification thresholds were determined

for a range of target-flanker spacings (see Figures 3a and 3b; we refer

to Methods for details about the procedure that was used to estimate

identification thresholds). A ‘clipped line’ was fit to the resulting

data, providing an estimate of the critical spacing (Figure 3c). By

varying the positions of the flankers, we estimated critical spacing in

several directions around the target. Combining these spacings gives

an estimate of the critical region around a given target location

(Figure 3d). We estimated model parameter values that result in a

good model fit to one of the critical regions measured by Pelli et al.

Subsequently, we repeated the experiment for the other target

locations using the same parameter values, and found that the

Figure 2. A graphical illustration of our model. A. In this example, the input consists of three oriented bars (the colors are only for visualization
purposes and not part of the input to the model); B. Probability distributions are defined for the input stimuli; these distributions capture the stimulus
uncertainty caused by neural noise in processing stages prior to the first layer of the model; C. In the first layer, a neural representation is computed
for each of these distributions; D. In the second layer, the stimulus representation at each location is integrated with the representations of stimuli at
neighboring locations. Integration is implemented as a weighted summation, such that nearby stimuli receive higher weights than stimuli that are far
away; E. The resulting population codes are decoded to a mixture of normal distributions, with each component representing a perceived orientation
at the respective location; F. Due to integration, the resulting percept of closely spaced stimuli will be crowded.
doi:10.1371/journal.pcbi.1000646.g002

A Population Code Model for Crowding
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model accurately predicts all reported human critical regions

(Figure 3d). These results thus provide quantitative evidence for the

suggestion that the behavioral crowding regions found in humans

can be explained as the result of fixed-sized, hard-wired integration

fields in visual cortex.

Effect of stimulus manipulations on critical spacing
The critical spacing for crowding is known to scale with

eccentricity and is consistently found to be in the range 0.3–0.6

times the target eccentricity [6]. Moreover, it is found to be largely

invariant under changes to the physical properties of the stimulus,

such as the size, contrast, and number of flankers [6] and the

‘scaling’ of stimuli (i.e., changing the size of both the target and

flankers) [6–8].

To further verify our model, we conducted another series of

simulation experiments, in which we manipulated several stimulus

properties. We found that the results are compatible with findings

in human subjects: critical spacing predicted by our model scales

linearly with target eccentricity and is hardly affected by stimulus

manipulations (Figure 4).

Compulsory averaging of crowded orientation signals
Human observers are able to report the mean orientation of a

set of crowded stimuli, but not the orientations of the individual

stimuli [10]. This peculiar crowding property is generally referred

to as ‘compulsory averaging’. In the experiment of Parkes et al.,

observers reported the tilt direction of a variable number of

equally tilted targets positioned among horizontal flankers. Parkes

et al. found that a relatively simple pooling model could account for

human data when the total number of stimuli is kept constant.

However, when targets are presented without flankers, identifica-

tion thresholds dropped significantly slower as a function of the

number of targets than predicted by their model (Figure 5b). They

postulated a ‘late noise’ factor to explain the discrepancy between

data and model.

Our model suggests the following explanation for the compul-

sory averaging phenomenon. When two features are highly

similar, their population code representations have a high degree

of overlap and will merge when summed. Consequently, the

resulting post-integration code will be interpreted as representing a

single feature with a value somewhere in between the values of the

Figure 3. Comparison of crowding regions reported for humans with crowding regions estimated by our model. A. The input stimulus
on each trial consisted of a 610u tilted target stimulus and two 30u tilted flankers placed on opposite sides of the target. If the sign of the post-
integration stimulus representation associated with the target position was the same as the sign of the input target, then performance on that trial
was considered correct; B. Performance was estimated for a range of target contrasts, yielding a curve that is very similar to psychometric curves
typically found with human experiments (compare, for example, with data shown in Figure 1). Based on these curves, contrast thresholds were
estimated that produce 75% correct performance; C. Contrast thresholds decrease as target-flanker spacing is increased. The smallest spacing at
which the flankers do not have an effect is defined as the critical spacing; D. Critical spacings were estimated in several directions around the target,
at five different target positions. These simulation data accurately reproduce the critical regions measured psychophysically in humans. Human data
from [15].
doi:10.1371/journal.pcbi.1000646.g003

A Population Code Model for Crowding
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input stimuli (Figure 5a). To examine whether our model can also

quantitatively account for compulsory averaging, we conducted a

simulation experiment with conditions and stimuli similar to those

used in the psychophysical experiment performed by Parkes et al.

[10]. The results show that our model produces accurate fits to the

psychophysical data for both the condition with and without

flankers (Figure 5b).

An important difference between our model and the pooling

model proposed by Parkes et al. is that the latter integrates all

stimuli with equal weight, while integration in our model is

weighted by object spacing. To verify the relevance of this aspect

in explaining why the models make different predictions, we reran

the simulations with varying stimulus spacing (see Text S1 and

Figure S3 for results). We found that when we set all integration

weights in our model to one (implying an object spacing of zero),

the identification thresholds predicted by our model are similar to

those predicted by the pooling model of Parkes et al. Additionally,

the predictions of the models increasingly diverge when object

spacing is increased. These results confirm that object-spacing

related weighting of integration is an essential difference between

the models. Moreover, they challenge the need for the ‘late noise’

factor proposed by Parkes et al. to explain their results.

Peripheral flankers cause stronger crowding than foveal
flankers

Several studies [5,29] have found that, with equal target-flanker

spacing, flankers positioned at the peripheral side of a target cause

stronger crowding effects than flankers positioned at the foveal

side. As has been noted previously [16], this asymmetry follows

directly from the way that the visual field is mapped onto the

cortex. With increasing eccentricity, the representation of visual

space becomes more and more compressed. Consequently, for

equal target-flanker spacing in visual space, the cortical distance

between the representation of a target and a foveal flanker is larger

than that between a target and a peripheral flanker. Assuming that

cortical integration fields are isotropic, peripheral flankers will,

therefore, contribute more to the integrated target signal than

foveal flankers.

We conducted a simulation experiment to verify whether our

model replicates the foveal-peripheral anisotropy and to investi-

gate how its predictions depend on target-flanker spacing. For

several target-flanker spacings, we estimated 75%-correct target

contrast thresholds for identifying the tilt of a target without a

flanker, a target with a foveal flanker, and a target with a

peripheral flanker (Figure 6a). The results show that while both the

foveal and peripheral flanker produce crowding (Figure 6b), the

effect caused by a peripheral flanker is substantially larger than

that caused by a foveal flanker (Figure 6c). Hence, our model

exhibits a foveal-peripheral flanker anisotropy. Furthermore, the

model predicts the anisotropy to be strongest at intermediate

spacings while it predicts no anisotropy when target-flanker

spacing is very small or approaches the critical spacing

(Figure 6d). In these simulation data, the strongest anisotropy is

found when target-flanker spacing is about 2 degrees (i.e., about

0.3 times the target eccentricity). At this spacing, threshold

elevation caused by the peripheral flanker is predicted to be

approximately 2.5 times that caused by the foveal flanker. This is

comparable to the effect size measured for human observers [29].

Spatial integration enhances signals from correlated
stimuli

The results so far suggest that crowding is what happens when

signals from closely-spaced, unrelated stimuli are integrated with

each other. However, in normal viewing conditions, signals from

Figure 4. Simulation results showing the effect of several stimulus manipulations on estimated critical spacing. The shaded areas
represent the range of critical spacings that are typically reported in the literature (0.3–0.6 times target eccentricity). Standard errors are smaller than
the marker size. A. Critical spacing scales linearly with target eccentricity; B–F. Critical spacing is only weakly affected by various stimulus
manipulations. The eccentricity of the target was 6 degrees in these experiments.
doi:10.1371/journal.pcbi.1000646.g004

A Population Code Model for Crowding
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closely-spaced stimuli are often correlated (e.g., neighboring line

segments of an edge or smooth contour). It has been suggested that

integration of such correlated (orientation) signals may underlie

phenomena such as contour integration [25,32,33].

To see how our model responds to signals from correlated

stimuli, we ran a simulation with an input stimulus consisting of a

set of line segments comprising various contours within a noisy

background (see Methods for details). The results are shown in

Figure 7. Line segments that are part of a contour clearly stand out

in the post-integration representation. This is because both

stimulus density and orientation correlation are higher for

contours than for the random background. This result supports

an earlier suggested link between contour integration and

crowding [22], but firm conclusions would require further

extensive evaluation. Note that in areas away from fixation, in

the periphery of the visual field, the decoder often returned

stimulus distributions that represent more than one orientation

value. This indicates that the post-integration codes at those

locations are ambiguous in terms of the encoded orientation. In

other words, when stimulus spacing is small relative to eccentricity,

stimuli become jumbled with their neighbors, just as observed in

crowding.

Discussion

We presented a model of spatial feature integration based on the

principles of population coding. While there is a growing

consensus for the theory that spatial feature integration is

responsible for crowding [4], the model that we presented here

is the first to quantitatively account for several fundamental

properties of this phenomenon in a coherent and biologically

plausible manner. Besides replicating the properties of the critical

spacing of crowding, and the anisotropic crowding effects of foveal

versus peripheral flankers, our model also replicates and explains

‘compulsory averaging’ of crowded orientation signals. Further-

more, it suggests that crowding may be the by-product of a

Figure 5. Compulsory averaging of crowded orientation signals explained as the result of ‘merging’ population codes. A. Simulation
results illustrating how the ‘compulsory averaging’ effect arises in our model. Top row: example input stimuli, consisting of a vertical target flanked by
two equally tilted flankers. Second row: single trial examples of population codes representing the post-integration stimulus at the target position.
Third row: distributions of the orientations encoded at the target locations after integration (1000 trials). Bottom row: corresponding distributions of
the number of perceived stimuli at the target position. When target and flanker tilt are nearly identical, their population code representations merge
into a single hill of activity when integrated. The resulting code is decoded to a single orientation, with a value intermediate between the values of
the input stimuli. This effect diminishes when the difference between target and flanker tilt is increased; B. Model fit to human psychophysical data.
Top: Example stimuli of the experiment described in [10]. The task was to report the tilt direction of a variable number of equally tilted targets
positioned within a set of horizontal flankers. Bottom: Identification thresholds predicted by our model are very close to those found for human
subjects. Human data from [10], subject LP.
doi:10.1371/journal.pcbi.1000646.g005

A Population Code Model for Crowding
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Figure 6. Simulation results illustrating the anisotropic effects of foveal vs peripheral flankers on target identification. A. Stimuli
consisting of a 610u tilted target, flanked by either no flanker, a foveal flanker, or a peripheral flanker. B. Both flankers elevate target tilt identification
thresholds, but this effect is largest for peripheral flankers. We define threshold elevations TEfoveal and TEperipheral as the 75%-correct target contrast
found for the condition with a foveal and peripheral flanker, respectively, divided by the 75%-correct target contrast found for the condition without
a flanker. C. Predicted threshold elevations plotted as a function of target-flanker spacing. When target-flanker spacing is small or when it approaches
the critical spacing, the effects of foveal and peripheral flankers are comparably strong. However, in the intermediate range, a peripheral flanker
produces larger threshold elevations (i.e., stronger crowding) than a foveal flanker. D. The same data as in C, but now shown as a ratio (i.e., the values
at black data points from panel C divided by those at the red data points).
doi:10.1371/journal.pcbi.1000646.g006

Figure 7. Simulation results showing how our model responds to visual contours. Left image: input stimulus, consisting of a set of
oriented line segments comprising several contours within a noisy background. The ‘+’ symbol indicates the center of the visual field and was not
part of the stimulus. Central image: a visualization of the stimulus representation in the first layer of our model, which is a noisy version of the input.
The contrast of the bars is set to the median of the contrasts in the right image. Right image: a visualization of the decoded stimulus representations
after integration. At every original input location, the post-integration population code was decoded to a mixture of normal distributions. The
contrast of each bar is proportional to the associated mixing proportion. Note the highlighting of the contours and the crowding effects in the
periphery, which agrees well with the subjective experience when viewing the input stimulus.
doi:10.1371/journal.pcbi.1000646.g007

A Population Code Model for Crowding
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mechanism aimed at enhancing the saliency of ecologically

relevant stimuli, such as visual contours.

Physiological motivation
The cells in the first layer are modeled after V1 simple cells (see

Methods for accompanying parameter values). However, there is

currently no agreement about the cortical locus of the ‘integration

cells’ that are supposed to underlie crowding. Therefore, we

decided to make minimum assumptions about their physiological

origin. Consequently, the size and shape of their receptive fields,

determined by srad and stan (see Methods), were taken to be free

parameters, such that the parameter values that provide a good

fit to experimental data can be considered a prediction for the

receptive field properties of the integration cells underlying

crowding. We found that the best model fit to the data is obtained

with integration cells that are strikingly similar to a type of cell that

has recently been identified in V4 (of cat and monkey) [34,35].

The function of these cells is currently unknown [36]. Hence, we

speculate that these V4 cells spatially integrate information from

V1 (either directly or mediated by V2). Their possible function

may be contour integration (e.g., as a precursor for shape coding),

with crowding as a by-product. Interestingly, other, independent,

lines of evidence also have suggested that crowding occurs beyond

V1 [21,37] with V4 as a likely candidate area [38].

The parameter settings (see Methods) in our model were fixed

over the entire range of simulations that we performed, with one

minor exception (see Figure 3). We reran a number of simulations

with different parameter values and found that this hardly affected

our results (see Text S1 and Figure S4 for details). This suggests

that crowding is an inherent property of a mechanism that

integrates signals by summing population codes.

Comparison with other theories
These results shed new light on earlier proposed crowding

theories. Some authors have proposed that crowding is, at least in

part, the result of ‘source confusion’ due to positional uncertainty

[39,40]. We would like to note, however, that integrating signals

over space necessarily increases positional uncertainty. Hence, we

consider location uncertainty and, consequently, ‘source confu-

sion’ a result of feature integration, rather than an additional

factor in the explanation of crowding. Indeed, our results show

clear evidence for ‘source confusion’, even though we did not

explicitly incorporate positional uncertainty into our model (for an

example, see Figure 5a).

When spatially averaging signals in a retinotopically arranged

‘feature map’ (such as V1), activation patterns that are caused by

closely spaced stimuli may slightly shift towards each other (or

even completely merge together, if spacing is very small). As a

result, an averaging of stimulus positions may be perceived in such

situations. In a recent paper it was shown that judgments of the

position of a crowded target object are systematically biased

towards the positions of flanking objects [41]. The authors of that

paper explained their results by a model that averages stimulus

positions. Based on the foregoing argument, their results can

presumably just as well be explained as a result of averaging

feature signals over space.

A recent theory suggests that crowding is the ‘breakdown of

object recognition’ [3]. The reasoning is that spatial integration of

object features (in the notion of ‘binding’) is required for object

recognition, whereas crowding occurs when multiple objects fall

within the same integration field. Our results indicate that the

spatial signal integration underlying crowding may enhance

responses for correlated signals, such as contours. This corrobo-

rates an earlier suggestion that the ‘association fields’ that have

been proposed to underlie contour integration [42] may also cause

crowding [22]. While such enhancement of responses to correlated

signals will no doubt facilitate higher-order functions such as

object recognition, integration appears to have a more elementary

and general function.

Other authors argue that crowding is the result of attentional

limitations [20,21], although evidence for these theories is

considered very slim [4]. While we deem it possible that attentional

factors have modulatory effects on crowding, our present results

show that the general properties of crowding can very well be

accounted for without invoking attentional mechanisms.

It has also been suggested that crowding is ‘texture perception

when we do not wish it to occur’ [10]. The motivation behind this

proposal is the finding that observers cannot identify individual

stimulus properties in a crowded display, but still have access to its

average statistics (i.e., its texture properties). Our model is able to

explain this finding (see Figure 5), and we agree that what occurs

after pooling can be described as ‘texture perception’. However, in

view of the plausible connection between spatial integration

and contour integration, we hesitate to conclude that texture

perception is the primary function of spatial integration.

Moreover, if a functional link exists between spatial integration

and texture perception, then we deem it just as likely that

integration serves to compress visual information, in order to

reduce energy requirements at higher levels of processing.

Limitations
Two crowding properties that our current model does not

account for are the effects of ‘target-flanker similarity’ and ‘flanker

configuration’. The former refers to the finding that crowding is

stronger for target-like flankers compared to dissimilar flankers

[9,43,44]. The ‘flanker configuration’ effect refers to the finding

that crowding is partially ‘released’ when surrounding flankers

form a contour [45,46]. A rather natural extension to our model

may allow it to account for these two effects as well. At present, the

integration fields in our model represent exclusively excitatory

horizontal connections between cells. Alongside these excitatory

connections, however, many of the cells in primary visual cortex

are known to have inhibitory connections as well as feedback

connections from higher-order brain areas [47]. Inhibition could

reduce the integration of dissimilar pieces of information and thus

be responsible for target-flanker similarity effects in crowding.

Likewise, the feedback connections might inhibit the integration of

signals that are likely to represent different objects or ‘perceptual

groups’ and, therefore, be responsible for configuration influences

on crowding.

Generalization to crowding in other domains
The model and simulations that were presented in this paper

are limited to the orientation domain. However, crowding is a

rather general phenomenon that affects a large number of tasks,

including discrimination of letters and objects sizes, colors, and

shapes. Since population coding is considered the general way by

which variables are encoded in the brain [24], crowding of other

basic features such as size and color [12] can presumably be

explained by a model that is largely analogous to the one presented

here. Moreover, if population coding is also used to encode more

complex information, and spatial integration takes place at many

different levels of processing, then our model predicts that

crowding should also be found at many different levels. Hence,

crowding of more complex structures (such as letters, object

shapes, bodies, and faces) could follow both from crowding in their

constituent features and from crowding within higher-order

population codes that represent the structures themselves [48].
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Predictions
Our model licenses a number of predictions that can be tested

experimentally. For example, the simulations related to the

‘compulsory averaging’ effect predicts the effects of stimulus

spacing and contrast on identification thresholds. Additionally, the

model makes quantitative predictions regarding the effect of

spacing on the foveal-peripheral flanker anisotropy of crowding.

Finally, the model makes predictions about the receptive field

properties of the integration cells responsible for crowding,

Conclusion
The results that we presented here lend strong quantitative

support to the theory that the mechanism behind crowding is

spatial feature integration, and our model provides a computa-

tionally motivated physiological basis to this theory.

Methods

Model
Input stimuli are specified as 4-tuples S~(h,a,l

I

,c), where h is

the orientation, a the size, l
I

~(lx,ly) the location, and c the

(relative) contrast of the stimulus. For each of these inputs we first

define a corresponding probability distribution, which is subse-

quently used as input to the distributional population coding

scheme of Zemel et al. [31]. The width s of an input distribution

represents the perceptual uncertainty about a stimulus and is

related to stimulus eccentricity l~ l
I
��� ���, size a, and contrast c, in

the following way (see Text S1 for motivation):

s~0:4
lz2:5ffiffiffiffiffi

ca
p

� �
ð1Þ

In order to account for the circularity of the orientation domain,

we define these distributions to be circular normal (von Mises)

distributions. More specifically, the distribution over orientation s

for a stimulus S~(h,a,l
I

,c) is defined as:

p(sjh�,k)~
1

2pI0(k)
exp k cos (s{h�)½ �, {pƒsvp ð2Þ

where I0(k) is the modified Bessel function of order 0, k ¼D s{2 is

an inverse measure of statistical dispersion, and h� is a value drawn

from the normal distribution N(h,s2) over s. In the simulation

experiments we map the stimulus domain [290,90) deg to [2p, p).

The tuning curves fi(s) of the cells are defined as circular normal

functions over s:

fi(s)~g(c,a) exp
cos (s{si){1

2s2
t

� �
, {pƒsvp ð3Þ

where si is the preferred orientation of cell i, st the width of the

tuning curves, and g(c,a) an S-shaped function that defines how

cell gain relates to the contrast c and size a of a stimulus (see Text

S1 and Figure S1).

Following the DPC scheme, we compute the average response

of cell i to a stimulus S~(h,a,l
I

,c) as follows:

SriT~rbasez

ð
p(sjh�,k)fi(s) ds ð4Þ

where rbase is the level of spontaneous activity and h� drawn from

a normal distribution with mean h and a standard deviation s. In

order to evaluate this integral numerically, we approximate the

input distributions p(sjh�,k) by histograms H
I

~fH1, . . . ,HJg and

the tuning functions fi(s) by histograms F
I

i~fFi1, . . . ,FiJg,
both with bin centres linearly spaced in the range ½{p,p). Hence,

we can rewrite equation (4) to

SriT~rbasez
X

j

HjFij ð5Þ

A population code rh~frh1,rh2,:::,rhJg representing a stimulus

Sh~(hh,ah,l
I

h,ch) is constructed by drawing responses rhi from

Poisson distributions

P½rhijH
I

h�~e{SrhiT SrhiTrhi

rhi!
ð6Þ

The second layer of the model spatially integrates the stimulus

representations in the first layer. The layer-2 population code

Rh~fRh,1, . . . ,Rh,Jg that is associated with position l
I

h is

computed as a weighted sum over the population code

representations of all N input stimuli:

Rhi~
XN

k~1

w(l
I

h,l
I

k)rki ð7Þ

where w(l
I

h,l
I

k) is a 2D Gaussian weight function that represents

the cortical integration fields (see Text S1 and Figure S2 for details).

Several of our simulation experiments require that a task

response is generated. In those experiments, a Bayesian decoder is

used to estimate the stimulus probability distribution that is

encoded in the post-integration population code associated with

the target position. Subsequently, the orientation with the highest

probability is interpreted as representing the most likely orienta-

tion of the target, and chosen for response. We use the Bayesian

Information Criterion to choose the most likely mixture model

among a set of models with 1, 2, and 3 mixture components. We

refer to the Text S1for all mathematical details of the decoder.

Model parameters
The parameter settings of the model were as follows. In all

simulations, the width of the tuning curves st was set to 150, the

number of neurons J comprising one population code was set to 90,

the spontaneous firing rate rbase was set to 5 spikes/s, and the

maximum firing rate was set to 90 spikes/s. The only parameters that

varied between simulations were srad and stan, which determine the

integration field width in the ‘radial’ and ‘tangential’ direction,

respectively (see Text S1). These were set to 2.5 and 1.0 mm,

respectively, in all simulations, except the one in which we estimated

critical regions (Figure 3), where the values were set to 1.6 and

1.1mm, respectively. This difference is motivated by the observation

that the human data in Figure 3 are from a subject with an unusually

small critical spacing (approximately 0.3 times the target eccentricity).

Estimation of target identification thresholds and critical
spacing

Several simulation experiments involved estimation of target

contrast thresholds for a tilt identification task. In those

experiments, the procedure on a single trial was as follows. The

target and flanker stimuli were encoded and their representations

integrated, as described above. Subsequently, the post-integration

population code associated with the target position was decoded to

A Population Code Model for Crowding
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a mixture of normal distributions. The sign of the orientation

associated with the peak location in the returned probability

distribution was compared with the sign of the input target.

Performance was considered ‘correct’ if the signs were the same,

and ‘incorrect’ otherwise. Performance estimates were made for

several target contrasts, by simulating 50 trials for each contrast.

Finally, a sigmoid function with a mean a and a width b:

g(x; a,b)~
50

1ze{(x{a)=b
z50 ð8Þ

was fit to these data, in order to obtain an estimate of the target contrast

that yields 75%-correct performance (see Figure 3b for an example).

In the simulation experiments that estimated critical spacing,

the above procedure was repeated to obtain 75%-correct

thresholds for several target-flanker spacings. A ‘clipped line’ was

fit to these thresholds in order to estimate critical spacing (see

Figure 3c for an example).

Estimation of critical regions (Figure 3)
Input stimuli consisted of a 610u tilted target and two 30u tilted

flankers, positioned at opposite sides of the target. Flanker contrast

and the size of both the target and flankers were set to 1. Using the

procedure described above, critical spacing was estimated for the

same target and flanker positions as in the psychophysical

experiment by Pelli et al. [15].

Effect of stimulus properties on critical spacing (Figure 4)
The input stimuli consisted of a 610u tilted target, one 230u

tilted flanker, and one +30u tilted flanker. Flanker contrast and the

size of both the target and flankers were set to 1. Critical spacing

was determined for flankers positioned along the radial axis, on

opposite sides of the target.

Compulsory averaging of crowded orientation signals
(Figure 5)

In the first simulation (Figure 5a), input stimuli consisted of a 0u
tilted target and two flankers with 10u tilt in the first condition and

50u tilt in the second condition. The target was positioned at 2.5 deg

of eccentricity. The flankers were positioned on opposite sides of the

target, with a spacing of 0.5 deg of eccentricity. The contrast and

size of all stimuli were set to 1. Stimuli used in the second simulation

(Figure 5b) were similar to those used in the psychophysical

experiment by Parkes et al. [10]: N tilted targets and 9-N vertical

flankers (first condition) or no vertical flankers (second condition),

with a central position of 2.5 deg of eccentricity and a spacing of 0.5

deg between the central stimulus and surrounding stimuli. The

contrast and size of the stimuli were set to 0.5. On a single trial, the

post-integration population code associated with the central

stimulus position was decoded to a unimodal stimulus distribution.

The sign of the orientation with the highest probability was

compared with the sign of the target. If they were the same,

performance on that trial was considered correct. We measured

performance over 100 trials for varying target tilts. Based on these

data, 75%-correct performance thresholds were determined. This

procedure was repeated for different values of N.

Foveal-peripheral flanker anisotropy (Figure 6)
Input stimuli consisted of a 610u tilted target without a flanker

(condition 1), with a 30u tilted foveal flanker (condition 2), or a 30u
tilted foveal flanker (condition 3). Flanker contrast and the size of

both the target and flankers were set to 1. For all three conditions,

75%-correct target contrasts were estimated for a range of target-

flanker spacings. Threshold elevations TEfoveal and TEperipheral were

defined as described in the main text.

Model response to visual contours (Figure 7)
The input stimuli consisted of a set of oriented bars, comprising

three contours within a field of randomly oriented bars. The circle

contour consisted of 35 equally spaced segments, was centered at (0,10)

degrees of eccentricity and had a radius of 4 degrees of visual angle.

The other four contours consisted of 23 line segments each, with a

spacing of 0.7 degrees of visual angle between every two neighboring

segments. The randomly oriented line segments were placed on a grid

with a radius of 18 degrees of eccentricity and a grid spacing of 2.0

degrees. The contrast and size of all line segments was set to 0.8.

Supporting Information

Figure S1 Graphical illustration of the function used in the

model to relate the response gain of a population code to the

(relative) size and contrast of the stimulus that it encodes.

Found at: doi:10.1371/journal.pcbi.1000646.s001 (0.08 MB TIF)

Figure S2 A graphical illustration of how the ‘radial’ and

‘tangential’ distance between an integration field and stimulus are

computed. A. Visualization of the right visual hemifield. The red

marker indicates the center location of an integration field. The

blue marker indicates the location of a stimulus. B. Cortical

representation of the visual hemifield. C. The cortical distance

between the integration field center and the stimulus along the

eccentricity axis is defined as the ‘radial’ distance. The distance

along the orthogonal axis is defined as the ‘tangential’ distance.

Found at: doi:10.1371/journal.pcbi.1000646.s002 (0.31 MB TIF)

Figure S3 Predicted identification thresholds for a target identifi-

cation task with N equally tilted targets and no flankers. Thresholds

predicted by our model depend on object spacing. For a spacing of 0,

the predictions match those from the pooling model by Parkes et al.;

for a spacing of 0.5, the predictions of our model match the

psychophysical data that were measured with the same object spacing;

for spacings that are close to or larger than the critical spacing, our

model predicts that identification thresholds are independent of the

number of targets. Human data from [4], subject LP.

Found at: doi:10.1371/journal.pcbi.1000646.s003 (0.15 MB TIF)

Figure S4 Results of a simulation that estimated critical spacing for

a tilt identification task of a target located at 6 degrees of eccentricity.

The stimuli and procedure were the same as for the simulations in the

main experiment. These results show that critical spacing is hardly

affected by the model parameters, which indicates that critical

spacing is a general property of the type of model that we proposed.

Found at: doi:10.1371/journal.pcbi.1000646.s004 (0.45 MB TIF)

Text S1 Mathematical details of the model described in the

main text, and supplementary simulation results.

Found at: doi:10.1371/journal.pcbi.1000646.s005 (0.19 MB

DOC)

Acknowledgments

We thank Marije van Beilen, Eli Brenner, Koen Haak, Ignace Hooge,

Richard Jacobs, Jan Bernard Marsman, Remco Renken, Katarina Varnäs,

Tony Vladusich, and, especially, Wei Ji Ma, Denis Pelli, Hans Strasburger,

and two anonymous reviewers for helpful comments and suggestions.

Author Contributions

Conceived and designed the experiments: RVdB FWC. Performed the

experiments: RVdB. Analyzed the data: RVdB JBTMR FWC. Wrote the

paper: RVdB JBTMR FWC.

A Population Code Model for Crowding

PLoS Computational Biology | www.ploscompbiol.org 10 January 2010 | Volume 6 | Issue 1 | e1000646



References
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