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Introduction

Functional genomics has demonstrated

considerable success in inferring the inner

working of a cell through analysis of its

response to various perturbations. In

recent years several technological advanc-

es have pushed gene perturbation screens

to the forefront of functional genomics.

Most importantly, modern technologies

make it possible to probe gene function on

a genome-wide scale in many model

organisms and human. For example, large

collections of knock-out mutants play a

prominent role in the study of Saccharomyces

cerevisiae [1], and RNA interference (RNAi)

has become a widely used high-through-

put method to knock-down target genes in

a wide range of organisms, including

Drosophila melanogaster, Caenorhabditis elegans,

and human [2–4].

Another major advance is the develop-

ment of rich phenotypic descriptions by

imaging or measuring molecular features

globally. Observed phenotypes can reveal

which genes are essential for an organism,

or work in a particular pathway, or have a

specific cellular function. Combining high-

throughput screening techniques with rich

phenotypes enables researchers to observe

detailed reactions to experimental pertur-

bations on a genome-wide scale. This

makes gene perturbation screens one of

the most promising tools in functional

genomics.

Advances in the design and analysis of

gene perturbation screens may have an

immediate impact on many areas of

biological and medical research. New

screening and phenotyping techniques

often directly translate into new insights

in gene and protein functions. Results of

perturbation screens can also reveal unex-

ploited areas of potential therapeutic

intervention. For example, a recent RNAi

screen showed that some of the most

critical protein kinases for the proliferation

and survival of cancer cell lines are also

the least studied [5].

A goal becoming more and more

prominent in both experimental as well

as computational research is to leverage

gene perturbation screens to the identifi-

cation of molecular interactions, cellular

pathways, and regulatory mechanisms.

Research focus is shifting from under-

standing the phenotypes of single proteins

to understanding how proteins fulfill their

function, what other proteins they interact

with, and where they act in a pathway.

Novel ideas on how to use perturbation

screens to uncover cellular wiring dia-

grams can lead to a better understanding

of how cellular networks are deregulated

in diseases like cancer. This knowledge is

indispensable for finding new drug targets

to attack the drivers of a disease and not

only the symptoms.

This review surveys the current state-of-

the-art in analyzing single gene perturba-

tion screens from a network point of view.

We describe approaches to make the step

from the parts list to the wiring diagram by

using phenotypes for network inference

and integrating them with complementary

data sources.

Phenotypes
A phenotype can be any observable

characteristic of an organism. Analysis

strategies strongly depend on how rich

and informative phenotype descriptors

are. We will call phenotypes resulting

from a single reporter (or a small number

of reporters) low-dimensional phenotypes

and the genes showing significant results

hits [6,7]. Examples of such low-dimen-

sional phenotypes are cell viability versus

cell death [1], growth rates [8], or the

activity of reporter constructs, e.g., a

luciferase, downstream of a pathway of

interest [9]. Low-dimensional phenotyping

screens can identify candidate genes on a

genome-wide scale and are often used as a

first step for follow-up analysis. We will

discuss methods to functionally interpret

hits from low-dimensional phenotyping

screens and to place them in the context

of cellular networks in the first part of this

review.

The second part will be devoted to high-

dimensional phenotyping screens, which

evaluate a large number of cellular

features at the same time. Observing

system-wide changes promises key insights

into cellular mechanisms and pathways

that can not be supplied by low-dimen-

sional screens. For example, high-dimen-

sional phenotypes can include changes in

cell morphology [10–13], or growth rates

under a wide range of conditions [14], or

transcriptional changes measured on mi-

croarrays [15–18], or changes in the

metabolome and proteome [19] measured

by mass spectrometry [20] or flow cytom-

etry [21,22]. Morphological and growth

phenotypes can be obtained on a genome-

wide scale [13,14], while transcriptional

and proteomic phenotypes are often

restricted to individual pathways or pro-

cesses [16,17,21].

The distinction between low- and high-

dimensional phenotypes may sound tech-

nical, but it is crucial for choosing

potential analysis methods. The central

difference is that high-dimensional pheno-

types allow one to compute correlations

and other similarity measures, which are

not applicable for low-dimensional pheno-

types. Another important distinction is

between static phenotypes, providing a
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‘‘snapshot’’ of a cell’s reaction to a gene

perturbation, and dynamic phenotypes

showing a cell’s reaction over time. We

expect more and more studies in the future

to produce dynamic output and in the

following note explicitly which methods

can be applied to dynamic phenotypes.

For the biological interpretation of screen-

ing results it is very important to keep in

mind which level of ‘‘cellular granularity’’

a phenotype describes: growth rates or cell

morphologies are much more ‘‘high-level’’

features of the cell than gene or protein

expressions. As soon as more studies

produce dynamic phenotypes on many

different cellular levels, integrative analysis

of interconnected phenotypes [23] will

become more important. In the following,

however, we concentrate on the current

state-of-the art, which almost always uses a

single type of readout in a perturbation

screen.

Preprocessing Pipeline
In this review we focus on single gene

perturbations by knockouts [1] or RNAi

[4] that allow targeting of individual genes

or combinations of genes. Before network

analysis, the raw data needs to pass an

initial analysis and quality control pipeline

specific to the perturbation and phenotyp-

ing technologies used. Low-dimensional

screens are mostly performed in multiple-

well-plates and a typical analysis pipeline

[4] includes data preprocessing, removal

of spatial biases per plate, normalization

between plates, and finally detection of

significant hits [6,7,24]. In vertebrates,

genes need to be targeted with multiple

siRNAs to ensure effective down-regula-

tion [4], and the multiple phenotypes per

gene can afterwards be integrated into a

statistical score [25]. High-dimensional

morphological screens depend on compu-

tational analysis like image segmentation

[26,27] and phenotype discovery [28–30]

for rapid and consistent phenotyping.

Molecular high-dimensional phenotypes

need preprocessing depending on their

platform and different approaches exist,

e.g., for flow-cytometry data [31] or

microarrays [32].

From Phenotypes to Cellular
Networks

The phenotypes we have discussed

above allow only an indirect view on

how different genes in the same process

interact to achieve a particular phenotype.

Cell morphology or sensitivity to stresses,

for example, are global features of the cell

and hard to relate directly to how

individual genes contribute to them (see

Figure 1A). Gene expression phenotypes

show transcriptional changes in the genes

downstream of a perturbed pathway but

offer only an indirect view of pathway

structure because of the high number of

nontranscriptional regulatory events like

protein modifications [33]. For example,

different protein activation states by phos-

phorylation may not be visible by changes

in mRNA concentrations (see Figure 1B).

This gap between observed phenotypes

and underlying cellular networks is the main

problem in the analysis of perturbation

screens and applies to both low- and high-

dimensional screens. The goal of computa-

tional analysis is to bridge this gap by

inferring gene function and recovering

pathways and mechanisms from observed

phenotypes. The following methods address

the challenge in different ways, mostly by

integrating the perturbation effects and

phenotypes with additional sources of infor-

mation like collections of functionally related

gene sets or protein-interaction networks.

Network Analysis of Low-
Dimensional Phenotypes

Global Overview by Enrichment
Analysis

A simple way to link phenotypes to gene

function is to test whether pathways or

functional groups of genes (e.g., defined by

Figure 1. Cellular networks underlying observable phenotypes. (A) Phenotypes are the response of the cell to external signals mediated by
cellular networks and pathways. The goal of computation is to reconstruct these networks from the observed phenotypes. (B) Global molecular
phenotypes like gene expression allow a view inside the cell but also have limitations. This is exemplified here in a cartoon pathway adapted from
[61] showing a cascade of five genes/proteins (1–5). Proteins 1–3 form a kinase cascade, 4 is a transcription factor acting on 5. Up-regulation of 1
starts information flow in the cascade and results in 5 being turned on. In gene expression data this is visible as a correlation between 1 and 5
(represented as an undirected edge in the model). Experimentally perturbing a gene, say 3, removes the corresponding protein from the cascade,
breaks the information flow, and results in an expression change at 5 (represented as an arrow in the model). However, the different phosphorylation
and activation states of proteins 2–4 will most probably not be visible as changes in gene expression. Thus, because of the pathway mostly acting on
the protein level most parts of the cascade (dashed arrows in the model) can not be inferred from gene expression data directly.
doi:10.1371/journal.pcbi.1000655.g001
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Gene Ontology terms [34] or MSigDB

[35]) are enriched in the list of hits. Most

methods use a hypergeometric test statistic

(see Figure 2A) and many can be used

online [36–38] or as Bioconductor packages

[39]. An alternative global functional anno-

tation method tests whether functional

groups show a trend towards especially

strong or weak phenotypes without using a

cutoff to define hits (see Figure 2B) [35].

Enrichment analysis can also be very useful

to analyze high-dimensional phenotypes,

for example when functionally annotating

the results of a clustering method.

Enrichment analysis results in a list of p-

values describing how significantly each gene

set was represented in the hits. Enrichment

analysis reduces complexity and improves

interpretability of results by moving from

single genes to functionally related gene sets.

This type of analysis is often called ‘‘unbi-

ased’’ and ‘‘hypothesis-free’’ and is ideal for a

comprehensive first overview. However,

enrichment analysis loses its value for

complexity reduction if the number of gene

sets becomes too big. Also, overlap and

dependencies between gene lists that could

potentially bias the results have so far only

been addressed for the gene ontology (GO)

graph [38,39] but not for more general

collections of gene lists like MSigDB [35].

Good data analysis asks specific ques-

tions. A hypothesis-free method can only

be the very first starting point for a deeper

exploration of the data. For example, all

enrichment methods rely on known gene

sets and cannot uncover new pathways or

components. Enrichment methods treat

pathways as bags of unconnected genes

without considering connections within

and between pathways. Thus, enrichment

methods can only deliver a very crude

picture of the cell. In the following we will

discuss approaches to overcome some of

the limitations of enrichment analysis by

integrating the observed phenotypes with

complementary sources of information.

Mapping Phenotypes to Networks
Another valuable source of information

to interpret RNAi hits are gene and protein

networks obtained either experimentally

[40,41] or computationally by literature

mining [42], or integrating heterogeneous

genomic data [43–45]. All computational

networks are available online on supple-

mentary Web pages and the experimental

networks can be obtained from databases

like STRING [46] or BioGRID [47].

Using these complementary data sourc-

es can improve hit identification [48–50]

and even provide a more refined view of

the pathways the hits contribute to. One

strategy is to search for subnetworks

containing a surprisingly large number

of hits (see Figure 3A). While this strategy

is already useful when evaluating inter-

esting subnetworks by eye [51,52], its true

power comes from the availability of

efficient search algorithms to find subnet-

works enriched for RNAi hits and assess

their significance [53–57]. An additional

application of mapping hits to a network

is that known phenotypes can be used to

predict phenotypes of genes not included

in the screen, e.g., by assuming that a

gene connected to many hits should also

show a strong phenotype [51]. The

success of all network-mapping strategies

strongly depends on the quality and

coverage of both the screen and the

linkage in the network.

Gene Prioritization
Other approaches complement geno-

mic data with biological prior knowledge

showing how ‘‘interesting’’ hits look. Gene

prioritization [49,58] ranks genes accord-

ing to how promising they would be for

follow-up studies. Because it uses prior

knowledge to fine-tune the algorithm,

gene prioritization can be more focussed

than a global uninformed search for

enriched subnetworks.

Network Analysis of High-
Dimensional Phenotypes

Global Overview by Clustering and
Ranking

Most state-of-the-art analysis techniques

rely on a ‘‘guilt-by-association’’ paradigm:

genes with similar phenotypes will most

probably have a similar biological func-

tion. This explains the prevalence of

clustering techniques in analyzing high-

dimensional phenotyping screens

[10,13,14,17]. Clustering is a convenient

first analysis and visualization step that can

highlight strong trends and patterns in the

data and can thus yield a global first

impression of functional units. Another

analysis strategy relying on guilt-by-asso-

ciation is to rank genes by their phenotypic

similarity compared to a gene of interest

[11]. Clustering and ranking can

be combined with enrichment analysis

(as discussed above) for functional

interpretation.

Graph Methods Linking Causes to
Effects

Another useful data visualization espe-

cially for transcriptional phenotypes is to

build a directed (not necessarily acyclic)

graph by drawing an arrow between two

genes if perturbing one results in a

significant expression change at the other

[59]. This graph representation can be

then used as a starting point for further

analysis, for example by using graph-

theoretic methods of transitive reduction

[60] to distinguish between direct and

indirect effects of a perturbation [61,62].

Probabilistic Graphical Models
Most approaches to infer pathway struc-

ture from experimental data rely on prob-

abilistic graphical models. For low-dimen-

sional phenotypes they often suffer from

nonuniqueness and unidentifiability issues

Figure 2. Functional annotation of hits by enrichment analysis. (A) In the first approach [38] a cutoff is applied to select the hits with
strongest phenotypes. A hyper-geometric test then evaluates if the overlap between the hits and a given gene set is surprisingly large (or small)
compared to the overlap with a random set. (B) A second approach [35] does not need a cutoff. It maps the gene set (black bars) onto the observed
phenotypes and quantifies if there is a significant trend or if the genes are spread out uniformly over the whole range.
doi:10.1371/journal.pcbi.1000655.g002
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[63], but can be applied very successfully in

high-dimensional settings. A prominent

approach are (static or dynamic) Bayesian

networks, which describe probabilistically

how a gene is controlled by its regulators

[64,65]. To model experimental perturba-

tions most approaches rely on the concept of

‘‘ideal interventions’’ [66], which determin-

istically fix a target gene to a particular state

(e.g., ‘‘0’’ for a gene knockout). Ideal

interventions were applied in Bayesian

networks [21,67,68], factor graphs [69],

and dependency networks [70]. In simula-

tions [71,72] and on real data [21,71] it was

found that interventions are critical for

effective inference.

The model of ideal interventions con-

tains a number of idealizations (hence the

name), most importantly that manipula-

tions only affect single genes and that

perturbation strength can be controlled

deterministically. The first assumption

may not be true if there are off-target or

compensatory effects involving other genes.

The second assumption may also not hold

true in realistic biological scenarios; in

particular for RNAi screens where exper-

imentalists often lack knowledge about the

exact knock-down efficiency. Probabilistic

generalizations of ideal interventions can be

used to cope with this uncertainty [73].

Probabilistic Data Integration
High-dimensional phenotypic profiles

can be mapped to given graphs and

networks by finding subgraphs that are

connected in the background network and

at the same time show high similarity of

phenotypic profiles. These approaches

already exist for mapping gene expression

data onto protein interaction networks [74]

and the same algorithms could easily be

applied to any other kind of high-dimen-

sional phenotypic profiles (see Figure 3B).

Other approaches use data integration to

construct potential pathways from protein

interactions and transcription factor bind-

ing data to relate perturbed genes to the

observed downstream effects [75–77].

Multiple Input - Multiple Output
(MIMO) Models

Many of the approaches discussed so

far—like clustering or graphical models—

can be applied to both static ‘‘snapshots’’

as well as dynamic time-course measure-

ments. Another approach to model specif-

ically the dynamics of networks comes

from a branch of control theory called

‘‘systems identification’’ [78] and uses so

called Multiple Input - Multiple Output

(MIMO) models. MIMO models represent

the evolution of a perturbed cell over time

by linear differential equations [79–83]

and can represent nonlinear effects by

transfer functions [84]. The models can be

inferred by regression techniques in the

linear case [80] or Monte Carlo stochastic

search in the nonlinear case [84]. The

framework is very flexible and can incor-

porate single as well as combinatorial

perturbations.

Nested Effects Models (NEMs)
One of the key problems in analyzing

perturbation screens is that the observed

phenotypes are downstream of the per-

turbed pathway and may not show the

direct influence of one pathway compo-

nent on another. A class of models

explicitly addressing this problem are

Nested Effects Models (NEMS) [33,85].

They reconstruct pathway structure from

subset relations on the basis of the

following rationale: Perturbing some genes

may have an influence on a global process,

while perturbing others affects subprocess-

es of it. Imagine, for example, a signaling

pathway activating several transcription

factors. Blocking the entire pathway will

most probably affect all targets of all

transcription factors, while perturbing a

single transcription factor will only affect

its direct targets, which are a subset of the

phenotype obtained by blocking the com-

plete pathway. Given high-dimensional

phenotypes showing a subset structure,

NEMs find the most likely pathway

topology explaining the data. They differ

from other statistical approaches like

Bayesian networks by encoding subset

relations instead of correlations or other

similarity measures. The theory of NEMs

has been applied and extended in several

studies [86–89]. An implementation is

Figure 3. Extracting rich subnetworks. Different patterns in the graph point to a common cellular mechanism causing a phenotype: (A) hits in a
low-dimensional screen (red nodes) clustering in highly connected subnetworks, and (B) high correlation between high-dimensional phenotypes of
target genes connected in the background network. The black graph represents any type of background network.
doi:10.1371/journal.pcbi.1000655.g003
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available as an R/Bioconductor package

[90]. Other extensions to the NEM

framework distinguish between activating

and inhibiting regulation [91] or include

dynamic information from time-series

measurements [92].

Discussion and Outlook

In this review we have discussed two

main approaches to describe the reaction

of a cell to an experimental gene pertur-

bation: low-dimensional phenotypes mea-

sure individual reporters for cell viability

or pathway activation, while high-dimen-

sional phenotypes show global effects on

cell morphology, transcriptome, or pro-

teome. Table 1 lists examples of freely

available software implementing some of

these approaches. All of them can be

directly applied to gene perturbation

screens, even though some of them have

been introduced in different contexts.

While this review has focused on single

gene knock-outs and knock-downs, similar

approaches can be applied to gene over-

expression screens [22,83,93,94], drug

treatment [84], environmental stresses

changing many genes [95,96], or even

natural genetic variation [97].

Predicting Phenotypes from
Metabolic Networks

The focus of this review is on function-

ally annotating hits in a network context

and reconstructing networks from high-

dimensional phenotypes. In a complemen-

tary direction of research, genome-wide

reconstructions of metabolic networks

[98,99] are used to predict effects of gene

perturbations. Instead of predicting net-

works from phenotypes, these approaches

predict phenotypes from networks. For

example, in S. cerevisiae and Escherichia coli

computational models very accurately

predict fitness effects of gene knock-outs

[100,101] as well as compensatory rescue

effects [102]. However, recent develop-

ments in metabolic network modeling

have led to linear programming algo-

rithms to extract relevant context-specific

subnetworks of activity from a genome-

wide network [103,104]. In the same way

Table 1. Examples of software for network analysis of gene perturbation screens.

Method Name Description with Reference Web Page

General data analysis and network visualization

Bioconductor Software environment for the analysis of genomic
data featuring hundreds of contributed packages [112]

www.bioconductor.org

Cytoscape Software platform for visualizing molecular interaction
networks and integrating them with other data types [113]

www.cytoscape.org

Setting up data for network analysis

cellHTS2 End-to-end analysis of cell-based screens: from
raw intensity readings to the annotated hit list [6]

www.bioconductor.org

RNAither Analysis of cell-based RNAi screens, includes quality
assessment and customizable normalization [7]

www.bioconductor.org

EBImage Cell image analysis and feature extraction [27] www.bioconductor.org

CellProfiler Cell image analysis and feature extraction [26] www.cellprofiler.org

Enrichment analysis

DAVID Tools for data annotation, visualization, and integration [36] david.abcc.ncifcrf.gov

GOLEM Enrichment analysis and visualization of GO graph
(Figure 2A) [37]

function.princeton.edu/GOLEM

Ontologizer Enrichment analysis with dependencies between
GO nodes (Figure 2A) [38]

compbio.charite.de/ontologizer

GSEA Gene set enrichment analysis (Figure 2B) [35] www.broadinstitute.org/gsea/

Clustering and ranking

Cell Profiler Analyst Interactive exploration and analysis of multidimensional
data from image-based experiments [28]

www.cellprofiler.org

PhenoBlast Ranking of phenotype profiles according to similarity
with given profile [11]

www.rnai.org

Endeavour Prioritizes hits for further analysis [58] www.esat.kuleuven.be/endeavour/

Finding rich subnetworks

heinz Finds optimal subnetworks rich in hits (Figure 3A) [55] www.planet-lisa.net

jActiveModules Finds heuristic subnetworks rich in hits (Figure 3A) [53] www.cytoscape.org

Matisse Finds subnetworks with high phenotypic similarity
(Figure 3B) [74]

acgt.cs.tau.ac.il/matisse/

Network reconstruction

nem NEMs reconstruct pathway features from subset
relations in high-dim phenotypes [90]

www.bioconductor.org

copia Copia uses MIMO models to reconstruct networks from
perturbations [84]

cbio.mskcc.org/copia/

This list is far from comprehensive, but hopefully provides a starting point even for noncoding experimentalists.
doi:10.1371/journal.pcbi.1000655.t001
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as the probabilistic data integration meth-

ods discussed above, e.g., [74], these

algorithms could be used in the future to

find metabolic subnetworks active under

certain gene perturbations.

From Single to Combinatorial
Perturbations

While single gene perturbation screens

have been immensely successful in ex-

tending our knowledge of pathway com-

ponents and interactions, an important

limitation can be caused by compensatory

effects, genetic buffering, and redundancy

of cellular mechanisms and pathways

[105,106]. This limitation can only be

overcome by perturbing several genes at

the same time. The number of possible

combinations grows rapidly and thus

current approaches are mainly limited

to perturbing pairs of genes and observing

low-dimensional phenotypes like fitness

estimates [107]. The analysis of combi-

natorial perturbations is outside the scope

of this review.

The End of the Screen is the
Beginning of the Experiment

Global phenotyping and pathway screen-

ing can be combined in the same study. For

example, a first genome-wide screen identi-

fies key genes representative for pathways

and cellular mechanisms involved in the

phenotype. In a second step the hits of the

first screen could be assayed for high-

dimensional molecular phenotypes to infer

a pathway diagram using NEMs or other

statistical approaches.

In a further step preliminary pathway

models could be used to plan an additional

round of experimentation. Different model-

ing frameworks propose future experiments

to most effectively refine a pathway hypoth-

esis, e.g., Bayesian networks [108,109],

physical network models [76], logical models

[110], Boolean networks [111], and dynam-

ical modeling [79].

Iteratively integrating experimentation

and computation may lead to a virtuous

circle and is one of the most promising

approaches to refine our understanding of

the inner working of the cell.
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89. Fröhlich H, Tresch A, Beißbarth T (2009)

Nested effects models for learning signaling

networks from perturbation data. Biom J 51:

304–323.
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