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Abstract

Recent studies have suggested that the thermodynamic stability of mRNA secondary structure near the start codon can
regulate translation efficiency in Escherichia coli, and that translation is more efficient the less stable the secondary structure.
We survey the complete genomes of 340 species for signals of reduced mRNA secondary structure near the start codon. Our
analysis includes bacteria, archaea, fungi, plants, insects, fishes, birds, and mammals. We find that nearly all species show
evidence for reduced mRNA stability near the start codon. The reduction in stability generally increases with increasing
genomic GC content. In prokaryotes, the reduction also increases with decreasing optimal growth temperature. Within
genomes, there is variation in the stability among genes, and this variation correlates with gene GC content, codon bias, and
gene expression level. For birds and mammals, however, we do not find a genome-wide trend of reduced mRNA stability
near the start codon. Yet the most GC rich genes in these organisms do show such a signal. We conclude that reduced
stability of the mRNA secondary structure near the start codon is a universal feature of all cellular life. We suggest that the
origin of this reduction is selection for efficient recognition of the start codon by initiator-tRNA.
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Introduction

Synonymous mutations are frequently used as a neutral baseline

to detect selection pressures at the amino-acid level [1]. Yet many

mechanisms are now known that cause selection pressure on

synonymous sites. Translationally preferred codons are selected for

accurate and efficient translation in bacteria, yeast, worm, fly, and

even in mammals [2–13]. Selection on synonymous sites acts to

increase the thermodynamic stability of DNA and RNA secondary

structure [14–18], to improve splicing efficiency [19–21], and to

assist protein co-translational folding [22–27].

Synonymous codon choice can also affect translation initiation.

Most of the sequence elements that control translation initiation

(e.g. the Shine-Dalgarno sequence in prokaryotes and the 59 cap

and Kozak consensus sequence in eukaryotes) are located in 59

untranslated regions (UTRs) [28–30], where high conservation and

AU-richness have been observed [31–34]. Yet Zalucki et al. found a

significant bias towards usage of the AAA codon at the second amino

acid position in Escherichia coli secretory proteins [35]. They proposed

that selective pressure for high translation-initiation efficiency

accounts for this codon usage bias. Other studies have demonstrated

altered expression levels in E. coli after changing synonymous codons

in the region downstream from the start codon [36–39]. Kudla et al.

synthesized a library of 154 genes of green fluorescent protein (GFP)

that had random changes at synonymous sites without any change in

the amino-acid sequence [40]. They found that the GFP expression

level varied 250-fold across the library. In this library, the stability of

mRNA secondary structure near the start codon explained more than

half of the variation in expression level: mRNAs with more stable

local structure in this region had reduced protein expression [40].

These observations suggest that translation initiation is facilitated by a

choice of synonymous codons that destabilize local mRNA secondary

structure.

Here, we analyzed the local mRNA secondary structure at the

59 end of the coding region in 340 species, including bacteria,

archaea, fungi, plants, fishes, birds, and mammals. We used

computational methods to predict the thermodynamic stability of

local mRNA secondary structure in sliding windows downstream

from the start codon, and used permutation tests to assess

deviation from random expectation. We addressed the following

questions: (i) Is there a selection pressure on synonymous sites to

reduce the stability of local mRNA secondary structure at the

translation-initiation region? (ii) Is such a selection pressure a

general characteristic for all organisms? (iii) Does 59 mRNA

stability correlate with GC composition, codon usage bias, or gene

expression level? (iv) In prokaryotes, does 59 mRNA stability vary

with the optimal growth temperature of the organism?

Results

mRNA stability is reduced near the translation-initiation
region

We calculated the local folding energy (DG) along the mRNA

sequence using a sliding window of 30 nucleotides (nt) in length,
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moving from the start codon to the 120th downstream nucleotide

in steps of 10 nt (for a total of 13 windows). To quantify the

deviation from expectation given a gene’s amino-acid sequence

and codon usage bias, we also calculated DG for 1000 permuted

mRNA sequences. We obtained permuted sequences by randomly

reshuffling synonymous codons within each gene. We then

calculated a Z-score, ZDG , by comparing the DG of the real

mRNA segment to the distribution of DG values of the permuted

sequences (see Materials and Methods). ZDG measures the extent

to which local mRNA stability deviates from expectation. A

positive ZDG means that local mRNA stability is reduced, and a

negative ZDG means that it is increased. For each window, we

calculated a genome-wide mean ZDG by averaging the corre-

sponding ZDG values over all genes in a genome.

We performed the sliding window analysis in 340 species, which

included 276 bacteria, 35 archaea, 11 fungi, 2 plants, 2 insects, 4

fishes, 2 birds, and 8 mammals. Figure 1 shows an example of the

mean ZDG for 13 windows in E. coli. We observed a significant

positive deviation of ZDG from zero in the first two windows (t-test:

P%10{20 in both cases). The positive values of ZDG suggest

selection for reduced mRNA stability at the 59 end of the coding

region. The ZDG values further downstream decrease quickly and

we observe negative ZDG values in most downstream windows.

Most species we studied showed a similar pattern to the one we

observed in E. coli (Figure S1 and Table S1), except for plants and

warm-blooded animals (birds and mammals). There was a clear

increase in mean ZDG for windows close to the start codon.

Because the ZDG at the very start of the coding sequence generally

showed the strongest signal of reduced mRNA stability, we will

focus on this value for the remainder of this study. In the following,

we refer to the ZDG at the very start of the coding sequence also as

the 59 ZDG. In prokaryotes, 262 out of 276 bacteria and 28 out of

35 archaea showed a positive 59 ZDG (Figure 2). In eukaryotes, 10

out of 11 fungi, 1 out of 2 plant, both insect species, and all four

fish species we analyzed showed this pattern as well. All warm-

blooded animals showed a negative 59 ZDG throughout the coding

sequence. We list the mean and standard error of ZDG for all

species and all windows in Table S1.

To investigate whether window size affected our results, we

redid our analysis for four species (two bacteria, one archaeon, one

fungus) using sliding windows of 20 nt and 40 nt, respectively.

Results for these two window sizes were comparable to those

obtained with a window size of 30 nt (Figures S2 and S3). For

the same four species, we also recalculated ZDG controlling for

dinucleotide content, by using the DicodonShuffle algorithm [41].

The results were virtually unchanged compared to our standard

shuffling method. (Figure S4).

Genomic GC composition explains the major variation in
59 ZDG

We found substantial variation in the mean 59 ZDG among

different species (Figure 2). Therefore, we next aimed to identify

the determinants of 59 ZDG in different genomes. We first

considered genomic nucleotide content.

We compared the mean 59 ZDG in each genome to the genome’s

GC content in coding sequences. We observed a strong positive

correlation between the mean 59 ZDG and the genomic GC content

(Spearman’s r~0:831, P%10{20) when plants and warm-blooded

animals were excluded (Figure 3). Genomes with higher GC content

had comparatively less stable mRNA secondary structure at the

Figure 1. The mean and standard error of ZDG of each sliding
window in E. coli.
doi:10.1371/journal.pcbi.1000664.g001

Figure 2. The mean ZDG of the tenth window vs. the mean ZDG

of the first window (59 ZDG ). Each data point represents the entire
genome of one organism.
doi:10.1371/journal.pcbi.1000664.g002

Author Summary

Synonymous mutations are mutations that change the
nucleotide sequence of a gene without changing the
amino-acid sequence. Because these mutations don’t alter
the expressed protein, they are frequently also called silent
mutations. Yet increasing evidence demonstrates that
synonymous mutations are not that silent. In particular,
experimental work in Escherichia coli has shown that the
choice of synonymous codons near the start codon can
greatly influence protein production. Codons that allow
the mRNA to fold into a stable secondary structure seem
to inhibit efficient translation initiation. This observation
suggests that selection should prefer reduced mRNA
stability near the start codon in many organisms. Here,
we show that this prediction generally holds true in most
organisms, including bacteria, archaea, fungi, plants,
insects, and fishes. In birds and mammals it doesn’t hold
true genome-wide, but it does hold true in the most GC-
rich genes. In all organisms, the extent to which mRNA
stability is reduced increases with increasing GC content. In
prokaryotes, it also increases with decreasing optimal
growing temperature. Thus, it seems that all organisms
have to optimize their synonymous sites near the start
codon to guarantee efficient protein translation.

Reduced mRNA Stability near the Start Codon
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translation-initiation region. Since the thermodynamic stability of

RNA secondary structure tends to be correlated to the RNA’s GC

content, we also looked into local deviations in a gene’s GC content.

We calculated ZGC, which measures the deviation in GC content in

a 30 nt window relative to the average in the gene (see Materials

and Methods). We found a negative correlation between genomic

GC content and the mean ZGC of the first window (Spearman’s

r~{0:858, P%10{20). Thus, in GC-rich genomes, the sequence

regions immediately downstream of the start codon were particu-

larly GC poor (Figure S5).

Because mRNA stability was reduced only near the translation-

initiation region, we expected that similarly GC content was

reduced only near the start codon. Therefore, the correlation

between genomic GC content and mean ZDG should decrease

for windows further downstream. We found that indeed the

correlation declined continuously and reached approximately zero

at the 13th window (Figure S6).

Besides the statistical measure ZDG , we also considered DG
directly (Table S2). We found that the mean DG value of the first

window (59 DG) varied greatly among different species and was

largely determined by genomic GC content (Spearman’s

r~{0:956, P%10{20, Figure S7). As expected, mRNA stability

increased with increasing genomic GC content. In fact, we found

similar relationships for windows further downstream, but the

stability at the 59 end of the mRNA was generally lower than the

stability further downstream (Figure S8). Moreover, the difference

between the mean 59 DG and the mean DG of the downstream

windows increased with increasing genomic GC content. As an

example, Figure S9 shows the relationship between the mean GC

content and the difference in mean DG between the first and tenth

window (Spearman correlation r~0:784, P%1020, excluding

birds and mammals). In summary, the results for DG generally

mirrored the ones for ZDG .

Optimal growth temperature affects 59 ZDG in prokaryotes
For prokaryotes, we analyzed whether the 59 ZDG correlated with

the optimal growth temperature (Figure 4). We found a significant

negative correlation (Spearman’s r~{0:365, P~3:0|10{4).

Similarly, the difference in DG between the first and the tenth

window declined significantly with temperature (Spearman’s

r~{0:385, P~1:3|10{4). Thus, prokaryotes living in colder

environments tended to have comparatively less stable mRNA

secondary structure at the translation-initiation region. We found

no correlations between temperature and either genomic GC

content (Spearman’s r~{0:082, P~0:434) or the DG in the first

window (Spearman’s r~{0:065, P~0:536). The lack of a

correlation between temperature and genomic GC content agrees

with the results of Ref. [42].

Determinants of 59 ZDG within genomes
In the previous subsections, we considered the mean 59 ZDG

over all genes in a genome. But we expected that there should also

be variation in mRNA stability among genes within one genome.

Therefore, we next investigated the potential within-genome

factors that may affect mRNA stability near the start codon.

We first considered gene GC content. We compared the mean

59 ZDG between genes with the highest 5% and the lowest 5% GC

content in each species. In almost all genomes, including birds and

mammals, the mean 59 ZDG in GC-rich genes was higher than it

was in GC-poor genes (Figure 5 and Table S3). The differences

became weaker as we considered windows further downstream

(Figure S10). Interestingly, even though the whole-genome mean

59 ZDG was negative in birds and mammals, GC-rich genes in

these animals showed a positive 59 ZDG (Figure 5).

Next we considered codon usage bias. We used the effective

number of codons (ENC) to measure the codon usage bias of each

gene [43]. Lower ENC values indicate stronger bias. By comparing

the bottom 5% of genes with the lowest ENC to the top 5% of

genes with the highest ENC, we found that, in most species, genes

with stronger codon bias had higher 59 ZDG (Figure S11 and

Table S3).

Finally, we tested whether the reduction in 59 mRNA stability

increased with gene expression level. We compared the mean ZDG

between genes with the highest 5% and the lowest 5% expression

level in E. coli, Drosophila melanogaster, Saccharomyces cerevisiae, and

Homo sapiens. In all species except H. sapiens, the mean ZDG for the

highest-expressed genes tended to be higher than that for the genes

with the lowest expression level (Figure 6).

Figure 3. The mean ZDG of the first window as a function of the
genomic GC content. Each data point represents one organism.
doi:10.1371/journal.pcbi.1000664.g003

Figure 4. The mean ZDG of the first window as a function of the
optimal growth temperature in prokaryotes. Each data point
represents one organism.
doi:10.1371/journal.pcbi.1000664.g004

Reduced mRNA Stability near the Start Codon
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Since GC content, codon bias, and expression level all

correlated with ZDG , we tried to determine whether these

quantities are independent sources of variation. We carried out

a principle component regression [44] and found that GC content,

ENC, and gene expression level contributed nearly equal to

variation in ZDG in E. coli, S. cerevisiae, and D. melanogaster (Figure

S12). In human, GC content and ENC, but not gene expression

level, contributed to the variation.

Discussion

We have completed a broad survey of mRNA stability near the

translation-initiation region of protein-coding genes. We have

considered the complete genomes of 340 species, including

bacteria, archaea, fungi, plants, insects, and vertebrates. We have

found a general tendency for reduced mRNA stability in the first

30–40 nt of the coding sequence. In this region, mRNA stability

tends to be less than expected given a gene’s amino-acid sequence

and codon-usage bias. Experimental work had previously

suggested that increased local mRNA stability at the translation-

initiation region could prevent efficient translation initiation and

hence decrease gene expression level [38,40].

We have found that there is variation in the extent to which

mRNA stability is reduced both among and within genomes.

Among genomes, GC content of coding sequences is a major

predictor of the reduction in mRNA stability. The higher the GC

content, the larger the reduction in mRNA stability at the 59 end

of the coding sequence (i.e., the larger 59 ZDG ). For prokaryotes,

the optimal growth temperature also predicts 59 ZDG. The lower

the optimal growth temperature, the larger the reduction in

mRNA stability. Within genomes, 59 ZDG also increases with

increasing GC content. In addition, it increases with increasing

codon usage bias and gene expression level.

The region with reduced mRNA stability is located right

downstream from the start codon and has a length of 30 to 40 nt

(the first two windows in our analysis). This region is similar to the

one identified by Kudla et al. [40]. Kudla et al. studied primarily a

library of sequences encoding green fluorescent protein, but they

also carried out a computational analysis of mRNA stability across

the E. coli genome. They found that across the genome, DG was

significantly more positive (indicating reduced stability) in the

region from nt {4 to z37 than immediately downstream [40].

Our work shows that Kudla et al.’s observation applies to most

organisms with known genomes, including bacteria, archaea, and

both single- and multi-celled eukaryotes. Further, by focusing on Z

scores relative to the expectation in permuted sequences, our

analysis excludes biases such as amino-acid content or preferred-

codon usage as the cause of this signal.

Past the first two windows, ZDG decayed quickly towards a

negative asymptotic value. Thus, mRNA stability near the start

codon is less than expected, but elsewhere in the gene it is

generally higher than expected. The latter result is comparable to

observations made by Chamary and Hurst [16] in the mouse

genome and by Seffens and Digby [15] in individual genes from

several species. Interestingly, for many organisms, ZDG in windows

Figure 6. Comparison of the mean 59 ZDG between genes with
the highest 5% and the lowest 5% expression level in E. coli, S.
cerevisiae, D. melanogaster, and H. sapiens.
doi:10.1371/journal.pcbi.1000664.g006

Figure 5. Comparison of the mean 59 ZDG between genes with
the highest 5% and the lowest 5% GC content within each
genome. Each data point represents one organism.
doi:10.1371/journal.pcbi.1000664.g005

Reduced mRNA Stability near the Start Codon
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3 to 5 dips below the negative asymptotic value further

downstream (Figure S1 and Table S1). This behavior seems to

reflect a selection pressure for particularly stable local mRNA

structure right after the translation-initiation region. This

increased stability may compensate for the reduced mRNA

stability in the translation-initiation region.

Previous works have identified AT-biased translation enhancers

in prokaryotes [37,45–47] and preferred nucleotide sequences

regulating translation in eukaryotes [48] within the first 30 to 40 nt

of the coding sequence. The mechanism by which these sequence

motifs work is not currently known. We suggest that the primary

mechanism may be destabilization of the mRNA structure near

the start codon. By contrast, some motifs work by known

mechanisms unrelated to RNA secondary structure. For example,

alanine is preferred at the second amino-acid position in highly

expressed proteins in several organisms [49] and its codon might

bind to a complementary sequence in the 18S ribosomal RNA

[50].

We found that the higher the GC content of a genome, the

more was mRNA stability reduced at the translation-initiation

region. This finding makes thermodynamic sense. GC-rich RNAs

tend to fold into more stable structures than AU-rich RNAs,

simply because a GC pair has three hydrogen bonds whereas an

AU pair has only two. Thus, assuming that selection targets the

same low 59 mRNA stability in all organisms, we would expect

that the decrease in stability is larger in GC-rich RNAs, simply

because they start from a more-stable baseline. Whether selection

actually targets the same low 59 mRNA stability cannot be

determined by our analysis. We found that the mean 59 DG
increased with increasing GC content. This increase could imply

either that organisms with higher GC content can tolerate a higher

59 mRNA stability or that the selection pressure to reduce 59

mRNA stability in those organisms is counterbalanced by other

selective forces or mutation pressures that increase GC content.

For prokaryotes, we addressed the question whether the optimal

growth temperature affects 59 ZDG . Thermodynamics predict that

the lower the temperature at which an organism grows, the

stronger should mRNA stability interfere with translation

initiation. In agreement with this prediction, we found that the

optimal growth temperature correlated negatively with 59 ZDG.

The organisms growing at the lowest temperatures showed the

biggest reduction in mRNA stability at the beginning of the coding

sequence. This result was independent of the relationship between

59 ZDG and genomic GC content. In our data set, the optimal

growth temperature was not correlated with GC content. Even

though some authors have argued that GC content correlates with

temperature [51,52], more recent studies have disputed this

finding [42,53]. Our results agree with these more recent studies.

Within individual genomes, the reduction of mRNA stability at

the translation-initiation region was greater in GC-rich genes than

in GC-poor ones. Besides GC content, we found that codon usage

bias and gene expression level correlated with 59 ZDG . Because

codon usage bias is correlated with gene expression level, in

particular in fast-growing microbes [2,3,8,11], these two correla-

tions likely reflect the same underlying effect. The correlation with

expression level mirrors the general observation that evolutionary

constraints tend to increase with gene expression level

[8,11,13,54–58]. Whether expression level, codon usage bias,

and GC content contribute independently to 59 ZDG is unclear.

These three quantities tend to all be correlated with each other,

and we cannot easily disentangle which of these quantities is most

important for reduced 59 ZDG . For example, in mammals, high

GC content in genes can increase mRNA levels through increased

efficiency of transcription or mRNA processing [59]. Using

principal component regression, we showed that in E. coli, yeast,

and fly, the three quantities codon usage bias, GC content, and

gene expression level all contribute equally to reduced 59 ZDG ,

whereas in humans only GC content and codon-usage bias seem

to contribute.

We found reduced mRNA stability near the start codon in a

wide range of organisms, including both prokaryotes and

eukaryotes. Yet warm-blooded animals (birds and mammals)

showed no such trend on the whole-genome level, even though

their genomic GC content is well within the range in which we

found reduced mRNA stability in bacteria, archaea, fungi, insects,

and fishes. We believe that our finding for birds and mammals was

caused by the isochore structure of their genomes [60]. Gene GC

content in these organisms ranges from 20% to 95% and is much

more varied than in organisms without isochores. The whole-

genome average of 59 ZDG may not be meaningful in organisms

with isochores. When we considered only to top 5% most GC-rich

genes, we did find a moderate signal of reduced mRNA stability in

these organisms as well.

What is the biological mechanism that links mRNA stability

near the start codon to efficient protein translation? There are two

possibilities. First, strong local mRNA secondary structure could

interfere with ribosome binding. Second, it could interfere with

start-codon recognition. We believe that the currently available

evidence favors the latter explanation. In prokaryotes, ribosome

binding occurs at the Shine-Dalgarno sequence, located a few

nucleotides upstream from the start codon [28]. Kudla et al. [40]

showed that synonymous mutations near the start codon can

regulate protein expression. They concluded from computational

modeling that the primary determinant of protein expression was

the stability of local mRNA secondary structure near the start

codon, not occlusion of the Shine-Dalgarno sequence by RNA

secondary structure [40]. In eukaryotes, translation initiation

follows a scanning mechanism. The 40S ribosomal subunit enters

at the 59 end of the mRNA and migrates linearly until it

encounters the first AUG codon [30]. If synonymous mutations

near the start codon could affect ribosome entry at the 59 cap,

there should be a correlation between 59 UTR length and mRNA

stability near the start codon. The further away the start codon is

from the 59 cap, the less should local mRNA stability near the start

codon affect ribosome entry. However, we did not find such a

relationship, neither within genomes nor among genomes (data

not shown). Therefore, we suggest that both in prokaryotes and in

eukaryotes, reduced mRNA stability at the translation-initiation

region primarily facilitates efficient start-codon recognition.

Materials and Methods

Genomic data
We collected the genomes for 276 bacteria, 35 archaea, 11

fungi, 2 plants, 2 insects, 4 fishes, 2 birds, and 8 mammals. The

genomic sequences of the bacteria, archaea, fungi, plants, and

insects were downloaded from the NCBI FTP server (ftp://ftp.

ncbi.nih.gov/), while the sequences of the vertebrates were

obtained from Ensembl (http://www.ensembl.org/). We only

considered coding sequences longer than 50 codons.

Expression data
We collected previously published expression data for four

species: for E. coli, we obtained gene expression levels measured in

mRNAs per cell from Ref. [61]; for S. cerevisiae, we used expression

data from Ref. [62]; for D. melanogaster, we used as expression level

the geometric mean of expression data from different tissues

obtained in Ref. [63]; and for H. sapiens, we also measured

Reduced mRNA Stability near the Start Codon
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expression level as the geometric mean of expression among

different tissues [64].

Optimal growth temperature
We obtained optimal growth temperature data for 80 bacteria

and 14 archaea from Ref. [42], which is a collection from multiple

sources, including original publications, American Type Culture

Collection, German Collection of Microorganisms and Cell

Cultures, and Prokaryotic Growth Temperature Database.

RNA secondary structure folding
We calculated RNA folding energies using the RNAfold

program in the Vienna package [65,66]. We used default settings:

folding occurred at 370C; GU pairs were allowed; unpaired bases

could participate in at most one dangling end; energy parameters

were as reported in Ref. [67]. We evaluated only the minimum-

free-energy structure. DG is the change in free energy from the

unfolded state to this structure.

mRNA randomization
If synonymous selection acts on mRNA folding near the start

codon, then on average the secondary structure in this region

should be less stable for the naturally occurring sequence than for

permuted sequences. For each gene, we randomly reshuffled

synonymous codons among sites with identical amino acids, to

control for amino-acid sequence, codon usage bias, and GC

content. We repreated this process 1000 times to obtain 1000

permuted sequences for each gene. For the wild-type sequence and

each permuted sequence, we then calculated local mRNA folding

energies in a sliding window of 30 nt (20 nt and 40 nt were also

used in some species). To determine the deviation of the wild-type

sequence from the permuted ones, we calculated the Z-score of the

local mRNA stability (ZDG ) for each sliding window by:

ZDG~
DGN{DGPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i~1

(DGP i{DGP)2

n{1

s : ð1Þ

Here, DGN is the folding free energy for the naturally occurring

sequence in the window under consideration, DGPi
is the folding

energy of the corresponding window of the ith permuted sequence,

and DGP is the mean of DGPi over all permuted sequences. The

variable n represents the total number of permuted sequences.

Here, n~1000.

Similarly, we evaluated the difference between the local mRNA

GC composition of the wild-type sequence and the permuted

sequences. The Z-score of local mRNA GC content (ZGC) for

each window can be expressed as:

ZGC~
GCN{GCPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i~1

(GCP i{GCP)2

n{1

s : ð2Þ

The definitions for GCN, GCPi, and GCP are analogous to

DGN, DGPi, and DGP but refer to GC content rather than to free

energy of folding.
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Figure S2 The mean and standard error of ZDG of each sliding

window (20 nt) in four species.
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Figure S3 The mean and standard error of ZDG of each sliding

window (40 nt) in four species.
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Figure S4 Comparison of the mean ZDG obtained by different

mRNA randomization procedures. Codon Shuffle algorithm

permutes sequences by randomly reshuffling synonymous codons

within each gene, which may change dinucleotide composition of

the sequence; while DicodonShuffle algorithm shuffle codons
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Found at: doi:10.1371/journal.pcbi.1000664.s007 (0.05 MB EPS)

Figure S5 The mean ZGC of the first window as a function of the

genomic GC content. Each data point represents one organism.

Found at: doi:10.1371/journal.pcbi.1000664.s008 (0.14 MB EPS)

Figure S6 Spearman correlation coefficient r between the mean

ZDG and the genomic GC content for each window in bacteria,

archaea, and fungi.
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Figure S7 The mean DG of the first window as a function of the

genomic GC content. Each data point represents one organism.

Found at: doi:10.1371/journal.pcbi.1000664.s010 (0.14 MB EPS)

Figure S8 The mean DG of the tenth window vs. the mean DG

of the first window. Each data point represents the entire genome

of one organism.

Found at: doi:10.1371/journal.pcbi.1000664.s011 (0.14 MB EPS)

Figure S9 The difference in mean DG between the first and the

tenth window as a function of the genomic GC content. Each data

point represents one organism.

Found at: doi:10.1371/journal.pcbi.1000664.s012 (0.14 MB EPS)

Figure S10 Distribution of the difference in mean ZDG between

genes with the highest 5% and the lowest 5% GC content for the

entire data set of all 340 species.

Found at: doi:10.1371/journal.pcbi.1000664.s013 (0.11 MB EPS)

Figure S11 Comparison of the mean 59 ZDG between genes with

the highest 5% and the lowest 5% ENC within each genome. Each

data point represents one organism.

Found at: doi:10.1371/journal.pcbi.1000664.s014 (0.14 MB EPS)

Figure S12 Principal component regression of 59 ZDG against

GC content, expression level, and ENC value. PC1, PC2, and PC3

denote the first, second, and third principal component.

Found at: doi:10.1371/journal.pcbi.1000664.s015 (0.02 MB EPS)
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