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Abstract

We present a new approach to the handling and interrogating of large flow cytometry data where cell status and function
can be described, at the population level, by global descriptors such as distribution mean or co-efficient of variation
experimental data. Here we link the ‘‘real’’ data to initialise a computer simulation of the cell cycle that mimics the evolution
of individual cells within a larger population and simulates the associated changes in fluorescence intensity of functional
reporters. The model is based on stochastic formulations of cell cycle progression and cell division and uses evolutionary
algorithms, allied to further experimental data sets, to optimise the system variables. At the population level, the in-silico
cells provide the same statistical distributions of fluorescence as their real counterparts; in addition the model maintains
information at the single cell level. The cell model is demonstrated in the analysis of cell cycle perturbation in human
osteosarcoma tumour cells, using the topoisomerase II inhibitor, ICRF-193. The simulation gives a continuous temporal
description of the pharmacodynamics between discrete experimental analysis points with a 24 hour interval; providing
quantitative assessment of inter-mitotic time variation, drug interaction time constants and sub-population fractions within
normal and polyploid cell cycles. Repeated simulations indicate a model accuracy of 65%. The development of a simulated
cell model, initialized and calibrated by reference to experimental data, provides an analysis tool in which biological
knowledge can be obtained directly via interrogation of the in-silico cell population. It is envisaged that this approach to the
study of cell biology by simulating a virtual cell population pertinent to the data available can be applied to ‘‘generic’’ cell-
based outputs including experimental data from imaging platforms.
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Introduction

Multiparameter flow cytometry is widely used to study the cell

cycle and its perturbation in the context of both basic research and

in routine clinical analysis [1–6]. Such analyses may use a wide

range of fluorescent reporters that correlate to the expression of

key molecular components of the cell cycle, such as cyclins and

cyclin dependent kinases (CDK), [1] or quantify DNA content [5].

Regardless of the particular fluorophores used the quantitative

methodology and the ensuing synthesis of biological knowledge is

based on statistical analyses of the experimental data sets. For

single variable distributions these may include calculations of

moments of increasing orders to provide the mean, variance,

skewness etc. or cumulative indices such as the Kolmogorov-

Smirnov (K-S) test [7–9]. More complex, multi-variate approaches

may involve discriminant function, cluster or principal component

analysis in an n-dimensional space [10–12]. In all of these

approaches there is a common procedural thread: acquisition of

data is followed by a statistical parameterisation of the measure-

ment set to which biological form or function can be correlated. In

this work, we present an alternative, based on computational

simulation of the experiment. A stochastic simulation of the cell

cycle dynamics within a large population is initialised with

reference to a flow cytometry data set and then evolved, using

evolutionary computer algorithms, with assessment of fitness

measures derived from comparisons to subsequent data sets. The

cell-cycle information is then read directly from the in-silico

populations.

The development of a simulated cell population approach has

been driven by a requirement to track the evolution of large

numbers of cells over multiple generations through the cell cycle

and provide a means to track progression of both the whole cell

population and distinct sub-groups [13,14]. This is in the context

of mapping the heterogeneity of cell cycle response to perturbation

events e.g. effects on cell proliferation of anticancer therapeutics

designed to block cell division. In this report we present the

conceptual basis of this simulated cell cytometry and detail of the

methodology adopted. To demonstrate the application of the

technique and validate its potential we use it to quantify cell cycle

perturbation in a tumour cell line by a topoismerase II inhibitor

which causes endocycle routing in the late cell cycle.

The aim of the simulation is to predict the dynamic evolution of

a large population of virtual cells (vcells) through a life cycle

corresponding to that prescribed by their real-life counterparts (as

reported via flow cytometry experiments). Furthermore, the model

seeks to account for perturbations in the cell cycle progression of
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the virtual population (vpopulation). The spatial position of the

vcells within the cell cycle is initially determined from a real flow

data set. From this information, each vcell is assigned a temporal

position within the mean inter-mitotic time (mIMT), allowing cell

cycle events such as DNA replication and cell division to be

stochastically predicted. After the vpopulation has evolved for a

given period, they may be compared with a further experimental

data set to enable important simulation parameters, governing

their evolution, to be optimised and constrained so that

correlations between the respective data sets are maximised.

Standard approaches to studying cell cycle involve statistical

analysis of distributions either 1D involving nuclear content

reporters [5] or 2D when further cell cycle molecular reporters are

also included [1,15]. Thus these are inherently ‘whole population’

measures and can only describe cell variability via global

parameters such as the standard deviation from the mean. Whilst

automated analytical approaches have been developed in order to

reduce user subjectivity [16–18] the majority of flow analyses still

involve user-defined gating of the as-measured data set to identify

and segment a sub-population of cells. Subsequent mapping of this

population onto 2D dot plots of fluorescence provides temporal

snapshots (typically with a 24 hour sampling period) and further

partitioning of cells to different compartments, G1, S, G2/M

within normal and polypoid cycles (see Figure 1(a)). These

apparent quantitative assessments become inaccurate and, to

varying extent, subjective, as they are based either on user

identification of the various components in the dot plot by fitting of

Gaussian distributions, representing the G1, S, G2/M fractions, to

the DNA content histogram [5]. The challenge of the current

investigation is to adopt a computational approach, where the

analytical and interpretive steps are implemented at the simulated

biology stage and not on the raw data outputs. No new data is

added in this approach and the computer simulations could be

viewed as an elaborate form of data analysis. However, the

methodology does deliver new insight on process, delivering a

continuous simulation of the dynamic evolution of the cellular

system between fixed sampling points. In this respect, it provides a

physical validation when applying various hypotheses to interpret

the experimental data. It also goes some way to visualising the

variation between individual cells that gives rise to biological

heterogeneity as the stochastic simulation delivers a report on

population dynamics in which each and every cell can be tracked.

Figure 1. Plots indicating cell pathways through the cell cycle. (a) A schematic indicating cell cycle routing of cells treated with ICRF-193 in
fluorescence space (GFP-cyclin B1 signal as a function of DRAQ5 signal). In control conditions U-2 OS cells divide and remain in normal cycle
(representing the proliferative fraction), with ICRF-193 treatment the U-2 OS cells continue to cycle however they bypass mitosis to enter a polyploid
cycle (p) (representing the non-proliferative fraction). (b) Segmentation of experimental flow cytometry data representing molecular expression and
DNA content used to initialise the CPM. Experimental data at texpt = 0: experiment non-gated data (green and red markers), experimental gated data/
initial virtual population (red markers) and the dashed black line refer to the contour defining the gated data. The solid black line indicates the best
representation of the fitted population (see text).
doi:10.1371/journal.pcbi.1000741.g001

Author Summary

One of the key challenges facing cell biologists today is
understanding the influence of molecular controls in
shaping and controlling cell growth and proliferation.
There is growing recognition that abnormal progression
through the cell cycle and the associated effects on the
growth of cell populations has a major impact on a wide
range of biological and clinical problems, including:
tumour growth, developmental control, origins of chro-
mosomal instability and drug resistance. Multiparameter
flow cytometry is frequently used to assess proliferation
dynamics of cellular populations using fluorescent report-
ers generating large data sets that can inform simulation
models. We have developed stochastic computing ap-
proaches allied to evolutionary algorithms to produce
simulated cell populations—providing a new approach to
the analysis of real multi-variate data sets obtained by flow
cytometry. The methodology delivers new insight on
biological processes in delivering a continuous simulation
of the dynamic evolution of a cellular system between
fixed sampling points, hence, converting static data into
dynamic data revealing the effective traverse of the cell
cycle, restriction points and commitment gateways. The
approach also permits the visualisation of the variation
between individual cells reflecting biological heterogene-
ity and potentially Darwinian fitness, given that the
simulation delivers a report on population dynamics in
which each and every cell can be tracked.

Virtual Cell Evolution through the Cell Cycle
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Materials and Methods

Experimental procedures
Experimental data is obtained using well-established bi-variate

cytometric methods for study of the cell cycle: U-2 OS (ATCC

HTB-96) cells were transfected with a G2M Cell Cycle Phase

Marker (GE Healthcare, UK), yielding stable expression of a

GFP-cyclin B1. This provides a green fluorescence signal the

intensity of which correlates to position in the cell cycle with a

minimum signal at G0 and a peak during the G2/M phase. [19].

The culture was maintained under G418 selection in McCoy’s 5a

medium supplemented with 10% foetal calf serum (FCS), 1mM

glutamine, and antibiotics and incubated at 37uC in an

atmosphere of 5% CO2 in air. To obtain fluorescence read-out

of DNA content an anthraquinone derivative, DRAQ5TM

(20 mM Biostatus Ltd., UK) was used [14]. This binds to DNA

providing a fluorescence intensity that can be related to DNA

content and thus it reports on cell cycle progression through the S

phase to G2/M (.4N) or, in the presence of external perturbing

agents, progression through polyploid states as the mitotic stage is

by-passed [20] (see Figure 1(a)). To obtain a model system in

which we can test the simulated cell population approach we

have used a cell division by-pass agent: ICRF-193 [bis(2,6-

dioxopiperazine)], a kind gift from Dr A.M. Creighton (ICRF,

London, UK). This is a reversible catalytic inhibitor of

topoisomerase II that blocks the ability of the enzyme to resolve

interlinked DNA replication products [21]. The decatenation of

chromosomal replication products is vital for the completing of

segregation and hence normal division. ICRF-193, was prepared

in DMSO at 2 mg/ml and used at a peak concentration of 2 mg/

ml (equivalent to 7.2 mM).

To determine the cell population distribution of fluorescence

intensity a FACScan flow cytometer was used (Becton Dickinson

Inc., Cowley, UK) which was equipped with an air-cooled argon

ion laser (with 488 nm output only). GFP-cyclin B1 data was

collected using a 30 nm bandpass emission filter centred at

530 nm and the DRAQ5 signal with a 670 nm long pass filter.

CELLQuest software (Becton Dickinson Immunocytometry Sys-

tems) was used for data acquisition. Flow cytometric analysis was

used sample sets of 10,000 cells and the data presented represents

the signal peak height. Typically, tracking of the population was

carried out at 24 hour intervals.

Virtual cell populace simulation
The computer simulation consists of two principal components;

a cell population model (CPM) and an evolutionary algorithm -

Differential Evolution (DE) [22]. The CPM generates a virtual

population of cells (vcells), which is initialised using a flow data set.

The vpopulation is then evolved and compared to a subsequent

flow data set. The CPM evolves each vcell and generates any cell

cycle processes deemed relevant to explain the laboratory

experiment. A DE algorithm is employed to optimise important

ensemble parameters used in the CPM e.g. cell cycle time,

enabling the vpopulation to be evolved such that it maximises

correlation with the data. A detailed description of the cell

population simulation, complete with a full account of the various

numerical algorithms and techniques used is given in Text S1. A

brief outline of the main components of the cell population model

is given in the following sections with reference to the simulation

flowchart shown in Figure 2. All numerical algorithms have been

written in the MATLAB environment (MathsWorks UK);

fragments of pseudo-code for important aspects of the CPM are

given in Text S1.

Cell population model - initialisation
The vpopulation is initialised by reference to a gated 2D flow

cytometric data set composing of the cell cycle reporter cyclin B1

(GFP-cyclin B1) and DNA content determination (DRAQ5) (see

Figures 1(b) and S1). The data is gated using a simple cell density

cut-off technique, where a region is labelled active if its cell density

is above a set threshold, (see Text S1). Cells within a contour

encapsulating the gated fraction serve to initialise the vpopulation

position in the intensity space. The same gating procedure (and

threshold value) is also applied to subsequent experimental data

sets at later time points. More sophisticated gating techniques

could be applied such as the expectation-maximisation algorithms

presented by Boedigheimer et al [18]; however, this simple

approach is adequate to establish the validity of our methodology.

The gated data is now used to initialise the fluorescence

intensities of the modelled cell population, which correspondingly

inherits the biological variation seen in Figure 1(b) (each gated

data point initialises one cell). The temporal position of each of the

virtual cells within the cell cycle is unknown as the flow data

(consisting only of only fluorescence intensities) contains no direct

cell cycle time information. The time-based information, necessary

to model the cell cycle dynamics, is extracted from the intensity

signal of the biological markers obtained from the experimental

data (see Text S1). The first approximation to assigning a time to

each vcell is obtained by considering the DRAQ5 fluorescence

intensity, the histogram of which is shown in Figure 3(a). In our

approach, we use the DRAQ5, nuclear content indicator to

position each vcell in the cell cycle making the following

assumptions (i) the vcells are randomly distributed throughout

their cycle and (ii) that their DRAQ5 signal is monotonically

increasing through the cell cycle as the nuclear content is

duplicated. This infers that the minimum and maximum DRAQ5

intensities correlate to the start and finish of the cell cycle and

allows us to assign relative position in time to each vcell (see Text

S1 and figure S2). The experimental dataset for DRAQ5 intensity

is sorted into ascending order and fitted with a polynomial

function (see Figure 3(b)). Because of the inherent digitisation

produced by data binning, of the measured intensity, by a flow

cytometer several cells will be recorded with the same DRAQ5

signal. The intensity sorting procedure assigns increasing sort

indices to vcell sets with the same intensity (i.e. all cells within a

given bin) the median index value is therefore used when

implementing the polynomial fit (see inset in Figure 3(b)). Finally,

the polynomial x-axis values are scaled to a range of zero to the

inter-mitotic time (IMT - time between successive mitotic events),

this gives an absolute time for each cell within its cycle. To relate

the GFP signal to cell cycle time the intensity for each cell is

plotted against the cell number index obtained from the DRAQ5

sort procedure, again fitted with a polynomial and scaled to give

an x-axis running from 0 to the same IMT value (Figure 3(c)). The

use of a stoichiometric nuclear content marker (such as DRAQ5)

to estimate DNA content and hence cell cycle position is well

established and both deterministic and stochastic models have

been used previously to obtain continuous temporal descriptions

[23–25]. Our approach differs from the previous studies in that

through the creation of the virtual cell population we model at the

level of single cells rather than using population level parameters.

The two fitting polynomials describe the evolution of the

fluorescence intensities from cell birth to division as a function of

time and are used to produce a median path through the cell cycle

shown as the solid black line in the 2D GFP-DRAQ5 intensity plot

displayed in Figure 1(b). It is obvious from the plot that many of

the cells lie some distance from the median line this is due to

natural variability in the measured signals caused by heterogeneity

Virtual Cell Evolution through the Cell Cycle
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in reporter loading, noise, variation in collection efficiency etc.

Each individual vcell is therefore assigned a cell cycle time by

choosing a point on the 2D polynomial median line, that

minimises the sum difference of the DRAQ5 and GFP intensity

values (see Text S1 and figure S3). Therefore vcells at the same

point within the cell cycle will display a heterogeneity in

fluorescence signal value (corresponding to the width of the

population plot in x and y-directions in Figure 1(b). Therefore, to

calculate the time-dependent trajectory of each vcell through the

2D intensity space we update the DRAQ5 and GFP intensity

values using the median line as time is incremented (see Text S1).

To summarise, the experimentally measured data is used to

establish a virtual cell population with exactly the same

heterogeneity in fluorescence signal as seen in the experiment.

This vpopulation is then evolved within a stochastic simulation

allowing for variability in fluorescence intensity and IMT using a

pair of polynomial functions that describe the cell cycle

dependence of the signal, i.e. the absolute fluorescence is stochastic

but the time evolution function is the same for all cells.

Cell population model - evolution
Once initialised each member of the population has three

discriminating properties corresponding to: (i) a time in the cell

cycle, (ii) DRAQ5 fluorescence intensity and (iii) GFP-cyclin B1

levels. In order to mimic DNA synthesis and replication, a

supplementary parameter, DRAQ5DNA2, is required; DRAQ5DNA2

details the DRAQ5 magnitude at which each vcell has doubled its

DRAQ5 intensity (see Text S1 and figures S4 and S5). The CPM

directly relates this to the point at which a real cell has doubled its

DNA content, i.e. a phase transition to G2. The value of

DRAQ5DNA2 is deduced by calculating the initial DRAQ5 intensity

of each vcell at the start of the cell cycle (see Figure 1(b), black curve),

which from the above is estimated at the effective intensity value just

after a mitotic event, then assessing the time at which this initial

intensity doubles using the polynomial functions shown in

Figures 3(b) and (c).

Monitoring of the simulated DRAQ5 intensity then allows

identification of cells that have multiplied their DNA content

allowing placement of each into the following sub-groups: normal

Figure 2. Flowchart indicating the main steps of the cell population model (CPM).
doi:10.1371/journal.pcbi.1000741.g002
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cycle – DNA index, DI = 2N (G1) or 4N (G2/M); polyploidy

cycle - DI = 4Np (G1p) or 8Np (G2p/Mp). Once vcells have entered

the G2/M phase the probability of them entering the M phase and

undergoing cell division is calculated. This is achieved using a

simple stochastic decision process [13], where we define a

cumulative Gaussian probability distribution which scales between

0 and 1, defined in terms of a mean inter-mitotic time, with an

associated standard deviation, over the cell cycle time. Both these

parameters are to be optimised via the evolutionary algorithm to

best fit the second set of flow data. At each time step a random

number, uniformly distributed in the interval [0 1] is generated

and is compared with the cumulative probability distribution value

at that time. If the random number is less than the probability

distribution value calculated then mitosis is deemed to occur and

the simulation generates two daughter cells at t = 0 in G1/S with

the DRAQ5 and GFP-cyclin B1 associated with the parent cell.

Otherwise, the cell remains in the G2/M phase for re-analysis at

the following time step, which will increase both of its intensity

coordinates resulting in a higher probability of mitosis (the

cumulative Gaussian distribution tends to 1 with increasing time).

The implementation of this mitotic variability produces further

heterogeneity in the IMT of the individual vcells.

The cell population model is defined by a set of parameters

specific to the flow cytometry experiment conducted. Optimisation

of the fit between simulation and experiment is dependent upon

selection and minimisation of the population variables, in our case:

the mean inter-mitotic time, its standard deviation and a

parameter detailing the presence of a drug in the vpopulation.

There are several different methods, which could be used to

determine the best fit to the experimental data; we choose to use a

differential evolutionary technique to optimise these cell cycle

parameters. The quality of fit associated with a set of CPM

parameters is determined by calculation of the ratio of evolved

vcells to that measured experimentally within a numerically

deduced gated region. This simple maximisation strategy, works

well for both therapeutically (un)perturbed systems, although

newer versions of the CPM will explore more sophisticated 2D

cross correlative algorithms to infer fitness. Convergence of the

differential evolution algorithm is determined true when the

quality of fit varies by less than 1% over five subsequent

generations (see Text S1).

Results

Cell population simulation
To illustrate the evolution of the vcell population, we generate a

series of snap-shots derived at different temporal intervals (Figure 4 -

green population) demonstrating the simulated intensity dot plot at

6, 12, 18 and 24 hours respectively after initialisation by an

experimental data set. Here, the vcell population has a mean IMT

of 22 hours and an associated standard deviation of 6 hours; a

small subpopulation of vcells can be depicted (red dots) also a

contour (dashed black line) is displayed, indicating the extent of the

gated experimental data set at initialisation. Given that the cells in

these experiments are randomly distributed within their cycle and a

statistically relevant data set is sampled the acquired plots appear

identical for a control sample with an unperturbed biology. The

advantage of the simulated population approach is therefore

evident in Figure 4, as a discrete sub-set of cells is identified and its

dynamics tracked over a period of time. Despite using a single

experimental sample information is obtained across the whole of

the cell cycle due to the assumption of random temporal

distribution. The fundamental insight gained here is the adoption

of a simulated cell approach and subsequently the visualisation of

Figure 3. Comparison of traditional analyses of static flow
cytometric data and to that used to develop dynamic data
analysis. (a) Displays the fluorescent frequency histogram of the
DRAQ5 intensity, plots (b) and (c) graphically illustrate how the median
DRAQ5 and GFP cyclin-B1 fluorescence signals vary as a function of a
normalised intermitotic time (light grey and blue lines respectively.
Insert: plot (b) - magnification of the polynomial fit to the frequency
histogram of the DRAQ5 intensity.
doi:10.1371/journal.pcbi.1000741.g003
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the temporal dimension encoded in the fluorescence intensity

distributions.

Cell cycle perturbation and cell cycle rerouting to
polyploidy

To test the ability of the simulation to capture more complex

dynamics associated with aberrant cell cycle progression and

variance of response across sub-populations a cell cycle perturba-

tion experiment was undertaken using a mitotic by-pass agent

ICRF-193. Cells treated with this agent progress through multiple

replication cycles without undergoing mitosis, therefore doubling

DNA content [21]. This leads to an evolving polyploid population

that is identified using the nuclear dye, DRAQ5 to obtain an

optical read-out of DNA content. Perturbation of the cell cycle and

rerouting of cells in this manner provides a system in which the

population dynamics of diverted sub-groups within the normal and

polyploidy cycles can be analysed. The challenge for the cell

population simulation is to track the inter-related pharmacody-

namics, taking full account of the detailed evolution of the

accompanying fluorescence data.

Experimental outputs
A block and chase experiment was conducted in which cells

were continuously treated with ICRF-193 for 24 hours (Figure 5(a–

c)). A 2D dot plot of the cell cycle (GFP-cyclin B1) and nuclear

content (DRAQ5) reporters at the 24 hour time point shows a sub-

population of cells with low GFP-cyclin B1 expression and a DNA

index of 4N i.e. polyploid cycle cells in the G1/S phase

(Figure 5(b)). Compared to control conditions, where all cells

were engaged in the normal cell cycle. Following the 24 hour drug

treatment with ICRF-193, wash-out allows cells to further cycle

unperturbed under normal conditions for a further 18 hours

(including cell division). ICRF-193 is a reversible topoisomerase II

blocker and so removal of this agent enabled the sub-population of

cells within G2/M of the normal cycle to be routed back into

normal cycle (i.e. to G1/S). Hence, the 42 hour data shows two

distinct population groups describing cells within the normal and

polyploid cycle (Figure 5(c)).

Model outputs
To include the effect of the ICRF-193 in the CPM we include a

further optimisation parameter Nbp, which describes the fraction of

vcells that have doubled their DNA content (G2/M phase) but

have bypassed mitosis. These are selected stochastically and

inhibited from undergoing cell division when under drug ‘dosing’

conditions. This assignment is undertaken at each time step, until

the required percentage of vcells in the population have by-passed

mitosis. In the drug ‘wash-out’ conditions, the reduction in Nbp is

modelled with a half-life, t1/2, corresponding to the temporal

persistence of the drug-induced perturbation. Thus depending on

drug administration or wash-out the CPM has three optimisation

variables to be minimised through the evolutionary methods

described previously. The comparison of real (red population

displayed in Figure 5(b)) and vcell populations for selection of the

variable parameter values is made 24 hours after initialisation.

The optimised vcell population together with the real data contour

is shown in Figure 6(a) together with a contour illustrating the

position of the initial data set. The simulation clearly captures the

key features of the population evolution and given the stochastic

nature of both real and virtual cell populations they are well

correlated. At this point, following 24 hours of continuous drug

treatment, there are large fractions of 4n cells in the normal and

4np polyploid phases as well as a sub-population of polyploid cells

progressing to 8np phase. A small population sub-set (located

within the black dashed contour in Figure 6(a)) represents the vcells

yet to be influenced by the drug. As mentioned above, at each

Figure 4. Model simulation to track a virtual sub-population (red markers) of vcells through the cell cycle at (a) 6 hours (b) 12 hours
(c) 18 hours and (d) 24 hours. Note: the overall vcell population has a mean intermitotic time of 22 hours and an associated standard deviation of
6 hours.
doi:10.1371/journal.pcbi.1000741.g004

Virtual Cell Evolution through the Cell Cycle
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discrete time throughout the simulation the vcells are stochastically

tested to see if they have been drug treated, hence, a finite time

must elapse before all vcells can be influenced by the action of the

drug.

The vcell dynamical parameters corresponding to the fits shown

in Figure 6 are indicated in Table 1. In the presence of the drug

the simulation indicates a mean inter-mitotic time of 36 hours with

a standard deviation of 4 hours. In comparison, the IMT value

from fitting to a control set of data is 2264 hours. Multiple runs

(1,000 simulations of the experimental data) of the model indicate

that the variation in the tabulated values, due to stochastic

variation and evolutionary selection, is less than 5%. The

prediction of an extended IMT within drug treated cells is in

agreement with previous studies on the effects of ICRF-193,

showing delays in progression to the mitotic phase plus extension

in the duration of mitosis once initiated. Although, the CPM

cannot elucidate on the persistence of individual phase duration it

does accurately estimate their combined effect.

During the chase phase of the assay subsequent to drug wash-

out, the simulation evolves from 24 to 42 hours in a similar

manner to that above, with the difference that the Nbp parameter is

indirectly optimised using a half-life to describe its temporal decay;

i.e. the fraction of vcells that retain drug-induced division-bypass is

Nbp tð Þ~Nbp t~24hrsð Þe{T1=2t where T1=2~ln 2ð Þ
�

t1=2 and t is the

time since wash out. The intensity coordinates of the vpopulation

at 42 hours after ICRF-193 washout are displayed in Figure 6(b).

The simulation has captured the important features of both the

normal and polyploid cycle dynamics. That is, there is a significant

sub-population of vcells in each of the four DNA indexed phases.

For the 2D fit shown in Figure 6(b) the simulation uses a mean

inter-mitotic time of 2267 hours respectively. This agrees

remarkably well with that measured through microscopic

Figure 5. Endocycle routing with ICRF-193 (a), (b) and (c) indicate experimental data (green markers), gated sub-set (red markers)
and a contour of the gated data (dashed black line) at 0, 24 and 42 hours respectively.
doi:10.1371/journal.pcbi.1000741.g005

Figure 6. Simulated vpopulation at (a) 24 and (b) 42 hours respectively. The red shaded areas are virtual cells that lie within the respective
experimental gated contours shown in Figures 6(b) and (c), the green shaded points are simulated data lying outside of these contours. Also
indicated is the gated, time zero experimental data set contour (black dashed line).
doi:10.1371/journal.pcbi.1000741.g006
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techniques for an unperturbed real populace. Furthermore, the

simulation gives an insight to the temporal persistence of the drug

on the virtual population, indicating that a significant sub-

population retain or are committed to the division bypass over

the course of a few hours following wash-out. The fact that an

effective continuum of intensities straddling the 4np and 8np

phases in both real and virtual populations is evident reinforces the

simulation result which highlighting of temporal persistence of

ICRF-193 post washout. The evolution and perturbation of the

vcell population is shown in Video S1.

The continuous population dynamics provided by the simula-

tion are shown in Figure 7. At the initialisation point (t = 0 hours)

we see that a significant fraction of vcells are present in the 2n

phase compared to that in the 4n phase (blue and green curves

respectively), ,4:1 ratio. Over the first 24 hours, the drug

perturbation re-routes cells from the normal into the polyploid

cycle. Thus, the 4n population is stable as equal numbers of move

in and out of it producing linearly decreasing 2n and linearly

increasing 4np sub-populations. The percentage of mitotic-bypass

cells therefore increases over time, but due to dynamical

constraints and the optimised mean inter-mitotic time of 36 hours,

this does not reach 100% (maximum of ,85%) before washout.

The vertical dotted line in Figure 7 indicates the initiation of the

washout phase of the simulated experiment. Following drug

washout at 24 hours the fraction of mitotic-bypass vcells decreases

exponentially with an optimised half-life of 3 hours, thus it takes

the full 18 hours following drug removal to achieve something

near to normality. This same dynamic inevitably affects the re-

creation of a 2n population. This gives an insight to the temporal

persistence of drug on the vpopulation indicating that a sub-

population retains the bypass commitment for a few hours post

washout.

Discussion

The use of stochastic computing approaches plus evolutionary

algorithms to evolve a simulated cell population provides a new

approach to the analysis of multi-variate data sets obtained by flow

cytometry. In using this simulated biology process to analyse cell

cycle perturbation we have obtained detailed information cell

cycle time and the detailed dynamics of cell division and

proliferation. Furthermore, we have shown that a subpopulation

or cohort can be defined and tracked throughout the time course

of the experiment without the need for further molecular markers,

this can be essentially viewed as an in silico representation of the

pulse chase experimental methods such as those incorporating

two-parameter flow cytometry analysis: with DNA content and

BrdUrd [26]. When applying the technique to drug-treated

populations the pharmacodynamic indicators can be tracked and

sub-populations within normal and polyploid cycles differentiated.

Further, the temporal continuity inherent in the computational

assessment also highlights details un-resolvable in the experimental

sampling, such as cell cycle traverse (inter-mitotic time variation),

cell cycle delays (persistence of drug-induced effects) and has also

identified the occurrence and location of cell cycle restriction

points, which with additional molecular mapping can be further

defined [27]. Also, the simulated experiment permits individual in

addition to (sub)population cell tracking allowing single cell lineage

tracking and the ensuing generational patterns and relationships to

be continually analysed. This is a systems approach to whole

tumour population evolution leading to lineages, in contrary to

tracking individual lineages and extracting a global population

response [28]. We envisage that this approach would be much

more easily applied to a screening approach appropriate for

sampling tumours both in vitro and in vivo.

In this initial implementation of the technique, we use a cell

cycle marker that reports on relative cycle time and a nuclear

marker which allows us to discriminate between normal and

polyploid cell populations, therefore no further information of the

intricate details of the cell cycle (apart from mean IMT

distribution) can be deduced. In this respect, the simulated cell

methodology provides a framework, describing the relationships

between cells within a population, at a system level i.e. in the

context of progression through a unitary cycle with associated

genetic replication and cell division. Importantly this structure can

enhance existing approaches by linking detailed molecular level

models of cellular evolution through specific cell cycle phases

[26,27,29] to cell heterogeneity and its influence on population

level dynamics.

We have adopted an approach of minimised complexity in

order to clearly demonstrate the concept without the obfuscations

of detailed algorithm structures and data filtering. A simple dot

density cut-off filter is applied to gate the data, the number of

variable parameters within the genetic algorithms is reduced to a

minimum of three and goodness of fit assessed by a straightforward

maximisation of simulated cells within an experimental data

contour. Whilst future work will explore the potential of more

sophisticated computational techniques, the simple conceptual

base presented here already provides automated, objective data

analysis that encapsulates the fundamental biology and delivers

Figure 7. The normalised virtual cell count throughout the
time-course of the experiment. The blue, green, red and yellow
curves indicate the fraction of virtual cells in the 2n, 4n, 4np and 8np

phases of the cell cycle respectively. In addition, the fraction of virtual
cells drug blocked throughout the simulated experiment is indicated by
the black curve.
doi:10.1371/journal.pcbi.1000741.g007

Table 1. Optimised parameter values of the vcell population.

Parameter
mIMT
(hours)

sIMT
(hours)

Nbp

(%)
t1/2

(hours)

Drug treated (0–24 hrs) 36 6 99 -

Wash-out (24–42 hrs) 22 7 - 3

doi:10.1371/journal.pcbi.1000741.t001
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statistically robust results. Given the stochastic nature of the

simulation it could be argued that a statistical approach should be

maintained and increased simulation runs be used to acquire

added certainty rather than increased model complexity. The

large data sets collected in flow cytometry and the stochastic

variation associated with biological systems naturally lead to

statistical analysis techniques for data interpretation [23–25].

These have proven to be powerful tools in cell biology, however

when focussing on individual cell behaviour and heterogeneity

expressed at the single cell level the integrative measures of

statistics are limiting. The development of a simulated biology,

twinned to a real cell population, by fitting experimental data sets,

maintains the statistical relevance and provides discrimination via

individual cell recognition. The creation of in-silico cells brings the

potential for interpolation and extrapolation thus a continuous

temporal report of complex population dynamics can be produced

from discrete measurements and cellular behaviour predicted

beyond the limited time frame imposed by experiment and

environment. The temporal continuity inherent in the computa-

tional assessment also highlights details of the pharmacodynamics,

un-resolvable in the experimental sampling, such as inter-mitotic

time variation and persistence of drug-induced effects. Perhaps the

most beneficial aspect of the simulated cell approach is its ability to

provide direct knowledge of biological state allowing a computa-

tional systems approach to inform the biology. This contrasts with

traditional flow analysis, which provides information that is

primary in relation to data but secondary in relation to cells; i.e.

a choice can be made between direct data analysis with

interpretation to translate to cell behaviour or direct read-out of

cellular information from a data-directed simulation. By ensuring

interoperability of the modelling algorithm with experimental

cytometry outputs, the simulation provides emergent features of

the cell cycle and the functional operation of molecular restrictions

and checkpoints; providing further the foundation for considering

the evolving asymmetric and symmetric patterns of a dynamic

cellular system.

Supporting Information

Text S1 Information (detailed information, figures and movies)

will be given a leading ‘S’ to designate that they are present within

Supplementary Information.

Found at: doi:10.1371/journal.pcbi.1000741.s001 (0.22 MB

DOC)

Figure S1 Flow cytometry data set indicating the DRAQ5 and

GFP-cyclin B1 fluorescence intensities of a measured cell

population. This plot highlights the raw data (grey) and the

subsequent gated fraction (red); also, the three principle sub-

fractions present within the raw data are numerically labelled.

Found at: doi:10.1371/journal.pcbi.1000741.s002 (1.78 MB EPS)

Figure S2 Fluorescence intensity plot of the normalised

vpopulation; vcells highlighted in red refer to those with the

lowest normalised DRAQ5 values.

Found at: doi:10.1371/journal.pcbi.1000741.s003 (2.79 MB EPS)

Figure S3 Plot indicating the curve v’s over the cell cycle

interval [0 IMT], and the vpopulation, 3 members of which have

been highlighted (yellow markers) with DRAQ5 and GFP intensity

differences (red arrows) corresponding to equations [S2.3.2].

pDRAQ(t)pGFP(t)

Found at: doi:10.1371/journal.pcbi.1000741.s004 (2.59 MB EPS)

Figure S4 Figure indicating location of the roots (yellow

markers) between the median intensity line and linear functions

(that enclosed by red ellipses) describing evolution of DRAQ5 and

GFP intensity coordinates as a function of time.

Found at: doi:10.1371/journal.pcbi.1000741.s005 (2.61 MB EPS)

Figure S5 Intensity plot highlighting the properties of three

randomly chosen cells. These properties include: their vcells

intensity coordinates at both t and t marked in yellow and red

respectively and their corresponding intensity trajectory through

their cell-cycle (solid black lines). vE = 0t = 0

Found at: doi:10.1371/journal.pcbi.1000741.s006 (3.00 MB EPS)

Video S1 VPopulation simulation

Found at: doi:10.1371/journal.pcbi.1000741.s007 (2.61 MB

WMV)
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