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Abstract

In the mammalian hippocampus, the dentate gyrus (DG) is characterized by sparse and powerful unidirectional projections
to CA3 pyramidal cells, the so-called mossy fibers. Mossy fiber synapses appear to duplicate, in terms of the information
they convey, what CA3 cells already receive from entorhinal cortex layer II cells, which project both to the dentate gyrus and
to CA3. Computational models of episodic memory have hypothesized that the function of the mossy fibers is to enforce a
new, well separated pattern of activity onto CA3 cells, to represent a new memory, prevailing over the interference
produced by the traces of older memories already stored on CA3 recurrent collateral connections. Can this hypothesis apply
also to spatial representations, as described by recent neurophysiological recordings in rats? To address this issue
quantitatively, we estimate the amount of information DG can impart on a new CA3 pattern of spatial activity, using both
mathematical analysis and computer simulations of a simplified model. We confirm that, also in the spatial case, the
observed sparse connectivity and level of activity are most appropriate for driving memory storage – and not to initiate
retrieval. Surprisingly, the model also indicates that even when DG codes just for space, much of the information it passes
on to CA3 acquires a non-spatial and episodic character, akin to that of a random number generator. It is suggested that
further hippocampal processing is required to make full spatial use of DG inputs.
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Introduction

The hippocampus presents the same organizaton across

mammals, and distinct ones in reptiles and in birds. A most

prominent and intriguing feature of the mammalian hippocampus

is the dentate gyrus (DG). As reviewed in [1], the dentate gyrus is

positioned as a sort of intermediate station in the information flow

between the entorhinal cortex and the CA3 region of the

hippocampus proper. Since CA3 receives also direct, perforant path

connections from entorhinal cortex, the DG inputs to CA3, called

mossy fibers, appear to essentially duplicate the information that

CA3 can already receive directly from the source. What may be

the function of such a duplication?

Within the view that the recurrent CA3 network operates as an

autoassociative memory [2], [3], it has been suggested that the

mossy fibers (MF) inputs are those that drive the storage of new

representations, whereas the perforant path (PP) inputs relay the

cue that initiates the retrieval of a previously stored representation,

through attractor dynamics, due largely to recurrent connections

(RC). Such a proposal is supported by a mathematical model

which allows a rough estimate of the amount of information, in

bits, that different inputs may impart to a new CA3 representation

[4]. That model, however, is formulated in the Marr [5]

framework of discrete memory states, each of which is represented

by a single activity configuration or firing pattern.

Conversely, the prediction that MF inputs may be important for

storage and not for retrieval has received tentative experimental

support from experiments with spatial tasks, either the Morris

water maze [6] or a dry maze [7]. Two-dimensional spatial

representations, to be compatible with the attractor dynamics

scenario, require a multiplicity of memory states, which approx-

imate a 2D continuous manifold, isomorphic to the spatial

environment to be represented. Moreover, there has to be of

course a multiplicity of manifolds, to represent distinct environ-

ments with complete remapping from one to the other [8].

Attractor dynamics then occurs along the dimensions locally

orthogonal to each manifold, as in the simplified ‘‘multi-chart’’

model [9], [10], whereas tangentially one expects marginal

stability, allowing for small signals related to the movement of

the animal, reflecting changing sensory cues as well as path

integration, to displace a ‘‘bump’’ of activity on the manifold, as

appropriate [9], [11].

Although the notion of a really continuous attractor manifold

appears as a limit case, which can only be approximated by a

network of finite size [12], [13], [14], [15], even the limit case

raises the issue of how a 2D attractor manifold can be established.

In the rodent hippocampus, the above theoretical suggestion and

experimental evidence point at a dominant role of the dentate

gyrus, but it has remained unclear how the dentate gyrus, with its

MF projections to CA3, can drive the establishment not just of a

discrete pattern of activity, as envisaged by [4], but of an entire

spatial representation, in its full 2D glory. This paper reports the

analysis of a simplified mathematical model aimed at addressing

this issue in a quantitative, information theoretical fashion.
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Such an analysis would have been difficult even only a few years

ago, before the experimental discoveries that largely clarified, in

the rodent, the nature of the spatial representations in the regions

that feed into CA3. First, roughly half of the entorhinal PP inputs,

those coming from layer II of the medial portion of entorhinal

cortex, were found to be often in the form of grid cells, i.e. units that

are activated when the animal is in one of multiple regions,

arranged on a regular triangular grid [16]. Second, the sparse

activity earlier described in DG granule cells [17] was found to be

concentrated on cells also with multiple fields, but irregularly

arranged in the environment [18]. These discoveries can now

inform a simplified mathematical model, which would have earlier

been based on ill-defined assumptions. Third, over the last decade

neurogenesis in the adult dentate gyrus has been established as a

quantitatively constrained but still significant phenomenon,

stimulating novel ideas about its functional role [19]. The first

and third of these phenomena will be considered in extended

versions of our model, to be analysed elsewhere; here, we focus on

the role of the multiple DG place fields in establishing novel CA3

representations.

A simplified mathematical model
The complete model considers the firing rate of a CA3

pyramidal cell, gi, to be determined by the firing rates fgg of

other cells in CA3, which influence it through RC connections; by

the firing rates fbg of DG granule cells, which feed into it through

MF connections; by the firing rates fQg of layer II pyramidal cells

in entorhinal cortex (medial and lateral), which project to CA3

through PP axons; and by various feedforward and feedback

inhibitory units. A most important simplification is that the fine

temporal dynamics, e.g. on theta and gamma time scales, is

neglected altogether, so that with ‘‘firing rate’’ we mean an

average over a time of order the theta period, a hundred msec or so.

Very recent evidence indicates, in fact, that only one of two

competing spatial representations tends to be active in CA3 within

each theta period [Jezek et al, SfN abstract, 2009]. Information

coding over shorter time scales would require anyway a more

complex analysis, which is left to future refinements of the model.

For the different systems of connections, we assume the

existence of anatomical synapses between any two cells to be

represented by fixed binary matrices fcPPg,fcMFg,fcRCg taking 0

or 1 values, whereas the efficacy of those synapses to be described

by matrices fJPPg,fJMFg,fJRCg. Since they have been argued to

have a minor influence on coding properties and storage capacity

[20], consistent with the diffuse spatial firing of inhibitory

interneurons [21], the effect of inhibition and of the current

threshold for activating a cell are summarized into a subtractive

term, of which we denote with ~TT the mean value across CA3 cells,

and with ~ddi the deviation from the mean for a particular cell i.

Assuming finally a simple threshold-linear activation function

[22] for the relation between the activating current and the output

firing rate, we write

gi(~xx)~

g
X

l

cPP
il JPP

il Ql (~xx)z
X

j

cMF
ij JMF

ij bj(~xx)z
X

k

cRC
ik JRC

ik gk(~xx)z~ddi{~TT

" #z ð1Þ

where ½:�z indicates taking the sum inside the brackets if positive

in value, and zero if negative, and g is a gain factor. The firing

rates of the various populations are all assumed to depend on the

position ~xx of the animal, and the notation is chosen to minimize

differences with our previous analyses of other components of the

hippocampal system (e.g. [22], [23]).

The storage of a new representation
When the animal is exposed to a new environment, we make

the drastic modelling assumption that the new CA3 representation

be driven solely by MF inputs, while PP and RC inputs provide

interfering information, reflecting the storage of previous repre-

sentations on those synaptic systems, i.e., noise. Such ‘‘noise’’ can

in fact act as an undesired signal and bring about the retrieval of a

previous, ‘‘wrong’’ representation, an interesting process which is

not however analysed here. We reabsorb the mean of such noise

into the mean of the ‘‘threshold+inhibition’’ term ~TT and similarly

for the deviation from the mean. We use the same symbols for the

new variables incorporating RC and PP interference, but

removing in both cases the ‘‘*’’ sign, thus writing

gi(~xx)~
X

j

cMF
ij JMF

ij bj(~xx)zdi{T

" #z

ð2Þ

where the gain has been set to g~1, without loss of generality, by

an appropriate choice of the units in which to measure

fcMFg,fJMFg (pure numbers) and di,T (s{1).

As for the MF inputs, we consider a couple of simplified models

that capture the essential finding by [18], of the irregularly

arranged multiple fields, as well as the observed low activity level

of DG granule cells [24], while retaining the mathematical

simplicity that favours an analytical treatment. We thus assume

that only a randomly selected fraction pDG of the granule cells are

active in a new environment, of size A, and that those units are

active in a variable number Qj of locations, with Qj drawn from a

distribution with mean q. In model A, which we take as our

reference, the distribution is taken to be Poisson (the data reported

by Leutgeb et al [18] are fit very well by a Poisson distribution with

q~1:7, but their sampling is limited). In model B, which we use as

a variant, the distribution is taken to be exponential (this better

describes the results of the simulations in [25], though that simple

model may well be inappropriate). Therefore, in either model, the

Author Summary

The CA3 region at the core of the hippocampus, a
structure crucial to memory formation, presents one
striking anatomical feature. Its neurons receive many
thousands of weak inputs from other sources, but only a
few tens of very strong inputs from the neurons in the
directly preceding region, the dentate gyrus. It had been
proposed that such sparse connectivity helps the dentate
gyrus to drive CA3 activity during the storage of new
memories, but why it needs to be so sparse had remained
unclear. Recent recordings of neuronal activity in the
dentate gyrus (Leutgeb, et al. 2007) show the firing maps
of granule cells of rodents engaged in exploration: the few
cells active in a given environment, about 3% of the total,
present multiple firing fields. Following these findings, we
could now construct a network model that addresses the
question quantitatively. Both mathematical analysis and
computer simulations of the model show that, while the
memory system would function also otherwise, connec-
tions as sparse as those observed make it function
optimally, in terms of the bits of information new
memories contain. Much of this information, we show, is
encoded however in a difficult format, suggesting that
other regions of the hippocampus, until now with no clear
role, may contribute to decode it.

ð1Þ
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firing rate bj(~xx) of DG unit j is a combination of Qj gaussian

‘‘bumps’’, or fields, of equal effective size (sf )2 and equal height

b0, centered at random points ~xxjk in the new environment

bj ~xxð Þ~
XQj

k~0

b0 e

{
~xx{~xxjk

� �2

2s2
f : ð3Þ

The informative inputs driving the firing of a CA3 pyramidal

cell, during storage of a new representation, result therefore from a

combination of three distributions, in the model. The first, Poisson

but close to normal, determines the MF connectivity, that is how it

is that each CA3 unit receives only a few tens of connections out of

NDG^106 granule cells (in the rat), whereby cMF
ij

n o
~0,1 with

P cMF
ij ~1

� �
~CMF=NDG:cMF . The second, Poisson, determines

which of the DG units presynaptic to a CA3 unit is active in the

new environment, with P(unit j is active)~pDG . The third, either

Poisson or exponential (and see model C below), determines how

many fields an active DG unit has in the new environment. Note

that in the rat CMF^46 [26] whereas pDG&0:02{0:05, even

when considering presumed newborn neurons [24]. As a result,

the total number of active DG units presynaptic to a given CA3

unit, pDGCMF:a, is of order one, a*1{2, so that the second

Poisson distribution effectively dominates over the first, and the

number of active MF impinging on a CA3 unit can approximately

be taken to be itself a Poisson variable with mean a. As a

qualification to such an approximation, one has to consider that

different CA3 pyramidal cells, among the NCA3^3|105 present

in the rat (on each side), occasionally receive inputs from the same

active DG granule cells, but rarely, as NDG^106, hence the pool

of active units pDGNDG is only one order of magnitude smaller

than the population of receiving units NCA3.

In a further simplification, we consider the MF synaptic weights

to be uniform in value, JMF
ij :J. This assumption, like those of

equal height and width of the DG firing fields, is convenient for the

analytical treatment but not necessary for the simulations. It will

be relaxed later, in the computer simulations addressing the effect

of MF synaptic plasticity.

The new representation is therefore taken to be established by

an informative signal coming from the dentate gyrus

gi(~xx)~J
X

j

cMF
ij bj(~xx){T ð4Þ

modulated, independently for each CA3 unit, by a noise term di,

reflecting recurrent and perforant path inputs as well as other

sources of variability, and which we take to be normally distributed

with zero mean and standard deviation d.

The position ~xx of the animal determines the firing fbg of DG

units, which in turn determine the probability distribution for the

firing rate of any given CA3 pyramidal unit

P gi D~xxð Þ~d(gi) W {
gi(~xx)

d

� �
zH(gi)

e
{

gi{gi(~xx)ð Þ2

2d2

(
ffiffiffiffiffiffi
2p
p

d)

where

W(r(~xx)):
1ffiffiffiffiffiffi
2p
p

ð%(~xx)

{?
e{t2=2dt

is the integral of the gaussian noise up to given signal-to-noise ratio

r(~xx):g(~xx)=d,

and H(g) is Heaviside’s function vanishing for negative values of

its argument. The first term, multiplying Dirac’s d gið Þ, expresses

the fact that negative activation values result in zero firing rates,

rather than negative rates.

Note that the resulting sparsity, i.e. how many of the CA3 units

end up firing significantly at each position, which is a main factor

affecting memory storage [21], is determined by the threshold T ,

once the other parameters have been set. The approach taken here

is to assume that the system requires the new representation to be

sparse and regulates the threshold accordingly. We therefore set

the sparsity parameter aCA3~0:1, in broad agreement with

experimental data [14], and adjust T (as shown, for the

mathematical analysis, in the third section of the Methods).

The distribution of fields per DG unit is given in model A by the

Poisson form

PA(Q)~
qQ

Q!
e{q

in model B by the exponential form

PB(Q)~
1

1zq

q

1zq

� �Q

and we also consider, as another variant, model C, where each

DG unit has one and only one field

PC(Q)~d1Q:

Assessing spatial information content
In the model, spatial position ~xx is represented by CA3 units,

whose activity is informed about position by the activity of DG

units. The activity of each DG unit is determined independently of

others by its place fields

P fb(~xx)gð Þ~P
j

P bj(~xx)
� �

with

P bj(~xx)
� �

~(1{p
DG

)d bj

� �
zp

DG
|

X?
Qj~0

PA,B or C(Qj) d bj{
XQj

k~1

y ~xx{~xxjk

� �0
@

1
A

where each contributing field is a gaussian bump

y ~xx{~xxjk

� �
: b0 e

{
~xx{~xxjk

� �2

2s2
f

0
BBB@

1
CCCA:

The Mutual Information I ~xx,fgigð Þ quantifies the efficiency with

which CA3 activity codes for position, on average, as

Sparse Mossy Fibers Help Set Up CA3 Memories
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SI ~xx,fgigð ÞT~SH1 fgigð ÞT{SSH2 fgigD~xxð ÞT~xxT ð5Þ

where the outer brackets S:T indicate that the average is not just

over the noise d, as usual in the estimation of mutual information,

but also, in our case, over the quenched, i.e. constant but unknown

values of the microscopic quantities cij , the connectivity matrix,

Qj , the number of fields per active unit, and~xxjk, their centers. For

given values of the quenched variables, the total entropy H1 and

the (average) equivocation H2 are defined as

H1 fgigð Þ~{

ð
P
i

dgi P(fgig) log P(fgig)ð Þ ð6Þ

SH2 fgigD~xxð ÞT~xx~{

ð
(d~xx=A)P

i
dgi P(fgigD~xx)|

log P(fgigD~xx)ð Þ
ð7Þ

where A is the area of the given environment; the logs are

intended in base 2, to yield information values in bits.

The estimation of the mutual information can be approached

analytically directly from these formulas, using the replica trick (see

[27]), as shown by [28] and [29], and briefly described in the first

section of the Methods. As in those two studies, however, here

too we are only able to complete the derivation in the limit

of low signal-to-noise, or more precisely of limited variation,

across space, of the signal-to-noise around its mean, that is

v(ri(~xx){vri(~xx)w~xx)2
w~xx?0. In this case we obtain, to first

order in N:NCA3, an expression that can be shown to be

equivalent to

SI ~xx,fgigð ÞT~

N

ln 2
S
ð

d~xx

A
W({ri(~xx)) lnW({ri(~xx)){W({ri(~xx)) ln

ð
d~xx0

A
W({ri(~xx

0))

	 


z

ð
d~xx

A

d~xx0

A

W(ri(~xx))

2
ri ~xxð Þ{ri ~xx

0ð Þ½ �2z ri(~xx){ri(~xx
0)½ �s(ri(~xx))

	 


{

ð
d~xx

A

d~xx0

A

d~xx00

A

W(ri(~xx))

4
ri ~xx

0ð Þ{ri ~xx
00ð Þ½ �2T

ð8Þ

where we use the notation s(r)~(1=
ffiffiffiffiffiffi
2p
p

) exp{r2=2 (cp. [29],

Eqs.17, 45).

Being limited to the first order in N , the expression above can

be obtained in a straightforward manner by directly expanding the

logarithms, in the large noise limit d??, in the simpler formula

quantifying the information conveyed by a single CA3 unit

SI ~xx,fgigð ÞT~

1

ln 2
S
ð

d~xx

A
W({ri(~xx)) lnW({ri(~xx)){W({ri(~xx)) ln

ð
d~xx0

A
W({ri(~xx

0))

	 


{

ð
d~xx

A

ð
dgffiffiffiffiffiffi
2p
p

d
e
{

g{g(x)ð Þ2

2d2 ln

ð
d~yy

A
e

g2(x){g2(y){2g g(x){g(y)ð Þ
2d2

" #
T

ð9Þ

This single-unit formula cannot quantify the higher-order

contributions in N , which decrease the information conveyed by

a population in which some of the units inevitably convey some of

the same information. The replica derivation, instead, in principle

would allow one to take into proper account such correlated

selectivity, which ultimately results in the information conveyed by

large CA3 populations not scaling up linearly with N, and

saturating instead once enough CA3 units have been sampled, as

shown in related models by [28], [29]. In our case however the

calculation of e.g. the second order terms in N is further

complicated by the fact that different CA3 units receive inputs

coming from partially overlapping subsets of DG units. This may

cause saturation at a lower level, once all DG units have been

effectively sampled. The interested reader can follow the

derivation sketched in the Methods.

Having to take, in any case, the large noise limit implies that the

resulting formula is not really applicable to neuronally plausible

values of the parameters, but only to the uninteresting case in

which DG units impart very little information onto CA3 units.

Therefore we use only the single-unit formula, and resort to

computer simulations to assess the effects of correlated DG inputs.

The second and third sections of the Methods indicate how to

obtain numerical results by evaluating the expression in Eq. 9.

Computer simulations can be used to estimate the information

present in samples of CA3 units of arbitrary size, and at arbitrary

levels of noise, but at the price of an indirect decoding procedure. A

decoding step is required because the dimensionality of the space

spanned by the CA3 activity fgig is too high. It increases in fact

exponentially with the number N of neurons sampled, as MN , where

M is the number of possible responses of each neuron. The decoding

method we use, described in the fourth section of the Methods, leads

to two different types of information estimates, based on either the

full or reduced localization matrix. The difference between the two,

and between them and the analytical estimate, is illustrated under

Results and further discussed at the end of the paper.

Results

The essential mechanism described by the model is very simple,

as illustrated in Fig. 1. CA3 units which happen to receive a few

DG overlapping fields combine them in a resulting field of their

own, that can survive thresholding. The devil is in the quantitative

details: what proportion of CA3 cells express place fields, how

large are the fields, and how strong are the fields compared with

the noise, all factors that determine the information contained in

the spatial representation. Note that a given CA3 unit can express

multiple fields.

It is convenient to discuss such quantitative details with

reference to a standard set of parameters. Our model of reference

is a network of DG units with fields represented by Gaussian-like

functions of space, with the number of fields per each DG units

given by a Poisson distribution with mean value q, and parameters

as specified in Table 1.

In general, the stronger the mean DG input, the more it

dominates over the noise, and also the higher the threshold has to

be set in CA3 to make the pattern of activity as sparse as required,

by fixing aCA3~0:1. To control for the trivial advantage of a

higher signal-to-noise, we perform comparisons in which it is kept

fixed, by adjusting e.g. the MF synaptic strength J.

Multiple input cells vs. multiple fields per cell
The first parameter we considered is q, the average number of

fields for each DG unit, in light of the recent finding that DG units

active in a restricted environment are more likely to have multiple

fields than CA3 units, and much more often than expected, given

their weak probability of being active [18]. We wondered whether

receiving multiple fields from the same input units would be

advantageous for CA3, and if so whether there is an optimal q
value. We therefore estimated the mutual information when q varies

and m, the total mean number of DG fields that each CA3 cell

ð8Þ

ð9Þ
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receives as input, is kept fixed, by varying CMF correspondigly. As

shown in Fig. 2, varying q in this manner makes very little difference

in the bits conveyed by each CA3 cell. This figure reports the results

of computer simulations, that illustrate also the dependence of the

mutual information on NCA3, the number of cells sampled. The

dependence is sub-linear, but rather smooth, with significant

fluctuations from sample-to-sample which are largely averaged out

in the graph. The different lines correspond to different distributions

of the input DG fields among active DG cells projecting to CA3, that

is different combinations of values for q and CMF ~m=(qpDG), with m
kept constant; these different distributions do not affect much the

information in the representation.

The analytical estimate of the information per CA3 unit

confirms that there is no dependence on q (Fig. 2, inset). This is not

a trivial result, as it would be if only the parameter m entered the

analytical expression. Instead, the second section of the Methods

shows that the parameters Cm of the m-field decomposition

depend separately on q and a:pDGCMF , so the fact that the two

separate dependencies almost cancel out in a single dependence on

their product, m, is remarkable. Moreover, such analytical estimate

of the information conveyed by one unit does not match the first

datapoints, for NCA3~1, extracted from the computer simulation;

it is not higher, as might have been expected considering that the

simulation requires an additional information loosing decoding

step, but lower, by over a factor of 2. The finding that the

analytical estimate differs from, and is in fact much lower than, the

slope parameter extracted from the simulations, after the decoding

step, is further discussed below. Despite their incongruity in

absolute values, neither the estimate derived from the simulations

Figure 1. Network scheme. The DG-CA3 system indicating examples of the fields attributed to DG units and of those resulting in CA3 units, the
connectivity between the two populations, and the noise d that replaces, in the model, also the effect of recurrent connections in CA3.
doi:10.1371/journal.pcbi.1000759.g001

Table 1. Parameters: Values used in the standard version of
the model.

Parameter Symbol Standard Value

probability a DG unit is active in one
environment

pDG 0.033

number of DG inputs to a CA3 unit CMF 50

mean number of fields per active DG unit q 1.7

mean number of fields activating a CA3 unit m CMF pDGq~2:833

strength of MF inputs J 1, otherwise
2:833=m

noise affecting CA3 activity d 1 (in units in which
b0~2:02)

sparsity of CA3 activity aCA3 0.1

doi:10.1371/journal.pcbi.1000759.t001
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ll 
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Figure 2. The exact multiplicity of fields in DG units is
irrelevant. Information about position plotted versus the number of
CA3 units, NCA3 from which it is decoded, with the mean number of
fields in the input to each CA3 unit constant at the value m~2:833.
Different lines correspond to a different mean number of fields per DG
input units, balanced by different mean number of input units per CA3
unit. Inset: analytical estimate of the information per CA3 unit, from
numerically integrating Eq. 9.
doi:10.1371/journal.pcbi.1000759.g002
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nor the analytical estimate have separate dependencies on q and a,

as shown in Fig. 2.

More MF connections, but weaker
Motivated by the striking sparsity of MF connections, compared

to the thousands of RC and PP synaptic connections impinging on

CA3 cells in the rat, we have then tested the effect of changing

CMF without changing q. In order to vary the mean number of

DG units that project to a single CA3 unit, while keeping constant

the total mean input strength, assumed to be an independent

biophysically constrained parameter, we varied inversely to CMF

the synaptic strength parameter J . As shown in Fig. 3, the

information presents a maximum at some intermediate value

CMF^20{30, which is observed both in simulations and in the

analytical estimate, despite the fact that again they differ by more

than a factor of two.

Again we find that the analytical estimate differs from, and is in

fact much lower than, the slope parameter extracted from the

simulations, after the decoding ste. Both measures, however, show

that the standard model is not indifferent to how sparse are the

MF connections. If they are very sparse, most CA3 units receive

no inputs from active DG units, and the competition induced by

the sparsity constraint tends to be won, at any point in space, by

those few CA3 units that are receiving input from just one active

DG unit. The resulting mapping is effectively one-to-one, unit-to-

unit, and this is not optimal information-wise, because too few

CA3 units are active – many of them in fact have multiple fields

(Fig. 4, right), reflecting the multiple fields of their ‘‘parent’’ units

in DG. As CMF increases (with a corresponding decrease in MF

synaptic weight), the units that win the competition tend to be

those that summate inputs from two or more concurrently active

DG units. The mapping ceases to be one-to-one, and this increases

the amount of information, up to a point. When CMF is large

enough that CA3 units begin to sample more effectively DG

activity, those that win the competition tend to be the ‘‘happy few’’

that happen to summate several active DG inputs, and this tends

to occur at only one place in the environment. As a result, an ever

smaller fraction of CA3 units have place fields, and those tend to

have just one, often very irregular, as shown in Fig. 4, right. From

that point on, the information in the representation decreases

monotonically. The optimal MF connectivity is then in the range

which maximizes the fraction of CA3 units that have a field in the

newly learned environment, at a value, roughly one third, broadly

consistent with experimental data (see e.g. [30]).

It is important to emphasize that what we are reporting is a

quantitative effect: the underlying mechanism is always the same,

the random summation of inputs from active DG units. DG in the

model effectively operates as a sort of random number generator,

whatever the values of the various parameters. How informative

are the CA3 representations established by that random number

generator, however, depends on the values of the parameters.

Other DG field distribution models
We repeated the simulations using other models for the DG

fields distribution, the exponential (model B) and the single field

one (model C), and the results are similar to those obtained for

model A: the information has a maximum when varying CMF on

its own, and is instead roughly constant if the parameter m is held

constant (by varying q inversely to CMF ). Fig. 5 reports the

comparison, as CMF varies, between models A and B, with q~1:7,

and model C, where q:1, so that in this latter case the inputs are

1/1.7 times weaker (we did not compensate by multiplying J by

1.7). Information measures are obtained by decoding several

samples of 10 units, averaging and dividing by 10, and not by

extracting the fit parameters. As one can see, the lower mean input

for model C leads to lower information values, but the trend with

CMF is the same in all three models. This further indicates that the

multiplicity of fields in DG units, as well as its exact distribution, is

of no major consequence, if comparisons are made keeping

constant the mean number of fields in the input to a CA3 unit.

Sparsity of DG activity
We study also how the level of DG activity affects the

information flow. We choose diffferent values for the probability

Figure 3. A sparse MF connectivity is optimal, but not too sparse. Left: information plotted versus the number of CA3 cells, with different
colors for different values of CMF . Dots represent information values obtained from simulations, while curves are exponentially saturating fits to the
data points, as described in Methods. Right: plot of the two parameters of the fit curves. Main figure: slope parameter describing the slope of the
linear part of the curve (for low NCA3), constrasted with the analytical estimate of the term proportional to NCA3 (Eq.9); inset: total information
parameter, describing the saturation level reached by the curve.
doi:10.1371/journal.pcbi.1000759.g003
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pDG that a single DG unit fires in the given environment, and

again we adjust the synaptic weight J to keep the mean DG input

per CA3 cell constant across the comparisons.

Results are simular to those obtained varying the sparsity of the

MF connections (Fig. 6). Indeed, the analytical estimate in the two

conditions would be exactly the same, within the approximation

with which we compute it, because the two parameters pDG and

CMF enter the calculation in equivalent form, as a product. The

actual difference between the two parameters stems from the fact

that increasing CMF , CA3 units end up sampling more and more

the same limited population of active DG units, while increasing

pDG this population increases in size. This difference can only be

appreciated from the simulations, which however show that the

main effect remains the same: an information maximum for rather

sparse DG activity (and sparse MF connections), The subtle

difference between varying the two parameters can be seen better

in the saturation information value: with reference to the standard

case, in the center of the graph in the inset, to the right increasing

pDG leads to more information than increasing CMF , while to the

left the opposite is the case, as expected.

Full and simplified decoding procedures
As noted above, we find that the analytical estimate of the

information per unit is always considerably lower than the slope

parameter of the fit to the measures extracted from the

simulations, contrary to expectations, since the latter require an

additional decoding step, which implies some loss of information.

We also find, however, that the measures of mutual information

that we extract from the simulations are strongly dependent on the

method used, in the decoding step, to construct the ‘‘localization

matrix’’, i.e. the matrix which compiles the frequency with which

the virtual rat was decoded as being in position ~xx0 when it was

actually in position ~xx. All measures reported so far, from

simulations, are obtained constructing what we call the full

localization matrix Q(~xx,~xx0) which, if the square environment is

discretized into 20|20 spatial bins, is a large 400|400 matrix,

which requires of order 160,000 decoding events to be effectively

sampled. We run simulations with trajectories of 400,000 steps,

and additionally corrected the information measures to avoid the

limited sampling bias [31].

An alternative, that allows extracting unbiased measures from

much shorter simulations, is to construct a simplified matrix

Q̂Q(~xx{~xx0), which averages over decoding events with the same

vector displacement between actual and decoded positions.

Q̂Q(~xx{~xx0) is easily constructed on the torus we used in all

simulations, and being a much smaller 20|20 matrix it is

effectively sampled in just a few thousand steps.

The two decoding procedures, given that the simplified matrix

is the shifted average of the rows of the full matrix, might be

expected to yield similar measures, but they do not, as shown in

Fig. 7. The simplified matrix, by assuming translation invariance

Figure 4. Information vs. connectivity. Left: Examples of CA3 firing rate maps for CMF ~7 (top row); CMF ~29 (middle) and CMF ~150 (bottom);
Right: Histogram that shows the fraction of CA3 units active somewhere in the environment, left, and the fraction of active CA3 units with more than
one field, right, for different CMF values.
doi:10.1371/journal.pcbi.1000759.g004
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Figure 5. Information vs. connectivity. Information plotted versus
different values of connectivity between DG and CA3. Solid lines are all
from simulations (localization information from samples of 10 units,
divided by 10), as follows: for the blue line, the distribution defining the
number of fields in DG cells is Poisson (model A); for the green line, it is
exponential (model B); and for the red line, each DG active unit has one
field only (model C).
doi:10.1371/journal.pcbi.1000759.g005
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of the errors in decoding, is unable to quantify the information

implicitly present in the full distribution of errors around each

actual position. Such errors are of an ‘‘episodic’’ nature: the local

view from position ~xx might happen to be similar to that from

position ~xx0, hence neural activity reflecting in part local views

might lead to confuse the two positions, but this does not imply

that another position~zz has anything in common with~zzz(~xx0{~xx).
Our little network model captures this discrepancy, in showing, in

Fig. 7, that for any actual position there are a few selected position

that are likely to be erroneously decoded from the activity of a

given sample of units; when constructing instead the translationally

invariant simplified matrix, all average errors are distributed

smoothly around the correct position (zero error), in a roughly

Gaussian bell. The upper right panel in Fig. 7 shows that such

episodic information always prevails, whatever the connectivity,

i.e. in all three parameter regimes illustrated in Fig. 4. The lower

right panel in Fig. 7 compares, instead, the entropies of the

decoded positions with the two matrices, conditioned on the actual

position – that is, the equivocation values. Unlike the mutual

information, such equivocation is much higher for the simplified

matrix; for this matrix, it is simply a measure of how widely

displaced are decoded positions, with respect to the actual

positions, represented at the center of the square; and for small

samples of units, which are not very informative, the ‘‘displace-

ment’’ entropy approaches that of a flat distribution of decoded

positions, i.e. log2(400)^8:64 bits. For larger samples, which

enable better localization, the simplified localization matrix begins

to be clustered in a Gaussian bell around zero displacement, so

that the equivocation gradually decreases (the list of displacements,

with their frequencies, is computed for each sample, and it is the

equivocation, not the list itself, which is averaged across samples).

In contrast, the entropy of each row of the full localization matrix,

i.e. the entropy of decoded positions conditioned on any actual

position, is lower, and also decreasing more steeply with sample

size; it differs from the full entropy, in fact, by the mutual

information between decoded and actual positions, which increases

with sample size. The two equivocation measures therefore both

add up to the two mutual information measures to yield the same

full entropy of about 8.64 bits (a bit less in the case of the full

matrix, where the sampling is more limited), and thus serve as

controls that the difference in mutual information is not due, for

example, to inaccuracy. As a third crucial control, we calculated

also the average conditional entropy of the full localization matrix,

when the matrix is averaged across samples of a given size: the

resulting entropy is virtually identical to the displacement entropy

(which implies instead an average of the full matrix across rows,

i.e. across actual positions). This indicates that different samples of

units express distinct episodic content at each location, such that

averaging across samples is equivalent to averaging across

locations.

Apparently, also the analytical estimate is unable to capture the

spatial information implicit in such ‘‘episodic’’ errors, as its values

are well below those obtained with the full matrix, and somewhat

above those obtained with the simplified matrix (consistent with

some loss with decoding). One may wonder how can the

information from the full localization matrix (which also requires

a decoding step) be higher than the decoding-free analytical

estimate, without violating the basic information processing

theorem. The solution to the riddle, as we understand it, is subtle:

when decoding, one takes essentially a maximum likelihood

estimate, assigning a unique decoded position per trial, or time

step. This leads to a ‘‘quantized’’ localization matrix, which in

general tends to have substantially higher information content

than the ‘‘smoothed’’ matrix based on probabilities [32]. In the

analytical derivation there is no concept of trial, time step or

maximal likelihood, and the matrix expresses smoothly varying

probabilities. The more technical implications are discussed

further at the end of the Methods. These differences do not alter

the other results of our study, since they affect the height of the

curves, not their shape, however they have important implications.

The simplified matrix has the advantage of requiring much less

data, i.e. less simulation time, but also less real data if applied to

neurophysiological recordings, than the full matrix, and in most

situations it might be the only feasible measure of spatial

information (the analytical estimate is not available of course for

real data). So in most cases it is only practical to measure spatial

Figure 6. Sparse DG activity is effective at driving CA3. Left: Information plotted versus the number of CA3 units, different colors correspond
to different values for pDG . Dots represent information values obtained from simulations, while the curves are exponentially saturating fits to the data
points, as described in Methods. Right: Plot of the two parameters of the fits. Main figure: slope parameter describing the slope of the linear part of
the information curve (for low NCA3); inset: total information parameter describing the saturation level reached by the information - both are
contrasted with the corresponding measures (dashed lines) obtained varying CMF instead of pDG .
doi:10.1371/journal.pcbi.1000759.g006
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information with methods that, our model suggests, miss out much

of the information present in neuronal activity, what we may refer

to as ‘‘dark information’’, not easily revealed. One might

conjecture that the prevalence of dark information is linked to

the random nature of the spatial code established by DG inputs. It

might be that additional stages of hippocampal processing, either

with the refinement of recurrent CA3 connections or in CA1, are

instrumental in making dark information more transparent.

Effect of learning on the mossy fibers
While the results reported this far assume that MF weights are

fixed, J~1, we have also conducted a preliminary analysis of how

the amount of spatial information in CA3 might change as a

consequence of plasticity on the mossy fibers. In an extension of

the standard model, we allow the weights of the connections

between DG and CA3 to change with a model ‘‘Hebbian’’ rule.

This is not an attempt to capture the nature of MF plasticity,

which is not NMDA-dependent and might not be associative [33],

but only the adoption of a simple plasticity model that we use in

other simulations. At each time step (that corresponds to a

different place in space) weights are taken to change as follows:

DJMF
ij (t)~cMF gi(~xx(t))(bj(~xx(t)){vb(~xx(t))w) ð10Þ

where cMF is a plasticity factor that regulates the amount of

learning. Modifying in this way the MF weights has the general

effect of increasing information values, so that they approach

saturation levels for lower number of CA3 cells; in particular this is

true for the information extracted from both full and simplified

matrices. In Fig. 8, the effect of such ‘‘learning’’ is shown for

different values of the parameter cMF , as a function of

connectivity.

We see that allowing for this type of plasticity on mossy fibers

leads to shift the maximum of information as a function of the

connectivity level. The structuring of the weights effectively results

in the selection of favorite input connections, for each CA3 unit,

among a pool of availables ones; the remaining strong connections

are a subset of those ‘‘anatomically’’ present originally. It is logical,

then, that starting with a larger pool of connnections, among

which to pick the ‘‘right’’ ones, leads to more information than

starting with few connections, which further decrease in effective

number with plasticity. We expect better models of the details of

MF plasticity to preserve this main effect.

Figure 7. Localization matrices. Left: the rows of the full matrix represent the actual positions of the virtual rat while its columns represent
decoded positions (the full matrix is actually 400|400); three examples of rows are shown, rendered here as 20|20 squares, all from decoding by a
given sample of 10 units. The simplified matrix is a single 20|20 matrix obtained (from the same sample) as the average of the full matrix taking into
account traslation invariance. Right, top: the two procedures lead to large quantitative differences in information (here, the measures from samples of
10 units, divided by 10, from the full matrix, cyan, and from the simplified matrix, black), but with the same dependence on CMF . Right, bottom: The
conditional entropies of the full and simplified localization matrices (cyan and black, dashed) in both cases add up to the respective mutual
information measure (cyan and black, solid) to give the full entropy of log(400)^8:64 bits (green line). The conditional entropy calculated from the
full matrix averaged across samples (red, dashed) is equivalent to that calculated from the displacements, for each sample (black, dashed).
doi:10.1371/journal.pcbi.1000759.g007
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A further effect of learning, along with the disappearance of

some CA3 fields and the strengthening of others, is the refinement

of their shape, as illustrated in Fig. 9. It is likely that also this effect

will be observed even when using more biologically accurate

models of MF plasticity.

Retrieval abilities
Finally, all simulations reported so far involved a full

complement of DG inputs at each time step in the simulation.

We have also tested the ability of the MF network to retrieve a

spatial representation when fed with a degraded input signal, with

and without MF plasticity. The input is degraded, in our

simulation, simply by turning on only a given fraction, randomly

selected, of the DG units that would normally be active in the

environment. The information extracted after decoding by a

sample of units (in Fig. 10, 10 units) is then contrasted with the size

of the cue itself. In the absence of MF plasticity, there is obviously

no real retrieval process to talk about, and the DG-CA3 network

simply relays partial information. When Hebbian plasticity is

turned on, the expectation from similar network models (see e.g.

[34], Fig. 9) is that there would be some pattern completion, i.e.

some tendency for the network to express nearly complete output

information when the input is partial, resulting in a more

sigmoidal input-output curve (the exact shape of the curve

depends of course also on the particular measure used).

It is apparent from Fig. 10 that while, in the absence of

plasticity, both parameters characterizing the information that can

be extracted from CA3 grow roughly linearly with the size of the

cue, with plasticity the growth is supralinear. This amounts to the

statement that the beneficial effects of plasticity require a full cue

to be felt – the conceptual opposite to pattern completion, the

process of integrating a partial cue using information stored on

modified synaptic weights. This result suggests that the sparse MF

connectivity is sub-optimal for the associative storage that leads to

pattern completion, a role that current perspectives ascribe instead

to perforant path and recurrent connections to CA3. The role of

the mossy fibers, even if plastic, may be limited to the

establishment of new spatial representations.

Discussion

Ours is a minimal model, which by design overlooks several of

the elements likely to play an important role in the functions of the

dentate gyrus - perhaps foremost, neurogenesis [35]. Nevertheless,

by virtue of its simplicity, the model helps clarify a number of

quantitative issues that are important in refining a theoretical

perspective of how the dentate gyrus may work.

First, the model indicates that the recently discovered

multiplicity of place fields by active dentate granule cells [18]

might be just a ‘‘fact of life’’, with no major computational

implications for dentate information processing. Still, requiring

that active granule cells express multiple fields seems to lead, in

another simple network model (of how dentate activity may result

from entorhinal cortex input [25]), to the necessity of inputs
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Figure 8. Information vs. connectivity for different levels of
learning. Information is plotted as a function of the connectivity level
between DG and CA3, different colors correspond to different values of
the learning factor cMF . Simulations run for 100,000 training steps,
during a fraction *aCA3~0:1 of which each postsynaptic units is
strongly activated, and its incoming weights liable to be modified. The c
values tested hence span the range from minor modification of the
existing weight, for c~0:00005, to major restructuring of all available
weights for c~0:002.
doi:10.1371/journal.pcbi.1000759.g008

Figure 9. MF plasticity can suppress, enlarge and in general
refine CA3 place fields. The place fields of five example units are
shown before plasticity is turned on (top row) and after 100,000 steps
with a large plasticity factor cMF ~0:0001 (bottom row). The rounding
and regularization of the fields was observed also for several other units
in the simulation.
doi:10.1371/journal.pcbi.1000759.g009
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Figure 10. Information reconstructed from a degraded input
signal. Slope parameter I1 of the information curve as a function of the
percentage of the DG input that CA3 receives. Inset: the same plot for
the total information parameter I?. The same training protocol was run
as for Figs. 8–9.
doi:10.1371/journal.pcbi.1000759.g010
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coming from lateral EC, as well as from medial EC. The lateral EC

inputs need not carry any spatial information but help to select the

DG cells active in one environment. Thus the multiplicity of DG

fields refines the computational constraints on the operation of

hippocampal circuits.

Second, the model shows that, assuming a fixed total MF input

strength on CA3 units, it is beneficial in information terms for the

MF connectivity to be very sparse; but not vanishingly sparse. The

optimal number of anatomical MF connections on CA3 units,

designated as CMF in the model, depends somewhat on the

various parameters (the noise in the system, how sparse is the

activity in DG and CA3, etc.) and it may increase slightly when

taking MF plasticity into account, but it appears within the range

of the number, 46, reported for the rat by [26]. It will be

interesting to see whether future measures of MF connectivity in

other species correspond to those ‘‘predicted’’ by our model once

the appropriate values of the other parameters are also

experimentally measured and inserted into the model. A similar

set of consideration applies to the fraction of granule cells active in

a given environment, pDG , which in the model plays a similar,

though not completely identical, role to CMF in determining

information content.

Third, the model confirms that the sparse MF connections, even

when endowed with associative plasticity, are not appropriate as

devices to store associations between input and output patterns of

activity – they are just too sparse. This reinforces the earlier

theoretical view [2], [4], which was not based however on an

analysis of spatial representations, that the role of the dentate gyrus

is in establishing new CA3 representations and not in associating

them to representations expressed elsewhere in the system.

Availing itself of more precise experimental paramaters, and

based on the spatial analysis, the current model can refine the

earlier theoretical view and correct, for example, the notion that

‘‘detonator’’ synapses, firing CA3 cells on a one-to-one basis,

would be optimal for the mossy fiber system. The optimal situation

turns out to be the one in which CA3 units are fired by the

combination of a couple of DG input units, although this is only a

statistical statement. Whatever the exact distribution of the

number of coincident inputs to CA3, DG can be seen as a sort

of random pattern generator, that sets up a CA3 pattern of activity

without any structure that can be related to its anatomical lay-out

[36], or to the identity of the entorhinal cortex units that have

activated the dentate gyrus. As with random number generators in

digital computers, once the product has been spit out, the exact

process that led to it can be forgotten. This is consistent with

experimental evidence that inactivating MF transmission or

lesioning the DG does not lead to hippocampal memory

impairments once the information has already been stored, but

leads to impairments in the storage of new information [6], [7].

The inability of MF connection to subserve pattern completion is

also consistent with suggestive evidence from imaging studies with

human subjects [37].

Fourth, and more novel, our findings imply that a substantial

fraction of the information content of a spatial CA3 representa-

tion, over half when sampling limited subsets of CA3 units, can

neither be extracted through the simplified method which assumes

translation invariance, nor assessed through the analytical method

(which anyway requires an underlying model of neuronal firing,

and is hence only indirectly applicable to real neuronal data). This

large fraction of the information content is only extracted through

the time-consuming construction of the full localization matrix. To

avoid the limited sampling bias [38] this would require, in our

hands, the equivalent of a ten hour session of recording from a

running rat (!), with a square box sampled in 20|20 spatial bins.

We have hence labeled this large fraction as dark information, which

requires a special effort to reveal. Although we know little of how

the real system decodes its own activity, e.g. in downstream

neuronal populations, we may hypothesize that the difficulty at

extracting dark information affects the real system as well, and that

successive stages of hippocampal processing have evolved to

address this issue. If so, qualitatively this could be characterized as

the representation established in CA3 being episodic, i.e. based on

an effectively random process that is functionally forgotten once

completed, and later processing, e.g. in CA1, may be thought to

gradually endow the representations with their appropriate

continuous spatial character. Another network model, intended

to elucidate how CA1 could operate in this respect, is the object of

our on-going analysis.

The model analysed here does not include neurogenesis, a most

striking dentate phenomenon, and thus it cannot comment on

several intriguing models that have been put forward about the

role of neurogenesis in the adult mammalian hippocampus [39],

[40], [41]. Nevertheless, presenting a simple and readily

expandable model of dentate operation can facilitate the

development of further models that address neurogenesis, and

help interpret puzzling experimental observations. For example,

the idea that once matured newborn cells may temporally ‘‘label’’

memories of episodes occurring over a few weeks [42], [43], [44],

[45] has been weakened by the observation that apparently even

young adult-born cells, which are not that many [45], [46], [47],

are very sparsely active, perhaps only a factor of two or so more

active than older granule cells [24]. Maybe such skepticism should

be reconsidered, and the issue reanalysed using a quantitative

model like ours. One could then investigate the notion that the

new cells link together, rather than separating, patterns of activity

with common elements (such as the temporal label). To do that

clearly requires extending the model to include a description not

only of neurogenesis, but also of plasticity within DG itself [48]

and of its role in the establishment of successive representations

one after the other.

Methods

Replica calculation
Estimation of the equivocation. Calculating the

equivocation from its definition in Eq.7 is straightforward,

thanks to the simplifying assumption of independent noise in

CA3 units. We get

SH2 fgigj~xxð ÞT~xx~
N

ln 2

ð
d~xx

A
{W({ri(~xx)) lnW({ri(~xx))zW(ri(~xx))
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2
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d
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p e
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r2

2 ,

although the spatial integral remains to be carried out.

Estimation of the entropy. For the entropy, Eq.6, the

calculation is more complicated. Starting from
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we remove the logarithm using the replica trick (see [27])

H1 fgigð Þ~{
1

ln 2

ð
d~xx

A
P
i

dgi P(fgigD~xx) lim
n?0

1

n

ð
d~xx0

A
P(fgigD~xx0)

� �n

{1

	 

ð12Þ

which can be rewritten (Nadal and Parga [49] have shown how to

use the replica trick in the n?1 limit, a suggestion used in [50] to

analyse information transfer in the CA3-CA1 system)
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1

ln 2
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 �

ð13Þ

using the spatial averages, defined for an arbitrary real-valued

number n of replicas

~HH1(n):
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where we have defined a quantity dependent on both the number

n of replicas and on the position in space, later to be integrated

over, of each replica b:
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We need therefore to carry out integrals over the firing rate of

each CA3 unit, gi, in order to estimate hi f~xxbg, n
� �

, while keeping

in mind that in the end we want to take n?1. Carrying out the

integrals yields a below-threshold and an above-threshold term

hi f~xxbg, n
� �

~P
b
W {ri(~xxb)
� �

ze
{(n{1) S

2d2

ðg0

{?

e
{n

ĝg2

2d2

(
ffiffiffiffiffiffi
2p
p

d)n
d ĝg ð15Þ

where we have defined the quantities

S(f~xxbg)~{
1

n(n{1)

X
b

gi(~xxb)

 !2

{
1

(n{1)

X
b

gi
2(~xxb)

2
4

3
5

~
1

2n(n{1)

X
a,b

gi(~xxa){gi(~xxb)

 �2 ð16Þ

and go~(1=n)
P

b gi(~xxb), while ĝg~g{go.

One might think that hi f~xxbg, n*1
� �

?1z(n{1)hi,n f~xxbg,1
� �

z

O((n{1)2, hence in the product over cells, that defines the entropy

H1 fgigð Þ, the only terms that survive in the limit n?1 would just be

the summed single-unit contributions obtained from the first

derivatives with respect to n. This is not true, however, as taking

the replica limit produces the counterintuitive effect that replica-

tensor products of terms, which individually disappear for n?1,

only vanish to first order in n{1, as shown by [29]. The replica

method is therefore able, in principle, to quantify the effect of

correlations among units, expressed in entropy terms stemming

from the product of hi across units.

Briefly, one has

hi f~xxbg, n
� �

~P
b
W {ri(~xxb)
� �

ze
{(n{1) S

2d2
1ffiffiffi

n
p

(
ffiffiffiffiffiffi
2p
p

d)n{1
W

ffiffiffi
n
p

go=d
� �" #

^W {roð Þz 1

2

s2 {roð Þ
W {roð Þ

X
a,b=a

r(~xxa){roð Þ r(~xxb){ro

� �
z(n{1)W {roð ÞlnW {roð Þ

zW roð Þz
(n{1)

2
s roð Þro

{(n{1)W roð Þ
1

2
zln(

ffiffiffiffiffiffi
2p
p

d)z
X

a,b=a

S(~xxa,~xxb)

2d2

" #

z(n{1)s(ro)
Lro

Ln

ð17Þ

where the first two rows come from the term below threshold, and

the last two from the one above threshold. Then, following [29],

H1 fgigð Þ^{
1

ln 2
lim
n?1

1

(n{1)

ð
d~xxa

A

d~xxb

A

 "
1{(n{1)C

z(n{1)C{
X

a,b=a

Ga,b

!N

{1

3
5

ð18Þ

where

C~W roð Þ
1

2
zln

ffiffiffiffiffiffi
2p
p

d
� �� �

{
1

2
s roð Þro{W roð ÞlnW {roð Þ

C~s roð Þ {r(~xx1)z
1

n{1

X
bw1

r(~xxb)

" #

Ga,b~
W roð Þ

4n(n{1)
r(~xxa){r(~xxb)
� �2

z
s2 {roð Þ
2W {roð Þ r(~xxa){roð Þ r(~xxb){ro

� �

ð19Þ

and where we have considered that in the limit n?1 we have

go=d:ro appear in all terms of finite weight.

The products between the matrices Ga,b attached to each CA3

unit generate the higher order terms in N . Calculating them in our

case, in which different CA3 units can receive partially

overlapping inputs from DG units, is extremely complex (see

[51], where information transmission across a network is also

considered), and we do not pursue here the analysis of such higher

order terms. One can retrieve the result of the TG model in Ref.

[29] by taking the further limit ro?0, which implies W(ro)?1=2

ð12Þ
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and s2(ro)?1=(2p). A further subtlety is that, in taking the n?1
limit, there is a single replica, say ~xx, which is counted once in the

limit, but also several different replicas, denoted ~xx0,~xx00, . . ., whose

weights vanish, but which remain to determine e.g. the terms

proportional to (n{1) emerging from the derivatives. Thus, in the

very last term of Eq. 17, one has to derive ro with respect to n to

produce the C term of Eq. 19, which is absent in [29] because it

vanishes with ro. In the off-diagonal terms of the G matrix there

are 2(n{1) entries dependent on replicas ~xx and ~xx0, and

(n{1)(n{2) entries dependent on replicas ~xx0 and ~xx00.
Focusing now solely on terms of order N , note that the term S is

effectively a spatial signal. In the n?1 limit it can be rewritten,

using ~xx for the single surviving replica, as

S(~xx,~xx0)~ gi ~xxð Þ{gi ~xx
0ð Þ½ �2{ 1

2
gi ~xx

0ð Þ{gi ~xx
00ð Þ½ �2:

This allows us to derive, to order N, our result for the spatial

information content, Eq. 8.

Note that when the threshold of each unit tends to {?, and

therefore its mean activation ri??, our units behave as

threshold-less linear units with gaussian noise, and the information

they convey tends to

SI ~xx,fgigð ÞT~
N

4 ln 2
S
ð

d~xx

A

d~xx0

A
ri ~xxð Þ{ri ~xx

0ð Þ½ �2T ð20Þ

which is simply expressed in terms of a spatial signal-to-noise ratio,

and coincides with the results in Refs. [28], [29].

m-Field decomposition
Eqs. 8 and 9 simply sum equivalent average contributions from

each CA3 unit. Each such contribution can then be calculated as a

series in m, the number of DG fields feeding into the CA3 unit.

One can in fact write, for example,

SW(ri(~xx))r2
i (~xx)T~

P(1)

d2

X?
Q1~0

P(Q1)W(ri(~xx))
X

j

Jbj ~xx,f~xxjkg
� �

{T

" #2
8<
:

9=
;

z
P(2)

d2

X?
Q1,Q2~0

P(Q1)P(Q2)W(ri(~xx))
X

j

Jbj ~xx,f~xxjkg
� �

{T

" #2
8<
:

9=
;

z . . . z
P(c)

d2

X?
Q1,Q2...Qc~0

P(Q1)P(Q2) . . . P(Qc)W(ri(~xx))

8<
:

X
j

Jbj ~xx,f~xxjkg
� �

{T

" #2
9=
;z . . .

where in each term there are c active DG units, indexed by j,

presynaptic to CA3 unit i, and each has Qj fields (including the

possibility that Qj~0), indexed by k. A similar expansion can be

written for the other terms. One then realizes that the spatial

component reduces to integrals that depend solely on the total

number of fields m~
Pn

j Qj , no matter how many DG active units

they come from, and the expansion can be rearranged into an

expansion in m

SI ~xx,fgigð ÞT~
N

2 ln 2

X?
m~0

CmDm(T) ð21Þ

where one of the components in each term is, for example,

Dm(T)~

ð
d~xx

A

d~xx0

A

d~xx1

A
. . .

d~xxm

A
W(r(~xx,f~xxjg))r2 ~xx0,f~xxjg

� �
ð22Þ

with r(~xx0,f~xxjg)~ J
Pm

l~1 y ~xx0{~xxj

� �
{T


 �
=d the mean signal-to-

noise at position ~xx produced by m fields, from no matter how

many DG units. The numerical coefficient Cm, instead, stems from

the combination of the distribution for the number of fields for

each presynaptic DG unit active in the environment, which differs

between models A, B and C, and the Poisson distribution for the

number of such units

P cð Þ~ að Þc

c!
e{a

a~pDGCMF :

The sum extends in principle to m??, but in practice it can be

truncated after checking that successive terms give vanishing

contributions. The appropriate truncation point obviously de-

pends on the mean number of fields q, as well as on the model

distribution of fields per unit. Note that the first few terms (e.g. for

m~0,1, . . .) may give negative but not necessarily negligible

contributions if the effective threshold T is high.

For model A,

PA Qð Þ~ qQ

Q!
e{q

and combining the two Poisson series one finds

Cm~ea e{q{1ð ÞKm
qm

m!
ð23Þ

where K0:1 and the other Km(l) are the polynomials

K1 ~l

K2 ~lzl2

K3 ~lz3l2zl3

K4 ~lz7l2z6l3zl4

..

.

Km ~
Pm

l~1 C(l,m)ll

..

.

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

given by the modified Khayyam-Tartaglia recursion relation

C(l, m)~C(l{1, m{1)zl C(l, m{1)

and where l~ae{q.

For model B,

PB(Q)~
1

1zq

q

1zq

� �Qi

and combining the Poisson with the exponential series one finds

Cm~e
a 1

1zq
{1

� �
~KKm

q

1zq

� �m

ð24Þ

where again ~KK0:1, while the other ~KKm(~ll) are the distinct
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polynomials

~KK1 ~~ll

~KK2 ~~llz~ll2=2!

~KK3 ~~llz2~ll2=2!z~ll3=3!

~KK4 ~~llz3~ll2=2!z3~ll3=3!z~ll4=4!

..

.

~KKm ~
Pm

l~1
~CC(l,m) ~lll

..

.

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

given by the further modified Khayyam-Tartaglia recursion

relation

~CC(l, m)~~CC(l{1, m{1)=lz~CC(l, m{1)

and where ~ll~a=(1zq).

For model C,

PC(Q)~d1Q

there is no parameter q (i.e., q:1), and one simply finds

Cm~e{a am

m!
: ð25Þ

Note that in the limit q?0, when the mean input per CA3 unit

m~aq remains finite, for both models A and B one finds

lim
q?0

Cm~e{m mm

m!

which is equivalent to Eq. 25, in line with the fact that both models

A and B reduce, in the q?0 limit, to single-field distributions, but

even units with single fields become vanishingly rare, so formally

one has to scale up the mean number of active presynaptic units, a,

to keep m:aq finite and establish the correct comparison to model

C.

Sparsity and threshold
The analytical relation between the threshold T of CA3 units

and the sparsity aaCA3 of the layer is obtained starting from the

formula defining the sparsity aCA3 (see below) which can be

rewritten

a~S
s r(~xx)ð Þzr(~xx)W r(~xx)ð Þ½ �2

r(~xx)s r(~xx)ð ÞzW r(~xx)ð Þ 1zr2(~xx)ð Þ½ � T ð26Þ

Since in the analytical calculation we have T as parameter, this

equation can be taken as a relation aaCA3(T) which has to be

inverted to allow a comparison with the simulations, which are run

controlling the sparsity level at a predefined level (in our case

aaCA3~0:1) and adjusting the threshold parameter accordingly.

The inversion requires using the m-field decomposition and

numerical integration. A graphical example of the numerical

relation is given in Fig. 11.

Simulations
The mathematical model described above was simulated with a

network of 15000 DG cells and 500 CA3 cells. A virtual rat

explores a continuous two dimensional space, intended to

represent a 1sqm square environment but realized as a torus,

with periodic boundary conditions. For the numerical estimation

of mutal information, the environment is discretized in a grid of

20|20 locations, whereas trajectories are in continuous space, but

in discretized time steps. In each time step (intended to correspond

to roughly 62:5ms, half a theta cycle) the virtual rat moves half a

grid unit (2:5cm) in a direction similar to the direction of the

previous time step, with a small amount of noise. To allow

construction of a full localization matrix with good statistics,

simulations are run for typically 400,000 time steps (while for the

simplified translationally invariant matrix 5,000 steps would be

sufficient). The space has periodic boundary conditions, as in a

torus, to avoid border effects; the longest possible distance between

any two locations is hence equal to 14.1 grid units, or 70cm.

DG place fields. After assigning a number of firing fields for

each DG units, according to the distributions of models A, B and

C, we assign to each field a randomly chosen center. The shape of

the field is then given by a Gaussian bell with that center. The tails

of the Gausssian function are truncated to zero when the distance

from the center is larger than a fixed radius r~

ffiffiffiffiffiffi
fA

p

r
, with f ~0:1

the ratio between the area of the field and the environment area A.

In the standard model, only about 3 percent of the DG units on

average are active in a given environment, in agreement with

experimental findings [24]; i.e. the DG firing probability is

pDG~0:033. The firing of DG units is not affected by noise, nor by

any further threshold. Peak firing is conventionally set, in the

center of the field, at the value
r2

2p
~2:02, but DG units can fire

at higher levels if they are assigned two or more overlapping fields.

CA3 activation. CA3 units fire according to Eq. 2: the firing

of a CA3 unit is a linear function of the total incoming DG input,

distorted by a noise term. This term is taken from a gaussian

distribution centered on zero, with variance d~1, and it changes

for each unit and each time step. A threshold is imposed in the

simulations to model the action of inhibition, hypothesizing that it

serves to adjust the sparsity aCA3 of CA3 activity to its required

value. The sparsity is defined as

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

a C
A

3

T

CMF = 0.3
CMF = 0.17
CMF = 0.1
CMF = 0.058
CMF = 0.034
CMF = 0.02
CMF = 0.014

Figure 11. Sparsity-threshold relation. The sparsity a of CA3 layer
vs. the threshold T of CA3 units, from the numerical integration of Eq.
26. Different lines correspond to different degrees of connectivity
between DG and CA3.
doi:10.1371/journal.pcbi.1000759.g011
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aCA3~
Sgi ~xxð ÞT2

Sg2
i ~xxð ÞT

and it is fixed to aCA3~0:1. This implies that the activity of the

CA3 cells population is under tight inhibitory control.
The decoding procedure and information extraction. At

each time step, the firing vector of a set of CA3 units is compared

to all the average vectors recorded at each position in the 20|20
grid, for the same sample, in a test trial (these are called template

vectors). The comparison is made calculating the Euclidean

distance between the current vector and each template, and the

position of the closest template is taken to be the decoded position

at that time step, for that sample. This procedure has been termed

maximum likelihood Euclidean distance decoding [32]. The

frequency of each pair of decoded and real positions are

compiled in a so-called ‘‘confusion matrix’’, or localization

matrix, that reflects the ensemble of conditional probabilities

P gif gD~xxð Þf g for that set of units. Should decoding ‘‘work’’ in a

perfect manner, in the sense of always detecting the correct

position in space of the virtual rat, the confusion matrix would be

the identity matrix. From the confusion matrix obtained at the end

of the simulation, the amount of information is extracted, and

plotted versus the number of CA3 units present in the set. We

averaged extensively over CA3 samples, as there are large

fluctuations from sample to sample, i.e. for each given number

of CA3 units we randomly picked several different groups of CA3

units and then averaged the mutual information values obtained.

In all the results reported we averaged also over 3–4 simulation

run with a different random number generator, i.e. over different

trajectories. The same procedure leading to the information curve

was repeated for different values of the parameters. In all the

information measures we reported, we also corrected for the

limited sampling bias, as discussed by [31]. In our case of spatial

information, the bias is essentially determined by the spatial

binning we used (20|20) and by the decoding method [52].

One should note the maximum likelihood decoding procedure

to better understand the discrepancy between the information

estimated from simulations (with the procedure based on the full

matrix) and that calculated analytically. The analytical calculation

distinguishes in a clear-cut manner so called annealed variables,

which are interpreted as ‘‘fast’’ noise and are averaged in

computing the relation between position and neuronal activity,

and so called quenched variables, which are interpreted as frozen

disorder and are averaged over only later, in computing average

the entropy, free-energy or mutual information [27]. In using

maximum likelihood decoding, instead, the localization matrix

that relates actual and decoding position effectively averages only

trial-to-trial variability, i.e. the noise that occurs on intermediate

time scales. The variability on genuinely fast time scales is

suppressed, in fact, by the maximum likelihood operation, which

acts as a sort of temporal low pass filter with a cut-off time equal to

one time step. This suppression of part of the annealed noise leads

to larger information values extracted from the simulations, and

hence to the notion of ‘‘dark’’ information. In the real system, the

spiking nature of neuronal activity may induce a similar cut-off,

although its quantitative relation to the one-time-step cut-off in the

simulations (here intended to be half a theta cycle) remains to be

firmly established.

Fitting. We fit the information curves obtained in simulations

to exponentially saturating curves as a function of N in order to

get the values of the two most relevant parameter that describe

their shape: the initial slope I1 (i.e. the average information

conveyed by the activity of individual units) and the total amount

of information I? (i.e. the asymptotic saturation value). The

function we used for the fit is the following

F (N)~I? 1{e
{N

I1
I?

� �
ð27Þ

In most cases the fit was in excellent agreement with individual

data points, as expected on the basis of previous analyses [28].
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