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Abstract

Distributions of the backbone dihedral angles of proteins have been studied for over 40 years. While many statistical
analyses have been presented, only a handful of probability densities are publicly available for use in structure validation
and structure prediction methods. The available distributions differ in a number of important ways, which determine their
usefulness for various purposes. These include: 1) input data size and criteria for structure inclusion (resolution, R-factor,
etc.); 2) filtering of suspect conformations and outliers using B-factors or other features; 3) secondary structure of input data
(e.g., whether helix and sheet are included; whether beta turns are included); 4) the method used for determining
probability densities ranging from simple histograms to modern nonparametric density estimation; and 5) whether they
include nearest neighbor effects on the distribution of conformations in different regions of the Ramachandran map. In this
work, Ramachandran probability distributions are presented for residues in protein loops from a high-resolution data set
with filtering based on calculated electron densities. Distributions for all 20 amino acids (with cis and trans proline treated
separately) have been determined, as well as 420 left-neighbor and 420 right-neighbor dependent distributions. The
neighbor-independent and neighbor-dependent probability densities have been accurately estimated using Bayesian
nonparametric statistical analysis based on the Dirichlet process. In particular, we used hierarchical Dirichlet process priors,
which allow sharing of information between densities for a particular residue type and different neighbor residue types. The
resulting distributions are tested in a loop modeling benchmark with the program Rosetta, and are shown to improve
protein loop conformation prediction significantly. The distributions are available at http://dunbrack.fccc.edu/hdp.
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Introduction

The empirical distributions of the backbone dihedral angles w
and y of amino acids in proteins have been studied for over 40

years. Early efforts were based on determining those regions of the

Ramachandran map that are ‘‘allowed’’ and those that are

forbidden due to steric conflicts among the backbone atoms or

between backbone and the Cb carbon atom of side chains [1].

This steric analysis has recently been updated and refined by Ho et

al. [2,3]. Boundaries between populated and unpopulated regions

have been used as checks on the quality of newly determined

experimental structures in such programs as Procheck [4],

Whatcheck [5], and more recently MolProbity [6]. Because bond

lengths and bond angles vary to only a limited extent (although

more so than is typically assumed [7]), protein structures are often

treated with only dihedral degrees of freedom in simulations,

structure prediction, and structural analysis. Ramachandran data

therefore play a central role in developing empirical energy

functions for structure prediction [8] and simulation [9].

We distinguish two concepts in analyzing the backbone dihedral

angles of proteins. The first is a Ramachandran plot or Ramachandran

map, which is simply a scatter plot of the w,y values for the amino

acids in a single protein structure or a set of protein structures. It

may be restricted to a single amino acid type and/or a single

structural feature type, such as protein loops. The second is a

Ramachandran distribution, which we use here to mean a statistical

representation of Ramachandran data, usually in the form of a

probability density function (N.B. by distribution, we do not mean

the cumulative distribution function or CDF). A probability

density function gives the probability of finding an amino acid

conformation in a specific range of w,y values. For instance, if the

function is given on a 10u610u grid from 2180u to +180u in w,y
(1296 values), then the distribution may give the probability per

10u610u region. It could also be expressed per degree squared or

per radian squared. Such distributions may be derived for specific

amino acid types and/or for specific structural features.

There are several important considerations in developing

Ramachandran distributions from structural data, depending on
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the purpose of the derived distribution. First, while glycine and

proline are usually treated separately, the other 18 amino acids are

often treated as a single type. However, these amino acids are

quite different in their proportions of residues in the a, b,

polyproline II, and left-handed helical regions. Second, quite

different distributions are determined when either all residues are

used or only those outside the regular secondary structures of a-

helices and b-sheets [10]. The latter are often assumed to be

‘‘intrinsic’’ preferences of the backbone [11], not influenced by

forming specific hydrogen bonds present in regular secondary

structures. Third, the quality and quantity of the data are crucial

in determining distributions meant to act as quality filters for

newly determined structures or for structure prediction. As more

structures have become available at higher resolutions, it is now

possible to use quite large datasets with resolution cutoffs of 1.8 Å

or even better. Other filters have been used including B-factors

and steric clashes to remove residues that may be modeled

improperly or at least with considerable uncertainty within the

electron density. For instance, by using higher resolution

structures, B-factors, steric overlaps, and other checks, Lovell

et al. [12] were able to determine Ramachandran distributions

with smaller ‘‘allowed’’ and ‘‘generously allowed’’ regions than

previous efforts. Fourth, most previous efforts have involved

density estimation using simple histogram methods – the counts or

proportion of counts of residues in non-overlapping square bins of

the w,y space. However, even when a large number of proteins are

used, the distribution in w,y space may be quite bumpy.

It is therefore of some importance to use a proper density

estimation method that results in smooth distributions and

minimizes the effects of outliers. This has been accomplished in

a number of ways [12,13,14,15]. The Richardson group used

kernel density estimates to obtain Ramachandran distributions for

Gly, pre-Pro, and non-Gly,non-pre-Pro residues [12]. Kernel

density estimates are performed by placing a kernel function such

as a Gaussian on each data point, and the density estimate is

produced on a grid by summing up the values of all of the kernel

functions across the data. Although not described as such, they

used what in effect are adaptive kernel density estimates [16,17],

such that the data are smoothed to a greater extent with wider

kernel functions in sparsely populated regions of the space, while

in more populated regions, narrower kernel functions can be used.

Because they used a narrow kernel and grouped all non-Gly, non-

Pro, non-pre-Pro residues together, the resulting distributions are

well-suited to structure validation. Amir et al. used non-adaptive

kernel density estimates, but with removal of outliers and addition

of pseudocounts in sparsely populated regions [13]. To provide

smoothness and differentiability, they calculated cubic spline fits to

the kernel density estimates. Pertsemlidis et al. used an exponential

of a Fourier series to calculate log probability densities of w,y data

[18]. Hovmöller et al. produced smoothed Ramachandran

distributions for all 20 amino acids, and differentiated among

different secondary structures; however, the manner of smoothing

was not described [19]. Dahl et al. [12] and Lennox et al. [13]

used Dirichlet process mixture models to obtain Ramachandran

distributions for all 20 amino acids. The Dirichlet process

approach is similar to kernel density estimation in that it yields

an overall density estimate that is a superposition of component

density functions, but the component densities are not located at

the data points, and the number of component densities is

unknown and inferred from the data [20]. This latter fact places

the Dirichlet process approach in the general class of so-called

Bayesian nonparametric methods [21]. Here, ‘‘nonparametric’’

does not mean an absence of parameters, but rather means that

the number of parameters is not fixed in advance and can grow as

data accrue.

Ramachandran distributions may also be affected by the

identity or conformation of neighboring amino acids. In

particular, it has long been known that residues that precede

proline have quite different Ramachandran distributions [22],

with significantly less density in the a and left-handed regions of

the Ramachandran map. They also exhibit additional density in

the so-called f region [23], near w,y= (2130u, +80u), due to

favorable van der Waals and electrostatic interactions [2]. The

effect of local sequence on backbone conformation initially was

used for the purpose of secondary structure prediction [24,25]. A

number of groups have discussed the effect of local sequence,

usually plus or minus one amino acid, on backbone conforma-

tional distributions [15,26,27,28,29,30,31]. This has been exam-

ined as a violation of the Flory isolated pair hypothesis, which

states that conformations of individual dihedral angle pairs in a

polymer are approximately independent of the conformations

and/or residue identity of their neighbors [32]. Pappu et al.

demonstrated by enumerating conformations of polyalanine that

this is not true for neighboring conformations in peptides [29].

Zaman et al. used molecular dynamics simulations of monomers,

dimers, and trimers to determine the nearest-neighbor effects of

conformation and amino acid type on backbone conformations

and entropy [27]. From the same group, Jha et al. examined

experimentally determined distributions in coiled regions in a set

of 2020 proteins of better than 2.0 Å resolution and found strong

neighbor dependence on the populations in the a, b, and

Polyproline II (PPII) regions of the Ramachandran map [26].

Erman et al. also examined neighbor residue-type dependence of

which regions (a, b, etc.) were populated as a method for

predicting these regions given local sequence context from a

statistical mechanical theory [30,31]. Betancourt and Skolnick

used 7070 chains from the PDB to determine the conformational

properties of triplets of amino acids, in terms of occupied basins of

the Ramachandran map, as well as other distributions such as the

pair yi,yiz1 [28]. They used the data to produce a low-resolution

potential energy function for backbone conformations that

depends on local sequence. Lennox et al. [13] found that smooth

Author Summary

The three-dimensional structure of a protein enables it to
perform its specific function, which may be catalysis, DNA
binding, cell signaling, maintaining cell shape and
structure, or one of many other functions. Predicting the
structures of proteins is an important goal of computa-
tional biology. One way of doing this is to figure out the
rules that determine protein structure from protein
sequences by determining how local protein sequence is
associated with local protein structure. That is, many (but
not all) of the interactions that determine protein structure
occur between amino acids that are a short distance away
from each other in the sequence. This is particularly true in
the irregular parts of protein structure, often called loops.
In this work, we have performed a statistical analysis of the
structure of the protein backbone in loops as a function of
the protein sequence. We have determined how an amino
acid bends the local backbone due to its amino acid type
and the amino acid types of its neighbors. We used a
recently developed statistical method that is particularly
suited to this problem. The analysis shows that backbone
conformation prediction can be improved using the
information in the statistical distributions we have
developed.

Neighbor-Dependent Ramachandran Distributions
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density estimates for wiz1,yi pairs, which span a pair of residues

and thus capture a limited form of neighbor dependence, yield

better estimates of the Ramachandran distribution than those

based on standard wi,yi pairs.

A limitation of efforts to capture neighbor dependence is that

the data become fractionated into groups that may contain small

numbers of data points. This can yield inaccurate estimates of the

densities, defeating the purpose of separating the data into groups.

This problem is compounded if we also wish to separate data by

secondary structure, or by any of a variety of other contextual

variables. Our approach to addressing this general problem is to

make use of the concept of a hierarchical Bayesian model. A

hierarchical model is akin to a phylogeny, where the models for

individual groups of data are at the leaves, and models are related

if they are nearby each other in the tree. Specifically, we make use

of a recent development in Bayesian nonparametric statistics

known as the hierarchical Dirichlet process (HDP) [33]. In the HDP

approach, as we discuss in the Methods section, evidence for a

region of high density in one group of data can be transferred to a

related group. In particular, we can use the HDP to tie together

the density estimates for a given residue with different right or left

neighbor residue types. This approach allows us to exploit

commonalities among these densities so as to combat the data

sparsity problem while allowing the individual densities to exhibit

idiosyncratic characteristics.

In this paper, we determine both neighbor-independent and

neighbor-dependent Ramachandran distributions for all 20 trans

amino acids as well as cis proline (21 distributions) and for all 420

left and 420 right-neighbor-amino acid type pairs. We use a set of

3038 proteins at resolution of 1.7 Å or better and use electron

density calculations to remove residues that are not well-fit to the

density [34]. We explore the features of different input data sets,

for instance including or excluding 310-helix and turn residues

from longer loop regions.

We examine some clear trends in these distributions. These

include not only the influence of neighboring proline residues, but

also aromatics, b-branched residues, hydrogen-bonding residues,

and glycine. Our primary purpose for developing these potentials

is to improve protein structure prediction. We perform a number

of tests including loop modeling with Rosetta [8] as well as

prediction of w,y values of loops residues purely from local

sequence. The neighbor-dependent distributions provide better

results in both cases.

The distributions are available for download from http://

dunbrack.fccc.edu/hdp.

Results

Characteristics of the data set
The data set in this paper consisted of 3038 proteins with

available electron densities from the Uppsala Electron Density

Server [35]. After removing residues with electron density in the

bottom 20th percentile and restricting the set to loop residues with

no missing backbone atoms and at least three residues away from

a helix (H) or b sheet (E), as identified with the program Stride

[36], we obtained a set of 62,345 residues (the TCBIG set, for

Stride one-letter designations of Turn, Coil, b-Bridge, p-Helix,

310-Helix respectively). We created a second set by removing the

‘‘regular’’ secondary structures of 310-helices and p-helices and

those residues that neighbor them. The result is a set of 44,112

residues (the TCB set). In both sets, we kept so-called ‘‘Bridge’’

residues, since these sometimes occur in long loop regions as

backbone-backbone hydrogen bonds. The percentages in each

secondary structure for each set are given in Table 1. The

percentages in each Ramachandran region for each set are given

in Table 2. The regions are defined in Methods, and consist of A

(a helix region), B (b sheet regions), P (polyproline II region), L

(left-handed helix), and E (e or extended region, the lower right

and upper right regions of the w,y map, accessible primarily to

glycine). Cis residues are counted separately.

Removing the regular secondary structures, 310-helix and p-

helix, from TCBIG has a large effect on both the Ramachandran

distributions and contributions of turns and coil. TCBIG is 41% a
while TCB is 32%. TCBIG is 50% Turn while TCB is 62% Turn.

Turns contribute substantially to long loops, and also to the

population in the Ramachandran a region. Finally, we also

performed calculations on Turn residues alone and Coil residue

alone, making the T and C sets respectively. These are relatively

small sets of 27,532 and 13,945 residues. The neighbor-

independent distributions are likely to be reasonable, but the

neighbor-dependent ones may require larger data sets with lower

resolution and/or less stringent cutoffs for electron density or

mutual sequence identity.

Neighbor-independent Ramachandran distributions
In Figures 1 and 2, we show neighbor-independent Bayesian

nonparametric density estimates of the Ramachandran distribu-

tions of all 20 amino acids for the TCBIG set with cis and trans

proline plotted separately. These are smoother than many

previous Ramachandran distributions and show the differences

Table 1. Ramachandran and secondary structure
assignments for data set (in percent).

TCBIG TCB

Count 62345 44112

Turn 50.1 62.4

Coil 29.4 31.6

310 helix 15.4 -

Bridge 5.0 6.0

p helix 0.1 -

TCBIG includes Turn, Coil, Bridge, p-helix, and 310-helix residues.
TCB includes Turn, Coil, and Bridge residues.
doi:10.1371/journal.pcbi.1000763.t001

Table 2. Ramachandran totals for each set and for individual
Stride assignments for the TCBIG set (in percent).

TCBIG TCB Turn Coil 310 helix Bridge p-helix

A 41.1 31.9 42.4 17.1 95.4 0.7 85.9

B 22.0 25.8 18.5 32.7 0.1 63.0 2.8

P 26.3 30.2 24.1 42.1 0.9 33.1 2.8

L 7.5 8.4 11.4 4.6 2.7 0.3 5.6

E 2.5 2.8 2.4 3.3 1.1 2.9 0.0

cis 0.7 0.9 1.2 0.3 0.0 0.04 2.8

A: 2200u#w,0u, 2120u,y#40u, 90u#v#270u.
B: 290u#w,0u, 40u,y#240u, 90u#v#270u.
P: 2200u#w,290u, 40u,y#240u, 90u#v#270u.
L: 0u#w,160u, 290u,y#110u, 90u#v#270u.
E: 0u#w,160u, 110u,y#270u, 90u#v#270u.
cis: 290u#v,90u.
doi:10.1371/journal.pcbi.1000763.t002

Neighbor-Dependent Ramachandran Distributions
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among the 20 amino acids clearly (the jagged appearance at the

top of peaks is an artifact of plotting the surface with polygons). In

this and subsequent figures, the notation XXX.yyy or yyy.XXX

means the probability density estimate for residue XXX with yyy

as right or left neighbor respectively. The residue types, even

outside of Gly and Pro, have quite distinct Ramachandran

distributions. Because b turns are a large proportion of both the

TCBIG and TCB data sets, we also calculated smooth density

Figure 1. Neighbor-independent Ramachandran distributions (probability densities) for 12 amino acid types including cis proline
(CPR) from the HDP simulation (see Figure 2 for remaining amino acid types). The axes are as follows: x-axis (horizontal) =w from 2180u to
180u with gridlines and ticks at 2180u, 290u, 0u, +90u, and +180u. y-axis =y from 2180u to 180u. z-axis (vertical) = probability density functions. All
plots are scaled to a common maximum probability height, the third highest peak among all plots. Thus, Gly and Pro extend beyond the plotted
vertical axis.
doi:10.1371/journal.pcbi.1000763.g001

Figure 2. Neighbor-independent Ramachandran distributions for remaining 9 amino acid types (continued from Figure 1). For axis
information, see caption to Figure 1.
doi:10.1371/journal.pcbi.1000763.g002

Neighbor-Dependent Ramachandran Distributions
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estimates of the Ramachandran distributions of turn and coil

residues separately (Stride designations T and C), and in Figure 3

we plot side-by-side the Ramachandran distributions for TCBIG,

TCB, T-only, and C-only for Ala, Asn, Glu, and Ile. The TCB set

loses the sharp peak near (w,y) = (250u,225u) which is a result of

the 15% of residues in the TCBIG set that are in 310-helix. As

noted by others [26], coil and turn residues (columns 3 and 4

respectively) have quite different distributions with the turn set

having higher a content and the coil set having higher polyproline-

II content.

We calculated the Hellinger distance (see Methods) between all

residue types, and the values for a subset of 12 residues are given in

Table 3 for TCBIG. The table shows the calculated Hellinger

distances times 100, and we refer to these values in what follows as

Figure 3. Comparison of different data sets for neighbor-independent Ramachandran distributions for 4 amino acid types. Rows
(from top to bottom): Lys, Met, Leu, Glu. Columns (from left to right): TCBIG, TCB, Tonly, Conly. All plots are scaled to a common maximum probability
height.
doi:10.1371/journal.pcbi.1000763.g003

Neighbor-Dependent Ramachandran Distributions
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‘‘the Hellinger distance,’’ which will be a value between 0 for

identical probability densities and 100 for completely non-

overlapping densities. Very similar residue pairs such as Phe/

Tyr and Val/Ile have Hellinger distances of about 8 or 9. Very

different distributions such as any residue with Gly or Pro have

Hellinger distances in the range of 40 to 60. Outside of Gly and

Pro, most distances are in the range 10 to 30. Alanine is not a

typical residue; most side chains with a single c heavy atom have

smaller Hellinger distances to each other than they do to Ala.

Between distributions derived from the TCBIG and TCB sets,

the Hellinger distances of the same residues in each set (e.g., Ala in

TCBIG vs. Ala in TCB) range from 5 to 11, with the larger values

coming from hydrophobic residues, which are underrepresented in

310-helix. Comparison of turns with TCB or TCBIG for a single

residue type produces Hellinger distances in the range of 9 to 14;

these data sets are 50 and 62% turn respectively. On the other

hand, coil distributions are quite different from the TCB and

TCBIG sets with Hellinger distances in the range of 14 to 22 (data

not shown).

Neighbor-dependent Ramachandran distributions
In Figure 4, we show the effect of all 20 possible right neighbors

on the Ramachandran distribution of Gln. Gln behaves typically

in terms of neighbor effects. Certain neighbor types have

consistent effects in terms of increasing or decreasing the a, b,

and/or PPII regions for most central residue types, and the

residues are grouped accordingly in the figure. Pro on the right

exerts the largest effect and this has been well-studied previously

[2,22], but with these calculations we provide smooth, statistically

reasonable pre-Pro Ramachandran distributions for all 20 amino

acids. The GLN.pro map shows the features typical of pre-Pro

distributions – very low a (A) population, lower L population than

non-pre-Pro distributions, and the so-called f conformation [2,23],

which is a bump just below the b (B) region at w,y= (2130u,
+80u).

Other groups of residues also have particular effects as

neighbors. Aromatic residues as right neighbors, especially Phe

and Tyr, suppress the P region and increase the A region. Val and

Ile suppress A in favor of broadly distributed B and P density,

while Gly strongly favors P, most likely due to an increase in Type

II turns. Type II turns consist of residue 2 (of 4 residues in the turn)

in a P conformation and residue 3 in an L conformation, most

accessible to glycine. Negatively charged residues also seem to

increase A. To show that these are general effects, in Figure 5 we

show Ramachandran plots for ALA, LYS, TYR, and VAL with

right neighbors equal to pro, gly, phe, val, and gln. Gln behaves as

a relatively neutral neighbor. The other neighbor types have

similar effects on these residues as they do on Gln shown in the

previous figure. In Figure 6 we show the effects of left neighbors.

Val and Ile tend to reduce A conformations while Pro, Ser, and

Asp tend to increase A conformations.

To quantify the effects, Table 4 contains the Hellinger distances

for right neighbors of Gln, which shows the similar behaviors of

Phe and Tyr, Val, and Ile, and the different behaviors of Gly and

Pro as neighbors. Ile and Val as right neighbors of Gln are not as

similar as they are for most other amino acid types, where the

average Hellinger distance is about 7. We calculated the average

Hellinger distances between each pair of neighbors over all the

central amino acid types, e.g., for right neighbors Ri and Rj:

Hij~
1

20

X
k~1,20

H f̂f w,yDC~k,R~ið Þ,f̂f w,yDC~k,R~jð Þ
� �

and then used classical multi-dimensional scaling [37] to plot these

distances approximately in two dimensions. The results are shown

in Figure 7 for both left neighbors (Figure 7A) and right neighbors

(Figure 7B). For the right neighbors, we omitted Pro and Gly from

the graph since they lie far from the others. Pro is at coordinate

(225.5, 21.3) and Gly is at (0.7, 11.2). Residues with similar

properties are mostly grouped together, e.g. Val and Ile, Phe and

Tyr, Lys and Arg (as left neighbors), Asn and Gln (as right

neighbors), etc. The distances are on relatively similar scales with

Val and Asp having the largest Hellinger distance at 11.7 for left

neighbors, and Ile and Glu at 12.6 for the right neighbors

(excluding Gly and Pro as right neighbors).

Loop prediction with neighbor-dependent
Ramachandran distributions

To test whether the neighbor-dependent Ramachandran

distributions will have utility in protein structure prediction, we

ran a benchmark of loop predictions developed by Soto et al.

[38], consisting of 290 loops from length 8 to length 13. Rosetta

was used to predict the structures of these loops in the context of

the rest of each experimental protein structure [39]. The goal

was not to judge the accuracy of Rosetta but to compare the

different Ramachandran distributions for scoring and energy

minimization. The results are shown in Figure 8 in the form of

Q-Q plots (quantile-quantile) [40]. To produce a Q-Q plot, each

group of data are sorted numerically, and the resulting vectors

are plotted against one each other. Note that the x and y axes are

RMSDs rather than 1/290th quantiles. Significant deviations

from the line y = x indicate differences in the distribution of the

two data sets.

In Figure 8A, loop prediction Ca RMSDs using the neighbor-

independent TCB Ramachandran distributions are plotted against

loop predictions using the Ramachandran distributions currently

in Rosetta (‘‘original’’) [8]. The plot shows a small benefit to the

new Ramachandran distributions in the 3–6 Å range of RMSD.

The TCBIG distributions show similar results (not shown). In

Figure 8B, the neighbor-dependent distributions are compared to

the original distributions and exhibit much larger differences down

to 2.0 Å in RMSD. To compare the neighbor-dependent and

neighbor-independent distributions from the TCB set, the Q-Q

plot is shown in Figure 8C. Again, the neighbor-dependent

distributions have an advantage over the neighbor-independent

distributions.

Table 3. Hellinger distances for neighbor-independent
distributions in the TCBIG set.

PHE TYR GLN LYS VAL ILE ALA ASN PRO GLY

PHE 8 10 12 21 22 19 19 44 46

TYR 8 11 12 21 21 19 19 44 46

GLN 10 11 9 21 22 16 18 43 45

LYS 12 12 9 20 20 16 22 42 45

VAL 21 21 21 20 9 28 32 47 52

ILE 22 21 22 20 9 16 32 47 52

ALA 19 19 16 16 28 16 25 34 44

ASN 19 19 18 22 32 32 25 46 43

PRO 44 44 43 42 47 47 34 46 53

GLY 46 46 45 45 52 52 44 43 53

Values are 1006Hellinger distance and rounded to the nearest integer.
doi:10.1371/journal.pcbi.1000763.t003

Neighbor-Dependent Ramachandran Distributions
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Finally, in Figure 8D the TCB set is shown to produce better

predictions than the TCBIG set, which emphasizes the need to

choose the right Ramachandran distributions depending on the

prediction task. To explore why, we evaluated the Stride

assignments and the Ramachandran distributions for the bench-

mark loops. The benchmark is 59% Turn, 36% Coil, 3% Bridge,

and only 1.5% 310 Helix. As shown in Table 1, this distribution

matches the TCB (62% Turn) set much more closely than the

TCBIG set (50% Turn). The benchmark is 31% a helical region

and 57% b and Polyproline II region. This is much closer to the

TCB set (32% A and 56% B+P) than the TCBIG set (41% A and

48% B+P), as shown in Table 2.

As a test independent of loop sampling methodology and

scoring functions, we took a set of 2,074 proteins with resolution

better than 1.8 Å, and for loops longer than 8 residues, we

predicted the w,y value by selecting the grid point with the largest

probability:

w,yð Þpred~ arg max p w,yDC,L,Rð Þ

where C is the central residues whose w,y are being predicted and

L and R are the identities of its left and right neighbors. We then

compared these predictions with the values from the crystallo-

graphic structure. The results are shown in Table 5, which shows

the percentage of residues whose w or y are predicted within 40u
and also the mean absolute deviation in w and y between the

native and predicted values. The improvements from the

neighbor-independent distributions to the neighbor-dependent

distributions are evident. For instance for Leu, the neighbor-

independent distributions are able to predict the y values for only

37.3% of residues within 40u, while the neighbor-dependent

distributions predict 52.4% correct, for an improvement of 15.1%

of all leucines. This is a 40% improvement of the neighbor-

independent rate (15.1/37.3). Dihedral w is concentrated in a

smaller region than y and so is harder to improve than y. The

largest improvements are for hydrophobic residues, while residues

that show different behaviors in turns vs, coils (Gly, Pro, Asn) show

less improvement, probably because the neighbor effects are

context-dependent (Turn or Coil).

Interaction of neighboring side chains with the protein
backbone

It is of some interest to understand the origin of the neighbor-

dependent backbone conformation propensities observed in this

work and in similar analyses that have appeared previously. The

analysis is complicated by the preponderance of b turns in the two

data sets. Such turns are defined by Ca-Ca distances of less than

7 Å between residue 1 and residue 4 in a four-residue segment. b
turns are categorized by the conformations of residues 2 and 3,

and follow some well-studied amino acid preferences at all four

positions. [41]

To determine whether the neighbor effects were dependent on

whether residues were in turns or in coil regions of loops, we used

the raw data to determine the percentages of residues in A, B, and

P regions of the Ramachandran map depending on the neighbor

residue types for coil, turns, and all residues in the TCB set. The

results are presented in Table 6. Note, these are exact values from

raw counts of the data, not from the probability densities that

result from them.

The first row of numbers gives the percentage in A, B, or P of all

Coil, Turn, or TCB non-pre-Pro residues. That is, 19.4% of Coil

non-pre-Pro residues are in A conformation. We exclude pre-Pro

residues, due to the large effect Pro has when it is a right neighbor.

The numbers in the top half of the table show the effect of the

right neighbors listed in the first column as changes in the

percentage of all residues in each secondary structure type (C, T,

or TCB). That is, while 19.4% of non-pre-Pro Coil residues are in

A, only 12.1% of pre-Ile residues in Coil are in A. The pre-Pro

numbers in the table are relative to all residues in each group (C,

T, or TCB).

Some effects are seen in both Turn and Coil conformations,

while others are Turn or Coil specific. So for instance, Ile and Val

neighbors to the right decrease A populations for both Turn and

Coil, although for Coil the P population rises more than the B

population compared to Turn. Aromatic residues to the right

decrease P for both Turn and Coil, although in this case for Turn

A goes up while for Coil B goes up. Asn, Ser, and Asp to the left

decrease P and to a lesser extent B and increase A significantly

both in Turn and in Coil. Ile and Val to the left decrease A and

increase P for both Turn and Coil, while also increasing B for

Turn, probably due to turns of type becL (residues 2 and 3)

according to the nomenclature of Wilmot and Thornton [41].

This is a form of distorted type II turns, which prefer Val and Ile at

position 1, and hence B and P at position 2. Some effects are

completely conformation specific. Gly to the right increases P and

decreases A in Turn conformations (due to Type II turns with Gly

at position 3), while having the opposite effect on Coil. Pro to the

left increases A and decreases B and P for Turn, probably due to

an increase in Type I turns with Pro at position 2, while having

exactly the opposite effects for Coil conformations.

We investigated some of these preferences visually in both turns

and coils in order to identify potential favorable or unfavorable

interactions that may be responsible for the observed propensities

listed in Table 6. Several of these interactions are shown in

Figure 9 in images of residue triples, chosen to demonstrate the

interaction of the left or right neighbor side chain with the other

two amino acids of the tripeptide depicted.

Ile as a left neighbor to an A conformation in Coil is shown in

Figure 9A. In this conformation, the b branched amino acid blocks

access of hydrogen-bond acceptors to the NH of the amino acid to

the right of the central residue (i), whose relative position is

determined by w, y of residue i and y of residue i21. In this

image, atom Cc1 of Ile is 4.4 Å from Ni+1. A residue with only a

single Xc atom might have Xc in the position of Cc2 in this

residue, thereby allowing access to NHi+1. This interaction occurs

when residue i21 is in a B conformation, which is more common

for Coil than for Turn. A similar effect is shown for Val to the right

in Figure 9B, with a close contact of Cc2 with backbone atom

Oi21.

Polar interactions and side-chain/backbone hydrogen bonds are

also likely responsible for some of the observed trends in Table 6.

In Figure 9C, an Asn Od1 at i21 acts as a hydrogen bond acceptor

to NHi+1 and thus in fact favors an A conformation at position i,

both in Turn and in Coil (as shown). Asp Od1 Od2 at i21 can

make the same hydrogen bond with NHi+1, and the population of

residue i is also increased in A conformations (Table 6). Ser Oc

Figure 4. Right neighbor-dependent Ramachandran distributions of glutamine with each of 20 amino acid types as right neighbors.
All plots are scaled to a common maximum probability height.
doi:10.1371/journal.pcbi.1000763.g004
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behaves similarly (not shown). It is interesting to note that these

three residues, Asn, Asp, and Ser, cluster together in the two-

dimensional projection of their distances as left neighbors

(Figure 7A) but not as right neighbors (Figure 7B).

In Figure 9D, the well-known Pro-right interaction is shown in

the very close approach of the Pro Cd with atom N of the central

residue, when this residue is in an A conformation. Figures 9E and

9F show effects of aromatic residues. A left aromatic neighbor

(Figure 9E) may have a favorable hydrophobic interaction with the

side chain of residue i+1, when residue i is in a B conformation. A

right neighbor of residue i that is aromatic can have apparent

unfavorable interactions with the carbonyl oxygen of residue i21,

as shown in Figure 9F. The position of this oxygen relative to this

side chain is determined by w,y of residue i, w of residue i+1, as

well as the rotamer of the aromatic residue at i+1. In several cases

studied, when this side chain is in a x1 rotamer of g2, which is the

most common rotamer of aromatic amino acids, the p orbitals of

the ring are in close proximity (about 4.5 Å) to the carbonyl

oxygen, as shown in Figure 9F, thus decreasing the tendency of the

A conformation when aromatic residues are at position i+1. Also,

this residue has a w of 286u, which is consistent with both A and P

conformations.

Discussion

Ramachandran distributions have been produced using many

different input data sets and different statistical methods. We have

made several choices primarily for the purpose of protein structure

prediction, in particular modeling regions of non-regular second-

ary structure. First, we have used a large input data set of 3,038

proteins with better than or equal to 1.8 Å resolution. Second, we

discarded residues with electron density in the bottom 20th

percentile [34] in order to remove conformations in potentially

mobile parts of the input structures. Third, we derived data sets of

all residues not in helix or sheet and a second data set also

excluding 310-helix and p-helix. For comparison, we also studied

residues in b turns and in coil (i.e., not in secondary structure or

turns). Finally, we used hierarchical Dirichlet process methods to

develop smooth and statistically reliable Ramachandran distribu-

tions for all 20 amino acid types with each of the 20 amino acids as

either left or right neighbor. These so-called neighbor-dependent

Ramachandran distributions are shown to be useful in loop

structure prediction using the Rosetta program.

Many other such statistical analyses w,y data have appeared

previously [11,12,14,18,27,29,42], but few are publicly available

for use in structure validation or structure prediction. Our analysis

differs in a number of respects from the available distributions. For

instance, the Richardson group developed smooth w,y densities

using adaptive kernel density estimates [16,17] from a filtered,

high-resolution data set [12]. However, their main purpose was

structure validation, and their distributions are not residue

dependent; that is, all non-Gly,non-Pro,non-pre-Pro residues are

treated in one density estimation. They used a quite narrow kernel

in their density estimates with all 18 residue types merged into a

single, very large data set. It is likely that their density estimates

therefore are able to accurately represent sharp changes in the

probability density between allowed and disallowed regions. This

is quite important for structural validation, as demonstrated by the

widespread use of the MolProbity server [6]. Quite usefully, they

do provide a separate pre-Pro distribution, since this distribution

exhibits the strongest neighbor-dependence, as well as Gly and Pro

distributions.

Amir et al. fit cubic splines to kernel density estimates to

produce smooth Ramachandran distributions for each amino acid

type individually for protein structure prediction [13]. They used a

much smaller data set than used here, a set of 850 proteins

previously produced by us for development of the backbone-

dependent rotamer library [43,44], and did not examine neighbor

effects. Sosnick et al. calculated neighbor-dependent statistics of

backbone conformations; however, these are not full Ramachan-

dran densities but proportions in large regions of the w,y space (a,

b, polyproline II, etc.) [26].

The Flory isolated-pair hypothesis [32] states that the pair of

dihedral angles in protein backbones, w,y, are independent of the

conformation of neighboring residues, and by extension the

identity of those residues. This idea has been challenged by

statistics from the PDB [26,28], molecular dynamics simulations

[27], exhaustive conformational searches and energy calculations

[29], and NMR experiments [45]. The results here confirm these

earlier investigations and extend them by deriving full Ramachan-

dran probability densities for all residue-neighbor conformations

and for different input data sets (the TCBIG, TCB, T, and C sets).

We also suggest some explanations for some of the effects

observed. For left neighbors, these effects in some instances are

caused by interactions of the side-chain of residue i21 and

backbone NH of residue i+1, whose relative positions are

determined by w,y, of residue i, y of residue i21, as well as the

x angles of residue i21. For right neighbors, the effects sometimes

stem from a complementary interaction – the side chain of residue

i+1 and the backbone O = C of residue i21, whose relative

positions are determined by w,y, of residue i, w of residue i+1, and

the side-chain conformation of residue i+1. In both cases, these

interactions can be electrostatic repulsions, hydrogen bonds, or

steric, in some cases by blocking access of hydrogen bond donors

or acceptors to the backbone. These are commonly described for

some residue types in a-helices or b sheets, or capping positions of

regular secondary structures, but they also operate in turn and coil

conformations of long protein loops.

The key idea of the statistical approach developed here is that

more precise estimates of Ramachandran distributions can be

found if we examine these distributions in different contexts. This

differentiation by context creates a data sparsity problem, in that

some contexts may yield very few data points, but, as we have

shown, this problem can be addressed effectively within a

hierarchical Bayesian framework. Our biochemical knowledge

about relatedness can be used to reap further benefits of

differentiation of different classes.

The general idea of hierarchical modeling is widespread in

Bayesian statistics [46]. It is most common in parametric Bayesian

modeling, where parameters are often shared among multiple

parametric distributions (e.g., the probabilities of recovery of ill

patients are similar if the patients are in the same hospital, have

the same doctor, etc.). As we have seen, however, the same basic

concepts apply in nonparametric Bayesian modeling. Thus we are

able to share statistical strength among multiple multi-modal

distributions in which the number of modes in each distribution is

unknown a priori. In particular, the hierarchical Dirichlet process

allows us to separate Ramachandran distributions according to

Figure 5. Right Neighbor-dependent Ramachandran distributions of four residues with different right neighbors. Columns (left to
right): central residues ALA, LYS, TYR, VAL. Rows (top to bottom): right neighbors pro, gly, val, gln. All plots are scaled to a common maximum
probability height.
doi:10.1371/journal.pcbi.1000763.g005
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neighboring residue types and to exploit similarities in these

distributions. Moreover, although we have focused on contexts

that are defined by amino acid neighborhoods, the same ideas

could be used to estimate Ramachandran distributions that are

differentiated according to other contextual variables, such as loop

structure class (turn, coil, 310-helix, etc.) or neighbor conforma-

tional class (A, B, P, etc).

We believe the neighbor-dependent distributions developed

here will provide utility in a number of applications in protein

structure prediction and structure determination. The appropriate

distributions will be specific to each application. We hope that by

making them publicly available, their properties may be further

explored in various applications.

Methods

Data set
We selected a list of 3038 proteins from structures in the Protein

Data Bank (PDB) that also had electron densities available from

the Uppsala Electron Density Server (EDS) [35]. Using the list of

PDB entries with available electron density maps, we entered this

list into the PISCES server (http://dunbrack.fccc.edu/pisces)

[47,48] to obtain a subset with resolution better than or equal to

1.7 Å, R-factor #0.25, and mutual sequence identity less than

50%. Secondary structure was determined with the program

Stride [36], which assigns H (helix), E (sheet), B (bridge), T (Turn),

G (310 helix), I (p-helix), and C (coil) to all residues. In order to

explore the distributions in longer loop regions, we excluded loops

(non-E,H segments) of less than 6 amino acids as well as the first

two non-E,H residues following each E or H and the two non-E,H

residues preceding E or H. This was done to avoid secondary-

structure-capping residues, which have specific distributions in

order to break the secondary structure (e.g., N and C cap residues

in helices usually have conformations outside the a region;

otherwise they would likely be part of the helix).

We used a quality measure of each residue’s backbone by

calculating the geometric mean of the electron density at backbone

atom coordinates as described in previous work [34]. We excluded

those residues in the bottom 20th percentile for each residue type

from the data. This filter works similarly to a B-factor filter. We

use the former because some X-ray structures do not have

consistent values for B-factors versus electron density [34].

We created several sets of data for analysis with the HDP

procedure:

1) TCBIG set: All residues in non-E,H regions except for the

first two and last two of such segments as described above;

2) TCB set: All residues in TCBIG minus residues in 310 and p
helices;

3) T set: just those residues in turns;

4) C set: just those residues in coil.

Hierarchical Dirichlet process
Our approach to modeling neighbor-dependent Ramachan-

dran densities is based on a Bayesian nonparametric density model

known as the hierarchical Dirichlet process (HDP) mixture model [33].

The HDP approach allows us to subdivide our data into groups

defined by a specific central amino acid and by a particular

neighboring amino acid. Given these groups, the HDP mixture

model produces density estimates for each group in a manner that

takes advantage of the commonalities among the groups while

allowing each group to exhibit idiosyncratic features.

Before providing a detailed description of the model, let us

provide a non-technical overview. Our approach is based on

modeling densities such as the Ramachandran distribution as

mixtures (i.e., weighted sums) of simple Gaussian component

densities. Each such component density is a unimodal bump in the

two-dimensional Ramachandran plot, and the overall density is a

weighted sum of such bumps. There is a global library of

component densities for a single amino acid type, and each

particular density (i.e., the Ramachandran density corresponding

to a specific right or left neighbor) draws a number of compo-

nent densities from the global library. The specific details of this

model – the locations and orientations of the Gaussian bumps, the

number of bumps used in each Ramachandran density, and the

pattern of sharing of the bumps between the multiple Ramachan-

dran densities – arise from a Bayesian inference procedure that

combines our prior assumptions (the HDP model described below)

with the observed data of amino acid dihedral angles in the

Ramachandran maps. In essence, the inference procedure based

on a Markov chain Monte Carlo procedure finds configurations of

the model that are compatible with both the prior and the data.

We now turn to a more technical description of the model. The

HDP model can be viewed as a generalization of a simpler model,

the Bayesian finite mixture model. Accordingly, we begin with a

description of Bayesian finite mixtures and then develop the

generalization to the HDP. A classical finite mixture considers a

set of component densities:

f xDhkð Þf g, k~1,:::,K

where x in this case is the two-dimensional vector of Ramachan-

dran angles, and where hk is a parameter vector associated with

the kth density. For example, f might be a Gaussian density, with

parameter vector h, representing the mean and covariance matrix.

We assume that the number K is known and fixed; this assumption

Figure 6. Left neighbor-dependent Ramachandran distributions of three residue types. Columns (left to right): central residues ALA, LYS,
and GLU. Rows (top to bottom): left neighbors val, pro, ser, and asp. Vertical scale is the same as Figure 5.
doi:10.1371/journal.pcbi.1000763.g006

Table 4. Hellinger distances for right-neighbor-dependent
distributions of glutamine in the TCBIG set.

PHE TYR GLN LYS VAL ILE ALA ASN PRO GLY

PHE 8 15 16 14 17 15 12 35 20

TYR 8 13 14 15 18 12 8 35 19

GLN 15 13 9 9 11 7 9 27 12

LYS 16 14 9 9 12 8 9 27 14

VAL 14 15 9 9 10 12 11 27 12

ILE 17 18 11 12 10 13 13 29 12

ALA 15 12 7 8 12 13 9 27 15

ASN 12 8 9 9 11 13 9 32 15

PRO 35 35 27 24 27 29 27 32 32

GLY 20 19 12 14 12 12 15 15 32

Values are 1006Hellinger distance and rounded to the nearest integer.
Residues listed are right neighbors of glutamine.
doi:10.1371/journal.pcbi.1000763.t004
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will be removed in the HDP approach. We assume that a data

point xi is generated according to the following process:

1. Select an index k according to probabilities p~ p1,p2, . . . ,pKð Þ,
such that

P
k~1,K

pk~1

2. Generate a data point xi by sampling from the distribution

f xi Dhkð Þ.

This process is repeated N times, yielding a data set

X~ x1,x2,:::,xNf g. The probability of the ith data point can be

written as follows:

p xið Þ~
XK

k~1

pkf xi Dhkð Þ

and the overall probability of X is obtained by taking a product

over these probabilities.

In the Bayesian approach to finite mixture models, the

parameters p and h~ h1,h2,:::,hkð Þ are assumed to be generated

from a prior probability distribution. Specifically, in the case of

Gaussian mixture models, where hk~ mk,Skð Þ consists of a mean

and covariance matrix, a common choice for the prior is

p : Dir að Þ

mk : N m0,Lð Þ

Sk : IW c,Cð Þ

where Dir is the Dirichlet distribution, IW is the inverse Wishart

distribution, and where a, m0, L, c, and C are hyperparameters that

are often fixed a priori but also can be inferred from the data.

The next step in our development of the HDP mixture model is

the Dirichlet process (DP) mixture model, which is a generalization of

Bayesian finite mixture models where the number K is treated as

unknown and to be inferred from the data [20]. This

generalization is often described metaphorically in terms of a

simple stochastic process known as the Chinese restaurant process

(CRP). Consider a Chinese restaurant with an infinite number of

tables and consider the following seating process. The first

customer to arrive in the restaurant sits at the first table with

probability one. The second customer then joins that first

customer with probability 1=(az1) and starts a new table with

probability a=(az1), where a is a parameter. The general rule is

that the nth customer sits at a table with probability proportional

to the number of people already sitting at that table. She may sit at

a new table with probability a= azn{1ð Þ.
The CRP determines a clustering or partitioning of the

customers. We can turn this clustering process into a mixture

model by associating the kth table with the kth component in a

mixture model. In particular, let us assume that the first customer

to sit at the kth table in the restaurant selects a dish, given by

parameter hk, for that table from some prior distribution on the

parameters. Each subsequent customer who sits at that table

inherits that parameter vector. By viewing the ith customer as a

data point xi and drawing xi from the distribution f xi Dhkð Þ, where

hk is the parameter vector at the table where customer i sits, we

obtain a mixture model for generating data.

Note that the number of tables in the CRP, which corresponds

to K in the finite mixture model, is a random variable that grows as

N (the number of data points) grows. Indeed, the expected value of

the number of occupied tables turns out to scale as log N [21]. The

DP mixture model is ‘‘nonparametric’’ — the number of

parameters grow as we obtain more data.

The inferential problem associated with the DP mixture model

is as follows. Given a data set X, compute a posterior probability

distribution on the allocation of data points to tables and on the

parameters associated with the tables. This problem can be solved

with a variety of standard methods for posterior inference,

including Markov chain Monte Carlo [49], sequential Monte

Carlo [50] and variational inference [51]. Although we do not

Figure 7. Multi-dimensional scaling plots of average Hellinger distances. A: left neighbors. B: right neighbors. The distance between any
two neighboring residue in the plots is approximate. ‘‘ALL’’ indicates all residues as neighbor and is boxed in each figure.
doi:10.1371/journal.pcbi.1000763.g007
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provide details here, it is worth noting that the posterior inference

algorithms for DP mixtures are relatively simple; for example, in

the Markov chain Monte Carlo methods, we repeatedly revisit

each data point and assess which table it should be moved to given

the current configuration of all of the other data points. The

probability of assigning a point to a table is proportional to the

product of the number of data points already at that table and the

likelihood of that data point given the parameter vector (or dish) of

the table.

We now turn to the hierarchical Dirichlet process (HDP) [33]. The

HDP can also be described with a restaurant metaphor, in this

case by the Chinese restaurant franchise (CRF). The problem now is to

Figure 8. Quantile-quantile (QQ) plots for 230 loop predictions by Rosetta using different Ramchandran distributions. Each figure
plots the numerically sorted Ca RMSDs for predictions from one form of Ramachandran distributions against the numerically sorted Ca RMSDs from
another. A: neighbor-independent TCB distributions vs. original distributions in Rosetta; B: neighbor-dependent TCB distributions vs Rosetta original
distributions; C: neighbor-dependent TCB distributions vs neighbor-independent TCB distributions; D: neighbor-dependent TCB distributions vs
neighbor-dependent TCBIG distributions.
doi:10.1371/journal.pcbi.1000763.g008
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model the densities associated with each of M groups of data; in

particular, for a given amino acid, the M groups correspond to the

set of right or left neighbors. Accordingly, in the CRF there are

M = 20 restaurants. Data points are categorized as to which group

they belong to. A data point (customer) enters the restaurant

associated with its group and sits at a table with probability

proportional to the number of customers currently sitting at the

table. Moreover, the first customer to sit at a table selects a

parameter vector for that table. In the CRF metaphor, the

parameters are viewed as ‘‘dishes,’’ and the dishes are obtained

from a menu that is shared among all of the restaurants. When a

dish is selected from the menu a check mark is placed next to that

dish. When a new customer goes to the menu to select a dish for

her table, she selects a dish with probability proportional to the

number of check marks next to that dish and the likelihood of her

data point given the parameter vector associated with the dish.

Additionally, there is a probability of selecting a new dish.

The global menu implements a sharing of mixture components

among the restaurants. Let us consider concretely how this creates

a link among multiple density estimation problems. Consider in

particular the case of Gaussian mixtures, in which the parameter

hk consists of a mean and covariance matrix. When a specific hk is

selected by a customer xim in the mth restaurant, this corresponds

to a Gaussian bump in the density associated with the mth group.

Because this parameter vector appears on the global menu, it can

then be selected by a customer in one of the other restaurants.

This means that that Gaussian bump can also appear in one of the

other density models. This allows us to capture commonalities

among the groups. Of course, some dishes will only be selected in a

single restaurant, and this allows the corresponding group of data

to exhibit idiosyncratic features. Tables and dishes are selected in

part based on the likelihood of the customer data points given the

parameter vectors of the dishes served at each table.

We now describe in greater detail the specifics of the model and

estimation procedures used for Ramachandran data. We use the

Gaussian mixture HDP to give density estimates of the w,y,

dihedral angles conditional on the either the central and left

residues (C,L) or the central and right residues (C,R). Since the

central residue clearly affects the w,y, angle densities far more

than the neighbors, our hierarchy shares features when the central

residue is the same and allows for idiosyncratic features for the

different neighboring residues. The choice of conditioning on only

two residues was motivated by the fact that conditioning on all

three residues resulted in very small data sizes that failed to contain

sufficient information to capture appropriate features. The HDP

estimates were fit independently for each central residue to avoid

computational issues. When proline was the central residue, the

trans- and cis- configurations were treated as unique, giving a total

of 21 possibilities for the central residue and 20 possible

neighboring residues.

A natural choice for the component distributions for the w,y,

angles would be the bivariate von Mises distribution, an

exponential family distribution for angles [52]. Indeed, this

distribution was used in earlier work using the Dirichlet process

by Lennox et al. [15] However, posterior inference in the bivariate

von Mises model is intractable, requiring the computation of an

Table 5. Ramachandran predictions for maximum probability of neighbor-dependent vs. neighbor independent distributions for
loop residues in 2074 proteins.

Res Count % %imp % %imp Ave. u imp Ave. u Imp.

|Dw|,40u |Dy|,40u |Dw| |Dy|

ASN 11686 55.9 210.6 49.3 3.2 46 210 62 6

GLY 24367 64.2 21.2 59.0 1.4 58 20 64 6

SER 13998 68.1 20.6 46.3 5.7 41 21 89 9

PRO 15820 99.5 20.1 66.3 6.0 60 20 60 10

LYS 10429 63.9 22.9 49.8 5.8 44 21 75 11

TRP 2613 64.9 1.0 48.1 6.2 42 1 81 10

THR 11529 60.0 22.4 47.3 6.3 41 22 86 12

GLU 10678 74.4 20.9 57.5 7.8 50 20 67 12

ARG 8449 61.3 21.7 48.7 7.8 41 21 77 13

GLN 6369 65.6 0.7 47.0 5.0 42 0 75 12

ASP 15847 72.4 4.0 49.3 8.7 41 2 69 13

HIS 4922 56.1 0.6 44.4 9.1 35 0 78 15

TYR 5908 60.0 1.9 44.2 7.8 36 1 80 16

CYS 2643 60.0 0.2 43.4 11.1 32 0 83 17

MET 2504 67.8 20.8 49.3 15.3 34 21 78 23

PHE 6256 58.6 6.0 44.0 12.8 31 4 78 23

LEU 11875 74.1 4.9 52.4 15.1 37 3 75 24

ILE 6402 61.4 5.1 58.1 28.8 29 3 68 42

VAL 8552 61.3 5.5 57.2 28.9 28 4 71 43

Dw,40u and Dy,40u indicate predicted w,y position with maximum probability is less than 40 degrees away in w and y respectively from native position calculated
with the neighbor-dependent distributions. %imp is the increase in the percent of all residues of each type that are predicted correctly with the neighbor-dependent
distributions compared to the neighbor independent distributions. Ave. |Dw| and |Dy| are the mean absolute deviations of the most probable w,y values from the
native values of w and y calculated with the neighbor-dependent distributions. Deg. Imp indicates how much better predictions are (that is lower) with the neighbor-
dependent distributions than with the neighbor-independent distributions.
doi:10.1371/journal.pcbi.1000763.t005
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infinite sum of incomplete Bessel functions. Lennox et al. made use

of a Gaussian approximation to the von Mises model within the

framework of a Metropolis-Hastings algorithm, but this is still

complex. Moreover, the major gains from the von Mises model

occur near the boundaries of the Ramachandran plot, where the

‘‘wrap around’’ obtained from the von Mises distribution is

Table 6. Changes in Ramachandran regions for right and left nearest neighbors in Coil, Turn, and All loop residues.

A B P

RIGHT neigh. Coil Turn TCB Coil Turn TCB Coil Turn TCB

%Rama 19.4 46.4 35.2 32.1 15.2 23.3 40.3 22.2 28.6

ILE 27.3 24.2 28.2 1.4 2.4 2.7 4.9 1.1 5.5

VAL 27.8 24.9 27.4 21.2 2.5 1.7 9.5 0.2 5.2

LYS 23.1 29.5 26.8 26.0 4.0 1.0 8.2 3.4 4.0

MET 20.2 25.6 24.3 20.8 1.6 0.3 21.3 0.6 1.5

LEU 27.7 1.6 23.8 0.5 20.8 0.8 7.1 22.1 2.9

ARG 20.7 25.0 23.4 27.7 0.4 22.8 7.3 1.0 3.7

GLN 24.9 23.5 23.1 25.5 0.2 21.3 10.3 0.8 2.6

ALA 22.0 21.4 22.2 1.4 2.6 2.6 1.9 21.0 0.5

THR 22.4 0.5 20.6 22.9 20.6 21.2 3.0 22.7 20.6

CYS 1.4 2.9 0.1 26.6 25.7 24.6 0.4 25.9 21.4

SER 3.8 0.5 1.6 22.6 1.0 0.1 0.1 22.8 22.0

GLU 2.3 0.0 2.0 1.1 2.9 1.7 21.6 20.1 21.7

TRP 20.7 5.1 3.1 10.3 1.6 4.7 210.1 27.3 28.5

GLY 14.0 23.6 3.2 21.7 24.6 24.7 210.6 11.4 3.6

ASN 2.8 2.5 3.9 1.3 22.0 21.8 25.8 20.6 23.0

PHE 20.9 7.8 4.4 10.8 20.6 3.0 210.0 26.0 26.6

TYR 3.5 7.3 5.3 8.0 0.2 2.8 210.5 26.3 27.1

ASP 1.0 7.0 5.9 3.6 0.2 1.2 23.3 22.6 24.0

HIS 1.6 7.4 6.4 1.8 21.2 20.7 26.7 24.7 25.9

PRO 216.8 240.3 230.6 9.5 31.1 22.6 11.4 18.4 15.2

LEFT neigh.

ILE 23.4 213.7 210.7 21.2 8.2 4.9 5.9 9.4 8.9

VAL 24.0 211.6 210.0 0.4 3.6 3.4 7.5 8.9 9.3

LEU 24.1 29.6 28.1 20.9 0.8 1.3 5.4 11.0 8.4

LYS 210.6 24.0 27.8 3.3 20.7 1.9 10.1 2.5 6.3

PHE 21.7 212.1 27.8 9.1 4.8 5.7 25.4 4.3 0.6

GLN 24.9 28.2 27.5 1.4 2.3 2.4 5.6 2.4 4.1

MET 24.3 25.5 25.9 24.8 21.9 22.9 6.8 3.1 5.9

TYR 2.9 29.4 24.8 7.7 3.8 4.6 29.6 2.0 21.9

ARG 24.3 23.5 24.7 21.2 1.7 1.3 7.4 3.5 5.5

GLU 27.8 21.6 23.2 20.2 20.3 21.5 7.1 21.2 2.3

TRP 21.5 24.8 22.6 4.8 5.8 5.2 23.9 23.6 24.8

ALA 24.6 1.0 21.1 1.9 21.0 0.7 2.5 20.7 0.0

GLY 3.4 20.1 20.2 20.1 2.8 2.6 23.2 3.4 1.6

HIS 1.7 21.3 0.1 4.3 2.3 2.6 26.4 20.8 23.0

THR 4.4 20.1 1.3 25.1 21.9 23.1 22.7 0.7 20.1

CYS 14.1 24.2 2.0 27.8 21.4 23.8 211.1 1.6 22.6

PRO 24.3 8.4 4.4 1.1 24.8 22.7 4.7 23.9 21.5

ASN 12.9 6.6 9.2 21.4 20.4 21.6 213.1 26.0 28.2

SER 13.2 10.9 12.2 22.9 23.5 24.1 212.0 26.8 28.7

ASP 6.9 12.9 14.8 26.3 24.1 27.0 26.2 210.4 211.2

The first row is the percent in each region for each secondary structure type (Stride C, T, or T+C+B). Top: right neighbors. Bottom: left neighbors. Each cell gives the
difference as a percentage of all residues in the secondary structure type. E.g., 40.3% of non-pre-Pro Coil residues are in a P conformation, while 45.2% (40.3+4.9) of non-
pre-Pro Coil residues with Ile as right neighbor are in a P conformation. Negative numbers are in bold italic type.
doi:10.1371/journal.pcbi.1000763.t006
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helpful. We have pursued a simpler approach, where we rotate the

data to lie in the rectangle (50u6180u, 90u6180u). This rotation

ensured that the density near the boundary is low, and during

model fitting, little mass is lost using component densities – in

particular Gaussian densitites – which do not wrap around at the

boundary. As a post-processing step, the Gaussian mixture

components are treated as wrapped Gaussians to ensure that the

final density estimate is smooth even at the low density regions at

the boundary. This technique yields a fast algorithm that can be

used on large data sets.

A conjugate prior was used for the mixture component

parameters; specifically, the prior distribution on mk, Sk is

Normal-Inverse-Wishart with the following parameters:

Mean: m0 = (50u,90u)
Diagonal covariance matrix: L= 252 I, where I is the unit

diagonal matrix

Number of pseudo-observations for the mean: k0 = 0.01

Number of pseudo-observations for the variance: n0 = 2.1

The numbers of pseudo-observations for the mean and variance

were chosen to be small to give vague priors but large enough so

Figure 9. Neighbor-dependent effects. A. ILE (left) – ALA (center conformation A, coil, PDB entry 1N55, residue 69 of chain A). Ile likely prevents
H-bond acceptor to Ni+1. B. VAL (right) – ARG (cent, A, coil, 2FWH_527A). Val likely prevents H-bond donor to Oi21. C. ASN (left) – SER (cent, A, coil,
3C8W_9A). Asn forms hydrogen bond to Ni+1. D. PRO (right) – ARG (cent, A, coil, 2RKV_296A). Very close steric bump of Pro CD with Ni. E. PHE (left) –
SER (cent, B, coil, 2GS8_248A). Favorable hydrophobic interaction with Tyri+1. F. TYR (right) – PRO (cent, P, turn, 3CA8_34A). Tyr unfavorable electro.
interaction with Oi21.
doi:10.1371/journal.pcbi.1000763.g009
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that the prior is proper. An additional prior is placed on the two

Dirichlet process a hyperparameters controlling the probability

that a new ‘‘table’’ or ‘‘dish’’ in the CRF is sampled. The prior for

each was exponential with mean 10.

Density estimates using this HDP model were obtained using

Markov Chain Monte Carlo. We used the augmented Gibbs

sampler described previously [33]. The mixture component

parameters were integrated over, and only the sufficient statistics,

the sample mean and covariance, were retained. After a burnin of

10,000 samples, an additional 50,000 samples were drawn and

then thinned, with every 50th sample retained. For each sample

the w,y, density was evaluated on a grid of 2886288 values. These

1000 density samples were then averaged to obtain the final

density estimates.

Approximating the distributions with cubic splines
Due to the large size of these grids, we fit a cubic tensor spline

with 72672 knots to reduce the size of the representation while

providing an excellent approximation to the original fit. A degree

d spline approximation to a function uses a piecewise polynomial

of degree d to approximate the function. The location of each

piece of the piecewise polynomial is determined by the knots, and

the piecewise polynomial is constrained to have d21 continuous

derivatives. Thus, the compactness of the approximation is

controlled by the number of knots, and the smoothness is

controlled by the degree d. This spline representation has the

additional advantage of being very fast to compute since

evaluating a polynomial requires only a few basic multiplication

and addition operations. Since the angle data are periodic, we

also enforced the smoothness constraint at the boundaries at

6180u.
A two dimensional tensor spline is one where each ‘‘piece’’ of

the piecewise polynomial is of the form p xð Þq yð Þ where p xð Þ and

q yð Þ polynomials. Once the knots are defined, a 72672 uniform

grid in our case, a regression spline is easily fit by minimizing the

squared error to a target, a 2886288 grid of log density estimates

in our case. Compared to linear interpolation on a 72672 grid

representation, which consumes an equivalent amount of

memory, the spline approximation improved the approximation

error, as measured by Kullback-Leibler divergence, from 0.22 to

0.004.

Hellinger distance
We used the Hellinger distance to determine the similarities of

different Ramachandran distributions. For two probability distri-

butions, f xð Þ and g xð Þ, the Hellinger distance, H is calculated

from the following equation:

H2 f ,gð Þ~ 1

2

ð

V

ffiffiffiffiffiffiffiffiffi
f xð Þ

p
{

ffiffiffiffiffiffiffiffiffi
g xð Þ

p� �2

dx

where the integral is taken over the domains of f and g. H satisfies

the expression 0ƒHƒ1.

Rosetta loop predictions
We used a loop-prediction data set described by Soto et al. [38],

consisting of 290 loops (the original set consisted of 293 targets but

Rosetta was unable to complete three of them. This set consisted of

loops from several previous benchmarks, with a total of 62, 56, 40, 54,

39, and 39 loops of lengths 8, 9, 10, 11, 12, and 13 residues respectively.

Loop modeling was performed with Rosetta2.3.0, modified to

use the neighbor-dependent Ramachandran distributions. We

used the standard pose-based loop modeling protocol built into

Rosetta [53], using a fixed backbone and side chains

for all residues except those in the loop region to be pre-

dicted. We generated 2000 decoys for loops of length 8 and 9,

5000 decoys for loop lengths 10–12, and 8000 decoys for loop

length of 13. For each individual loop, a random starting

conformation is constructed by arbitrarily inserting fragments in

the loop region. The fragment library was generated using the

standard Rosetta fragment generating tools, i.e. searching with the

query sequence of each loop against representative PDB structures

skipping homologous structures (-nohoms option).

Once the initial conformation was built, the simulation was

performed in two steps. In the first (low-resolution) step, the side

chains were represented by centroid atoms. A series of Monte Carlo

perturbation steps followed by loop closure using cyclic coordinate

descent (CCD) [54] and line energy minimization were performed.

The conformation perturbation was done by inserting three-residue

and one-residue fragments into the loop region. In the second (high-

resolution) step, all atoms including hydrogen atoms were explicitly

represented. The perturbation was done by introducing small

random changes to one or more backbone torsions angles, followed

by CCD closure, and Davidson-Fletcher-Powell minimization.

Repacking of all the loop side chains was performed after every

20 cycles as well as at the end of the overall simulation.

The full command line for loop modeling was:

rosetta.gcc $serial $entry $chain -pose -loops

-fa_input -fold_with_dunbrack -fast -fix_natsc -

ramaneighbors $type -rama_file $ramafile -pose_

silent_out -pose_loops_file $entry$chain.loop -

s $entry$chain.pdb -nstruct $nStructs

where variables with ‘‘$’’ signs were defined within a loop:

N $serial = any two-letter string

N $entry = four-letter PDB name

N $chain = 1-letter chain identifier

N -ramaneighbors $type = ‘‘none’’ uses neighbor-independent

distributions

N -ramaneighbors $type = ‘‘both’’ uses neighbor-dependent dis-

tributions

N -rama_file $ramafile = name of Ramachandran distribution

file used

N -nstruct $nStructs = number of decoys that will be generated.

N -pose_silent_out: Use compressed output for decoys.

N -fa_input: Input fullatom coordinates (implies -fa_ouput.)

N -pose: The pose version of the loop modeling protocol using

-fold_with_dunbrack. It supports multiple loops and will fold

them in centroid in the order of input. After each move step,

full-atom refinement is performed It works with -trim,

-fix_natsc options. And use -fast to speed up the protocol by

reducing the number of cycles of trial.

N -fold_with_dunbrack: An alternative loop modeling protocol

which combines fragment insertion and cyclic coordinate

descent loop closure protocol during each step

N -loops: Manipulate and try to form loop secondary structures.

N -fast: Use fast protocols

N -fix_natsc: Use native rotamers for template, i.e., the non-loop

regions

N -pose_loops_file ,file.: Specify a single file to use as the loop

file

The command-line options -ramaneighbors and -rama_file

were added to this version of Rosetta, specifically for using the

neighbor-dependent Ramachandran distributions.

Neighbor-Dependent Ramachandran Distributions

PLoS Computational Biology | www.ploscompbiol.org 19 April 2010 | Volume 6 | Issue 4 | e1000763



Ramachandran distributions dependent on both left and
right neighbors

To obtain density estimates of w,y, for the central residue

conditional on all three residue types, the following model can be

used to combine the HDP density estimates which are conditional

only on central/left or central/right residue pairs.

p̂p(w,yDC,L,R)~
f̂f w,yDC,Rð Þf̂f w,yDC,Lð Þ

S f̂f w,yDCð Þ
:

where S is a normalizing constant obtained by integrating the

expression on the right hand side (without the S). This estimate is

the plug-in estimator for the full conditional probability given the

assumption that the identity of the left and right residues are

independent given w,y,. For most residues, S was near 1 but for

some residues and some neighbors, in particular proline, S was as

low as 0.5 and as high as 1.5. The normalization is therefore

important.

Regions of the Ramachandran map
In order to characterize the effects of neighbors on populations

on different regions of the Ramachandran map, we divided the

w,y space into non-overlapping bins as follows, for the a, b,

polyproline II, left-handed, and c conformations, respectively:

A: 2200u#w,0u, 2120u,y#40u, 90u#v#270u
B: 290u#w,0u, 40u,y#240u, 90u#v,270u

P: 2200u#w,290u, 40u,y#240u, 90u#v,270u
L: 0u#w,160u, 290u,y#110u, 90u#v,270u
E: 0u#w,160u, 110u,y#270u, 90u#v,270u
cis: 290u#v,90u

Figures
Density plots were produced in Matlab (the Mathworks, Inc.,

Natick, MA, USA). The multi-dimensional scaling and QQ plots

were performed in R (the R Foundation for Statistical Computing,

Vienna, Austria). Protein images were produced in PyMol

(DeLano Scientific, Palo Alto, CA, USA).

Availability
All distributions are freely available to non-profit research

groups at this address: http://dunbrack.fccc.edu/hdp.
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