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Abstract

Histopathological classification of human tumors relies in part on the degree of differentiation of the tumor sample. To date,
there is no objective systematic method to categorize tumor subtypes by maturation. In this paper, we introduce a novel
computational algorithm to rank tumor subtypes according to the dissimilarity of their gene expression from that of stem
cells and fully differentiated tissue, and thereby construct a phylogenetic tree of cancer. We validate our methodology with
expression data of leukemia, breast cancer and liposarcoma subtypes and then apply it to a broader group of sarcomas. This
ranking of tumor subtypes resulting from the application of our methodology allows the identification of genes correlated
with differentiation and may help to identify novel therapeutic targets. Our algorithm represents the first phylogeny-based
tool to analyze the differentiation status of human tumors.
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Introduction

Cancer research has traditionally focused on the identification

of oncogenes and tumor suppressor genes, but in the last decades it

has become increasingly apparent that disruption of normal

differentiation is an important component of tumorigenesis. Lack

of cellular maturation is now recognized as a hallmark of human

cancers [1], and the degree of differentiation of a tumor is

important for diagnosis, prognosis, and treatment. Investigations

of hematopoietic malignancies, for instance, have benefited

considerably from an understanding of the differentiation

hierarchy of hematopoietic cells. The identification of immuno-

phenotypic markers and gene expression profiles correlated with

maturation has enabled researchers to map the expansion of

malignant cells to particular stages of hematopoietic differentiation

[2]. Such characterization has proven invaluable for diagnostic

and prognostic purposes, and continues to provide clues for

pharmacological interventions. Furthermore, the extent of differ-

entiation indicated by the histologic subtype of liposarcoma is the

most important determinant of the clinical outcome for this cancer

type [3–5]. Nevertheless, attempts to categorize solid tumors have

proven difficult due to an incomplete understanding of differen-

tiation pathways from stem cells into mesenchymal and epithelial

tissues. The classifications undertaken so far have been based on in

vitro measurements of genes expressed during the differentiation of

stem cells into mature tissue; this data was then compared to

expression profiles of different tumor subtypes to identify the

maturation stages to which these subtypes correspond [6].

However, such approaches are not yet widely applicable since

the prospective isolation of tissue-specific stem cells has been

possible for only few tissue types, e.g. hematopoietic, mesenchy-

mal, epithelial, and neural tissues ([7] and references therein).

Similarly, in vitro methods of differentiation are available for only a

few histologies [8]. Furthermore, the necessity of an array of

growth factors for in vitro differentiation raises questions about the

similarity of the in vitro model to in vivo processes. Often only a

fraction of cells undergoes differentiation under in vitro conditions,

and currently available methods do not allow isolation of those

cells during the differentiation process from the bulk of unchanged

cells.

An objective categorization of cancers according to maturity

requires a methodology that does not depend on expression data

obtained from in vitro models of differentiation. In this paper, we

develop a novel computational algorithm that assigns a degree of

dissimilarity from stem cells to human cancer subtypes. Our

methodology utilizes gene expression data of tumor subtypes to

construct a phylogenetic tree based on genes differentially

expressed among the subtypes, as well as gene expression data

of stem cells and fully differentiated cells. The resulting phylogeny

provides information about the maturation status of tumor

subtypes and the relationship between them. The results of our

algorithm are conceptually similar to the mapping of cellular

expansion occurring during hematopoietic malignancies to the

differentiation hierarchy of hematopoiesis. Our methodology

allows classification of cancer subtypes according to their

maturation status, to identify genes whose expression correlates

with differentiation, and to discover candidate genes which are

promising therapeutic targets. Our methodology is part of an

increasing literature of mathematical and statistical investigations

of cancer [9–14].
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Results

Phylogenetic tree reconstruction method
Our algorithm uses gene expression data of tumor samples that

have been pathologically classified into subtypes. The expression

data is normalized and then analyzed for differentially expressed

genes, i.e. those genes whose expression in samples from one

tumor subtype differs from the expression in samples from at least

one other subtype. We use these genes to compute the distances

between all pairs of subtypes; the resulting distance matrix is then

used to construct a phylogenetic tree. This construction is repeated

several thousand times using different subsets of genes (of varying

size) to estimate the statistical significance of the branches of the

tree (Fig. 1). We perform a systematic analysis of several methods

and parameters used in our algorithm (see Methods for details).

We find that combining ANOVA and Benjamini-Hochberg with a

p-value of 0.01 gives good and robust results, while the Weighted

Least Squares (WLS) tree reconstruction method works best when

combined with the Pearson correlation matrix. Other combina-

tions of methods give similar results and therefore should be tested

in order to have an accurate understanding of a given dataset.

The phylogenetic tree resulting from this analysis contains

information about the relation among subtypes as well as between

subtypes and the root of the tree. The branching points represent

the ‘common ancestors’ of the subtypes that are situated at the

leaves of those branches. If the tree is rooted with expression data of

a primitive cell type such as embryonic or tissue-specific stem cells,

then the subtypes that are located more closely to the root

correspond to types that are more similar to stem cells while the

subtypes that are located farthest away from the root represent the

most dissimilar types. The order of the branching points along the

differentiation course can be interpreted as the ranking in

Author Summary

Gene expression profiling of malignancies is often held to
demonstrate genes that are ‘‘up-regulated’’ or ‘‘down-
regulated’’, but the appropriate frame of reference against
which observations should be compared has not been
determined. Fully differentiated somatic cells arise from
stem cells, with changes in gene expression that can be
experimentally determined. If cancers arise as the result of
an abruption of the differentiation process, then poorly
differentiated cancers would have a gene expression more
similar to stem cells than to normal differentiated tissue,
and well differentiated cancers would have a gene
expression more similar to fully differentiated cells than
to stem cells. In this paper, we describe a novel
computational algorithm that allows orientation of cancer
gene expression between the poles of the gene expression
of stem cells and of fully differentiated tissue. Our
methodology allows the construction of a multi-branched
phylogeny of human malignancies and can be used to
identify genes related to differentiation as well as novel
therapeutic targets.

Normalize (Bioconductor, rma) 

Compute Distance Matrix (R) 

Construct Tree (Phylip) 
Bootstrapping 
  N = 10,000 

Filter Genes, ANOVA FDR < 0.05 (0.01,…) 

Consensus Tree (Phylip/Dendroscope) 

Calculate Averaged Expression Matrix 

Figure 1. Schematic outline of the methodology. The flow chart shows the main steps of the algorithm used to construct a phylogenetic tree of
tumor subtypes. First, the data is normalized using the Bioconductor software. Then ANOVA is used to identify those genes that are differentially
expressed in at least one tumor subtype; we use a False Discovery Rate (FDR) of less than 0.01. Afterwards, the expression of each differentially
expressed gene is averaged across all samples of each subtype. Those average expression levels are then used to compute the distance matrix of the
subtypes, which is in turn utilized to construct a phylogenetic tree using the Phylip or FastME software. To determine the consensus tree, the
phylogenetic construction is repeated 10,000 times using different sets of differentially expressed genes (of varying number). The consensus tree
produced with this bootstrapping approach is visualized with the Dendroscope software.
doi:10.1371/journal.pcbi.1000777.g001
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dissimilarity of each of the subtypes to stem cells. The differences

between stem cells and tumor subtypes are in part caused by

different differentiation status and in part by the abnormal cancer

phenotype. In some situations, the order of the subtypes dictated by

the tree is not unique, resulting from a non-fully balanced tree. For

instance, more than one subtype can be mapped to exactly the same

point in the ordering according to dissimilarity from stem cells.

Furthermore, the two subtypes farthest away from the root share the

same common ancestor and therefore cannot be distinguished in

their level of dissimilarity. To resolve this conflict, expression data of

a fully differentiated cell type can be included, which unambigu-

ously defines the last branching point in the ranking.

We validate our methodology with three datasets: (i) a dataset

containing gene expression data of acute myeloid leukemia (AML)

samples which are categorized according to the French-American-

British (FAB) classification into classes that mirror maturation

status [2]; (ii) a dataset containing gene expression of breast cancer

samples classified according to estrogen receptor status and Elston

histological grade [15–17]; and (iii) a dataset containing gene

expression data of liposarcoma subtypes which have been analyzed

for their differentiation status by comparing them to an in vitro

differentiation time course [6].

Acute myeloid leukemia (AML) is a clonal disease characterized

by the accumulation of myeloid progenitor cells in blood and bone

marrow [18]. AML results from changes in transcription factor

regulation that lead to a disruption of normal cellular differenti-

ation. AML is classified into seven distinct subtypes depending on

the morphology and differentiation status of tumor cells:

dedifferentiated, myeloblastic, myeloblastic with maturation,

promyelocytic, myelomonocytic, monocytic, and erythroleukemic

AML. According to the FAB classification, these subtypes are

denoted by M0, M1, …, and M6, respectively. Since AML is the

result of alterations of the differentiation process, we validate our

approach with a dataset of gene expression of AML patients.

Our leukemia dataset contains gene expression data of 362

AML patients and of 7 patients with unclassified Myelodysplastic

Syndrome (MDS) (see Methods for details of dataset compilation)

(Table 1). To root the AML tree, we use expression data of human

embryonic stem cells (hESC); additionally, we include expression

data of CD34+ hematopoietic cells from both peripheral blood

(CD34 PB) and bone marrow (CD34 BM), human mesenchymal

precursor cells (hESC MPC), as well as fully differentiated

mononuclear cells from peripheral blood (PB) and bone marrow

(BM). The surface glycophosphoprotein CD34 is expressed on

undifferentiated hematopoietic stem and progenitor cells [19] and

is widely used as a marker for less differentiated hematopoietic

cells. We include these two subgroups as a further test of our

methodology since their differentiation status is known. We use

ANOVA to identify those probe sets that are significantly

differentially expressed in at least one subtype as compared to

all other AML subtypes. The analysis identifies 11,105 probe sets

that are differentially expressed among AML subtypes if a false

discovery rate (FDR) [20] of 0.01 is used. Use of this cutoff would

lead us to expect 111 false positives. If we use the Holm correction

method instead [21], which controls the family-wise error rate,

then the number of differentially expressed probe sets decreases to

4,051 (with 0.01 expected false positives). The inclusion of less

significantly differentially expressed genes is a potential source of

noise; however, high cutoffs for significance discard genes that

could be interesting for further analysis. The tradeoff between

these two effects must be examined carefully to choose an

appropriate cutoff. We decided to use a standard cutoff FDR of

0.01 because the tree topology remains stable for large gene sets,

and also a larger number of potentially interesting genes are

included which can be further filtered with other techniques.

The consensus phylogenetic tree based on this data is shown in

Fig. 2. The order of the branching points of the subtypes coincides

with the differentiation stages specified by the FAB classification:

dedifferentiated AML (the M0 subtype) is located close to the stem

cells while myelomonocytic (M4) and monocytic (M5) AML are

located in the most distant leaves of the tree. The inner branching

of the tree is also in accordance with the differentiation status

suggested by the FAB classification (Table 1). The tree topology

specifying the correct order of myeloblastic and promyelocytic

maturation (M2 and M3), however, only has a moderate bootstrap

value because the two subtypes are very similar in maturity. The

branch leading to the erythroleukemic subtype (M6) is relatively

unstable. This could be attributed to the small number of samples

in this subtype or to a possible misclassification or erroneous

diagnosis. Therefore, the position of this subtype in the tree is less

certain than that of other subtypes; this uncertainty decreases the

bootstrap values of the other branches at which this subtype can be

located. All other branches in the tree are very stable under

bootstrapping. Of central importance for the interpretation of the

results is how well the tree captures the observed relationships in

the data. A good measure of this fit is the average percent standard

deviation of the distances between subtypes in the data compared

to the ones in the tree. The Least Squares algorithm minimizes this

score. For the Pearson correlation distance, the mean observed

average percent deviation is 12.05%, which is a reasonable fit for

this distance measure [22]; hence our algorithm produces a

phylogeny which accurately recapitulates the relationships seen in

the data.

We also apply our algorithm to a breast cancer dataset in order

to study the performance of our method using cancers of epithelial

origin. The samples in our dataset were characterized by

immunochemistry methods according to their estrogen receptor

status (ER+ and ER2) and Elston histologic grade (G1, G2, and

G3). We compile a total of 483 unique samples, among which we

find all combinations of ER status and grade (Table 2). The raw

data is analyzed as described in the methods section. We root the

tree with human mesenchymal stem cells and also include samples

of normal breast [23]. Results are shown in Fig. 3. We find 17,966

probes differentially expressed between the subgroups when using

ANOVA with Benjamini-Hochberg correction and a cutoff value

of 0.01. A negative ER status has been shown to correlate with

poor prognosis [24]. Consistent with this observation, our

algorithm places ER-negative subgroups closer to stem cells,

reflecting the more stem-like properties of these aggressive tumors,

while ER+ tumors are placed closer to the normal breast tissue

Table 1. French-American-British (FAB) classification of acute
myeloid leukemia (AML) subtypes and numbers of samples.

FAB class Name of subtype Number of samples

M0 Dedifferentiated 14

M1 Myeloblastic 78

M2 Myeloblastic with maturation 78

M3 Promyelocytic 29

M4 Myelomonocytic 75

M5 Monocytic 78

M6 Erythroleukemic 10

The table shows the names of subtypes as classified by FAB and the numbers of
samples included in our study (see Fig. 2).
doi:10.1371/journal.pcbi.1000777.t001
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samples. Tumor grades are ordered similarly, placing tumors of

higher grade closer to stem cells. Most trees reconstructed with the

different sets of genes have the same topology (bootstrap values

close to 100%), reflecting a very robust phylogeny. We conclude

that our methodology is also able to accurately rank tumors of

epithelial origin according to maturity.

Next we construct a phylogeny of liposarcoma subtypes.

Liposarcoma is the most common type of soft tissue sarcoma

accounting for about 20% of all tissue sarcomas [25]. In 2008,

10,390 new cases of sarcoma were reported in the US [26].

Surgery is the standard care for localized tumors but leads to worse

prognoses in cases of locally advanced or disseminated disease

[27]. Liposarcomas are classified into three biological types

encompassing five subtypes: (i) well-differentiated/dedifferentiat-

ed, (ii) myxoid or round cell, and (iii) pleomorphic liposarcoma,

based on morphological features and cytogenetic aberrations [28].

Although the subtype is the main determinant of clinical outcome

[3,4,29–31], liposarcomas of similar morphology can differ in

response to treatment and in prognosis [27]. Microscopically well-

differentiated liposarcoma is composed of relatively mature

adipocytic proliferation showing significant variation in cell size

and at least focal nuclear atypia. Histologically dedifferentiated

liposarcoma is represented by the transition from well-differenti-

ated liposarcoma to non-lipogenic sarcoma. Both well-differenti-

ated and dedifferentiated liposarcomas contain characteristic ring

or giant marker chromosomes with 12q14-15 amplification.

Myxoid liposarcomas contain uniform round to oval shaped

hESC
MPC

CD34
BM

CD34
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MDS
AML
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M5
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Branching points from 
differentiation course

Differentiation course
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Figure 2. A phylogeny of acute myeloid leukemia (AML) subtypes. According to the French-American-British (FAB) classification, AML
samples are classified into seven different types according to their level of differentiation (see Table 1). Expression data from 362 AML patients and 7
Myelodysplastic Syndrome (MDS-AML) patients is used to construct a phylogeny of these leukemias. We include expression data of human
embryonic stem cells (hESCs), CD34+ cells from bone marrow (CD34 BM) and peripheral blood (CD34 PB), and mononuclear cells from bone marrow
(BM) and peripheral blood (PB). The differentiation pathway from hESCs to mononuclear cells from peripheral blood is represented in purple, and the
common ancestors of subtypes are shown as pink dots. The bootstrap values of branches are indicated by boxed numbers, representing the
percentage of bootstrapping trees containing this branch. The ranking of AML subtypes identified by the phylogenetic algorithm corresponds with
the differentiation status indicated by the FAB classification. The M6 subtype, represented by only 10 samples in our dataset, has the least stable
branch, leading to lower bootstrap values for those branches where it can alternatively be located.
doi:10.1371/journal.pcbi.1000777.g002

Table 2. Breast cancer subgroups and numbers of samples.

Characterization of subgroup Number of samples

Normal breast tissue (NB CA) 14

ER 2 Grade 3 76

ER 2 Grade 2 27

ER 2 Grade 1 3

ER + Grade 3 84

ER + Grade 2 179

ER + Grade 1 114

The table shows the names of the subgroups contained in the breast cancer
dataset and the numbers of cancer samples as well as healthy tissue samples
included in our study (see Fig. 3).
doi:10.1371/journal.pcbi.1000777.t002
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primitive non-lipogenic mesenchymal cells and a variable number

of small signet-ring lipoblasts in a prominent myxoid stroma.

Round cell tumors are characterized by solid sheets of primitive

round cells with no intervening myxoid stroma. Pleomorphic

liposacoma is a pleomorphic high grade sarcoma containing a

variable number of pleomorphic lipoblasts.

Recently, progress has been made towards a classification of

liposarcoma subtypes utilizing gene expression data. In 2007, a

142-gene predictor was identified which correctly distinguishes

between liposarcoma subtypes and generates a set of differentia-

tion-related genes that may contain candidate therapeutic targets

[27]. In 2008, Matushansky et al. showed that the main

liposarcoma subtypes can be ranked according to their differen-

tiation status by comparing gene expression data of the tumor

subtypes with the genes expressed during normal in vitro

adipogenic differentiation [6]. The ranking generated by the

latter approach is useful for validating our methodology.

Our liposarcoma dataset includes 180 surgical samples that

have been pathologically classified as 61 dedifferentiated, 52 well

differentiated, 26 pleomorphic, 18 round cell, and 23 myxoid

liposarcomas [27,30]. Samples that were likely misclassified were

filtered in previous studies, which is a pre-processing step critical

for the outcome of the algorithm. For an FDR of the ANOVA

filter of 0.01 after correction with the Benjamini-Hochberg

method, we find 13,429 probe sets that are differentially expressed

among the liposarcoma subtypes. Those sets are then used to

construct an unrooted phylogenetic tree. To root the tree, we use

expression data of mesenchymal stem cells and fully differentiated

adipocytes. The resulting consensus tree is shown in Fig. 4a. The

tree topology is stable with bootstrap values larger than 85%.

Based on the consensus tree, the subtypes can be ordered by

increasing dissimilarity from stem cells as dedifferentiated,

pleomorphic, myxoid/round-cell, and well-differentiated liposar-

coma (Fig. 4a). This order coincides with experimental results

based on the gene expression observed during in vitro differenti-

ation published earlier (Fig. 4b) [6]. By setting the p-value

threshold of the Holm correction to 0.01, we obtain 7,290

differentially expressed probe sets; these probe sets generate a tree

topology that is identical to the case described above with

bootstrap values larger than 91.5% (data not shown). When

ER-G3

ER-G2 

ER-G1

ER+G2

ER+G1

Normal
Breast

ER+G3

hESC

hMSC MPC

Bootstrap values (percent)

Branching points from 
differentiation course

Differentiation course

100

99

99

99

98

98
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Figure 3. A phylogeny of breast cancer subgroups. The figure shows the consensus tree of breast cancer subgroups. We use expression data of
483 breast cancer samples subdivided as shown in Table 2. The tree is rooted with expression data of human mesenchymal stem cells (hMSCs). We
also include expression data of fully differentiated normal breast tissue. The differentiation pathway from hESC to fully differentiated breast tissue is
indicated in purple, and the pink dots represent the common ancestors of (sets of) subgroups. The boxed numbers specify the bootstrap values of
branches. The phylogeny ranks the breast cancer subtypes according to their dissimilarity from stem cells as ER2 grade 3, ER2 grade 2, ER+ grade 3,
followed by ER2 grade 1, ER+ grade 2 and ER+ grade 1.
doi:10.1371/journal.pcbi.1000777.g003
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rooting with embryonic stem cells, the branching between

embryonic stem cells and the rest of the tree is less stable since

the expression of embryonic stem cells differs considerably from all

other samples (data not shown). To increase the stability of the

tree, it is preferable to root with an outgroup that is relatively

closely related to the investigated samples (in this case, mesenchy-

mal stem cells; see also the section ‘‘Systematic analysis of methods

and parameters’’) [32]. Again we test how well the tree fits the

distance matrix and observe a mean average percent standard

deviation of 11.3%, which has been reported to be a good fit for

the Pearson correlation distance [22]. Therefore, our methodology

is also able to rank liposarcoma subtypes in the correct order

according to their dissimilarity to stem cells.

Since our methodology correctly ranks leukemia, breast cancer,

and liposarcoma samples according to their differentiation status,

we now investigate a larger number of sarcoma subtypes to

A

B

hMSC MPC

DD

PL

MYX

MRC

WD

NF

Day 3 Day 7 Day 10

21 days in vitro differentiation 

Day 14 Day 21hMSC

Dedifferentiated
liposarcoma

Pleomorphic
liposarcoma

Myxoid/Round
liposarcoma

Well-differentiated
liposarcoma

Fat

Bootstrap values (percent)100 100

100

85

97

Branching points from 
differentiation course

Differentiation course

Figure 4. A phylogeny of liposarcoma subtypes. (a) The figure shows the consensus tree of liposarcoma subtypes. The tree is rooted with
expression data of human mesenchymal stem cells (hMSC), and expression data of normal fat cells is included as well. The differentiation pathway
from hMSC to normal fat cells is represented in purple. The pink points represent common ancestors of (sets of) subtypes. The boxed numbers
specify bootstrap values of branches. The tree indicates that dedifferentiated liposarcoma is most similar to stem cells, followed by pleomorphic,
myxoid, round-cell, and finally well-differentiated liposarcoma. (b) The figure shows a schematic representation of the correlation of adipogenesis to
liposarcoma differentiation. In [6], human mesenchymal stem cells were differentiated in vitro to produce fat cells, and gene expression was
measured for five different time points during the differentiation. The expression data of four different liposarcoma subtypes was then compared to
the data obtained from the differentiation time course. This comparison identified dedifferentiated liposarcoma as the subtype most similar to stem
cells, followed by pleomorphic, myxoid/round-cell, and well-differentiated liposarcoma. The correspondence between the results of our algorithm
applied to gene expression datasets and these experimentally derived results serves as a validation of our methodology. Adapted from [6].
doi:10.1371/journal.pcbi.1000777.g004
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identify their relationship in maturity as well as candidate targets

for therapeutic intervention. The sarcoma dataset includes the 180

liposarcomas discussed above as well as 36 myxofibrosarcomas, 5

pleomorphic malignant fibrous histiocytomas (MFH), 7 lipomas,

and 23 leiomyosarcomas (Table 3) [27,30]. We use expression data

of both mesenchymal stem cells and embryonic stem cells to root

the tree. The consensus tree is shown in Fig. 5. Our methodology

determines that leiomyosarcoma is closest in its differentiation

status to stem cells, followed by MFH and myxofibrosarcoma, and

finally the liposarcoma subtypes (ranked as determined above) and

the benign subtype lipoma. The algorithm also clusters the

subtypes according to tissue of origin, predicting that leiomyosar-

coma branches before all other subtypes, and that MFH and

myxofibrosarcoma have a common ancestor; so do all liposarcoma

subtypes and lipoma. Note that although pleomorphic liposarco-

mas and MFH/myxofibrosarcomas are very similar subtypes at

the level of their genetic copy number aberrations [30], our

algorithm places them in different branches of the tree. This effect

is a result of the phenotype-based nature of our method and is in

accordance with the different tissues of origin of these subtypes.

The tree has a very stable topology with bootstrap values larger

than 0.90 except for the MFH subtype, which exhibits a lower

bootstrap value of 0.60; this value is likely due to the small number

of samples (5) available for this subtype. Note that with the current

dataset, we cannot distinguish between the case in which the

subtype located most closely to stem cells, leiomyosarcoma, is

situated on the adipocytic differentiation path and the case in

which leiomyosarcoma is alternatively located on a branch leading

to fully differentiated tissue of another type. To resolve this

ambiguity, gene expression data of fully differentiated tissue of all

the types giving rise to sarcomas is needed.

We are interested in identifying genes that are related to

adipogenesis, i.e. those genes that correlate with adipocyte

differentiation. To identify such genes, we cluster our list of

differentially expressed genes into a chosen number of groups

depending on their expression pattern in sarcoma subtypes. When

hMSC
MPC

MRC

MYX
WD

Lipoma

NF

MyxFib

LMS

MFH

PL

DD

hMSC

Bootstrap values (percent)100
100

100

99
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Branching points from 
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Figure 5. A phylogeny of sarcoma subtypes. The figure shows the consensus tree of sarcoma subtypes. We use expression data of 251 sarcoma
samples classified into the types shown in Table 3. The tree is rooted with expression data of human embryonic stem cells (hESCs). We also include
expression data of human mesenchymal stem cells (hMSC) and of fully differentiated normal adipocytes. The differentiation pathway from hESC to
fully differentiated adipocytes is indicated in purple, and the pink dots represent the common ancestors of (sets of) subtypes. The boxed numbers
specify the bootstrap values of branches. The phylogeny ranks the sarcoma subtypes according to their dissimilarity from stem cells as
leiomyosarcoma, malignant fibrous histiocytoma, myxofibrosarcoma, followed by the liposarcoma subtypes dedifferentiated liposarcoma,
pleomorphic, myxoid/round-cell, and well-differentiated liposarcoma. Lipoma is identified as the subtype most dissimilar from stem cells.
doi:10.1371/journal.pcbi.1000777.g005

Table 3. Sarcoma subtypes.

Tissue Name of subtype Number of samples

Fat Dedifferentiated 61

Pleomorphic 26

Round-cell 18

Myxoid 23

Well-differentiated 52

Lipoma 7

Smooth Muscle Leiomyosarcoma 23

Fibrous Tissue MFH 5

Myxofibrosarcoma 36

The table shows the number of sarcoma subtypes included in our study (see
Fig. 5).
doi:10.1371/journal.pcbi.1000777.t003
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the subtypes are arranged according to their distance from stem

cells (as indicated by the tree in Fig. 4a), the expression of some

genes continuously increases from the less differentiated to the

more differentiated subtypes, while the expression of other genes

decreases or exhibits more complicated patterns (Fig. 6). We

hypothesize that genes whose expression continuously increases or

decreases are possibly related to gain of the features of

differentiation and loss of stem cell-associated functions, even

though this association with maturation may not be causative. To

test this hypothesis, we compare the genes whose expression

increases or decreases along the order of subtypes to previously

published lists of adipocytic differentiation-specific genes [6,31]. In

these two studies, mesenchymal stem cells were differentiated in

vitro into normal fat cells, and the expression profiles of cells were

measured at multiple time points during the differentiation

process. An investigation of genes whose expression levels changed

statistically significantly along the differentiation time course led to

the identification of 67 and 69 genes, respectively [6,31]. These

genes are thought to be related to adipocytic differentiation.

We rank the genes whose expression increases or decreases

along the liposarcoma subtypes (see Fig. 6 for example clusters)

according to the fold change between their expression in hMSC

and in normal fat. Among the 11,105 probe sets obtained by the

ANOVA filtering with FDR of 0.01 after Benjamini Hochberg

correction, the top 25 genes in this ranking are listed in Table 4.

About 64% of these genes coincide with the published lists [6,31].

These results suggest that our methodology is able to identify

differentiation-related genes from the large number of differen-

tially expressed genes. Additionally to the previously identified

genes, our method identified other genes that have not been

associated with adipocytic differentiation (Table 4). For instance,

the protein phosphatase inhibitor 1 (PPP1R1A) is thought to be
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Figure 6. Clusters of gene expression profiles. The figure shows four example groups of differentially expressed genes clustered according to
their expression profiles (see Methods section for details on the clustering algorithm). On the horizontal axis, we show the liposarcoma subtypes
ordered according to the ranking identified by the phylogenetic approach (see Fig. 4a) and in the vertical axis the corresponding standard normalized
average expression values of the subtypes. We also include human embryonic stem cells (hESCs) and normal fat cells. The expression of some genes
continuously decreases from less differentiated samples (hESC, dedifferentiated liposarcoma, …) to more differentiated samples (…, well-
differentiated liposarcoma, normal fat) (a), while the expression of other genes increases (b). Other genes are overexpressed in just a single
liposarcoma subtype (c) or in a subset of subtypes (d). Those genes whose expression continuously increases or decreases are hypothesized to be
related to adipogenesis (see Table 4).
doi:10.1371/journal.pcbi.1000777.g006
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important in the control of glycogen metabolism and is primarily

expressed in liver cells; the tyrosine kinase NTRK2 is part of a

signaling pathway leading to neuronal differentiation, and the

metabolism related enzyme system ACACB is exclusively

expressed in adipocyte tissue.

Comparison of tree reconstruction methods to other
algorithms

We compare the results obtained from phylogenetic tree

reconstruction algorithms with other methods of data clustering

and organization such as a simple greedy algorithm (in which

subtypes are linearly ordered by their distance from hESC), self-

organizing maps (SOMs), and minimum spanning trees (MSTs) (see

the Methods section for details of the algorithms). When applying

the greedy algorithm to our AML dataset, we find similar results to

those produced by the tree reconstruction analysis (Fig. 7a).

Although the correspondence between the results of this method

and the reconstructed phylogenetic tree is very good, the former

only contain information of a linear organization, as opposed to the

richer information that can be extracted from the tree topology and

branch lengths. An example of a self-organizing map (SOM)

algorithm applied to the AML dataset is shown in Fig. 7b. Subtypes

that are known to be similar are mapped close together on the grid –

e.g. human embryonic stem cells (hESC), mesenchymal stem cells

(MSC), and samples with markers of poor differentiation (BMCD34

and CD34PB). Unfortunately, the overall organization of a SOM

strongly depends on the shape and size of the grid, making it difficult

to interpret the results in a robust and useful way for our purposes.

Finally, we calculate a minimum spanning tree (MST) for the AML

dataset (Fig. 7c). This algorithm accurately reproduces the

reconstructed tree found with our original method, with the

exception of mesenchymal stem cells being placed at the edge of the

tree (instead of embryonic stem cells).

Systematic analysis of methods and parameters
We compare the different methodologies implemented in our

algorithm for each step of the analysis in order to identify those

methods and parameters that perform well in the analysis of our

datasets. We apply our algorithm to all datasets using all

combinations of the following methods and parameters: for

finding differentially expressed genes: ANOVA, Kruskal-Wallis

(KW) and Welch approximation (Welch); two methodologies for

p-value correction: Benjamini-Hochberg (BH) and Holm; two p-

value cutoffs: 0.01 and 0.05; five tree reconstruction and clustering

algorithms: Weighted Least Squares (WLS), Minimum Evolution

(ME), Neighbor-Joining (NJ), FastME, and Average Linkage

(UPGMA); and two distance measures: Pearson correlation and

Euclidean distance. The results of these analyses are shown in Figs.

Table 4. Adipogenesis-related genes.

Gene Symbol Gene Name Fold Change (RMA Log-Ratio)

FABP4ab fatty acid binding protein 4, adipocyte 352.1 (8.46)

LPLab lipoprotein lipase 164.3 (7.36)

ADH1Bab alcohol dehydrogenase 1B (class I), beta polypeptide 150.1 (7.23)

HBA/B hemoglobin 147.0 (7.20)

ADIPOQa adiponectin, C1Q and collagen domain containing 137.2 (7.14)

RBP4ab retinol binding protein 4, plasma 104.0 (6.70)

GOS2b G0/G1switch 85.6 (6.42)

FOS v-fos FBJ murine osteosarcoma viral oncogene homolog 78.3 (6.29)

SORBS1a sorbin and SH3 domain containing 1 72.0 (6.17)

PLINab Perilipin 68.1 (6.09)

PRKAR2Ba PRKAR2B a protein kinase, cAMP-dependent, regulatory, type IIb 53.1 (5.73)

CHRDL1a chordin-like 1 52.0 (5.70)

APODa apolipoprotein D 49.9 (5.64)

PPP1R1A protein phosphatase 1, regulatory (inhibitor) subunit 1A 41.4 (5.37)

GHR growth hormone receptor 41.4 (5.37)

AOC3ab amine oxidase, copper containing 3 (vascular adhesion protein 1) 40.8 (5.35)

CLEC3B C-type lectin domain family 3, member B 38.1 (5.25)

DPTa dermatopontin 37.0 (5.21)

NTRK2 neurotrophic tyrosine kinase, receptor, type 2 36.5 (5.19)

PALMD palmdelphin 34.1 (5.09)

ACACB acetyl-Coenzyme A carboxylase beta 32.2 (5.01)

LEPa leptin 28.8 (4.85)

VWF von Willebrand factor 28.1 (4.81)

TIMP4b TIMP metallopeptidase inhibitor 4 26.7 (4.74)

COL11A1ab collagen, type XI, alpha 1 211.7 (23.55)

The table shows 25 genes (represented by 28 probe sets) whose expression continuously increases or decreases from less differentiated to more differentiated samples
as ranked in Fig. 6. The genes are ordered according to their fold change in expression between mesenchymal stem cells and normal fat cells. These genes are related to
adipogenesis. About 64% of those genes have previously been reported in [6] and [27] (marked with a and b, respectively).
also reported by a Matushansky et al. [6] and b Sekiya et al. [31].
doi:10.1371/journal.pcbi.1000777.t004
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S1, S2, S3, S4. The topologies found among the different

combinations of parameters show that WLS, Pearson correlation,

and BH with a cutoff value of 0.01 perform accurately in

accordance with the AML (Fig. S1), breast cancer (Fig. S2), and

liposarcoma datasets (Fig. S3).

Note that two main assumptions of the UPGMA algorithm are

not fulfilled by cancer subtype data, namely: all species originate

from a common ancestor and they all have evolved at the same

pace. This issue explains why this method fails to reconstruct the

right tree topologies; for example, in all sarcoma UPGMA

topologies (trees 1 and 4 of Fig. S4), some liposarcoma subtypes

branch together with leiomyosarcoma, which is thought to arise

from smooth muscle tissue.

It has been shown in previous studies that, in general, WLS

performs better than NJ when trees have long external or internal

branches (e.g. [33]). Note also that the use of Euclidean distance

leads to less robust results than the use of Pearson correlation when

trees with long branches are considered. For example, when the

Euclidean distance method is applied to the liposarcoma data, the

dedifferentiated and pleomorphic subtypes cluster together with

the well-differentiated subtype and normal fat (Topology 3 of Fig.

S3). The effect of long branches on the Euclidean distance method

becomes even more pronounced when analyzing the sarcoma data

(Fig. S4); in this case, the least common topologies are observed

only when the Euclidean distance method is used. If distant

subgroups (i.e. hMSC and hMSC MPC) are removed from the

analysis, then most parameter combinations including the

Euclidean distance method favor topology 5. This topology was

previously only observed with the Pearson correlation distance (see

Table in Fig. S4, left).

We do not observe a significant influence of the choice of the

method on the identification of differentially expressed genes.

More important for our data is the choice of the p-value cutoff.

For the sarcoma data, conservative p-value cutoffs favor topology

3 while parameter combinations with Benjamini-Hochberg

adjusted p-values seem to favor topology 5 (Fig. S4). The results

of our study suggest that BH with a cutoff of 0.01 is a good

compromise, but we recommend investigating the effects of using

different cutoff values.

In general, all tree reconstruction methods are very fast,

especially since the number of different tumor subtypes in our

analysis is typically limited. So it is possible to test many

parameters in a reasonable time and we recommend doing so.

Discussion

We have presented a rational methodology to investigate the

dissimilarity between cancer subtypes and stem cells. Our
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algorithm that sorts the AML subtypes by their distance to hESC. The algorithm uses the same distances as the ones for the phylogenetic tree shown
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approach uses gene expression data of tumor samples which have

been classified into histological subtypes as well as expression data

of an ‘evolutionary outgroup’ such as embryonic stem cells, tissue-

specific stem cells, and/or fully differentiated normal cells. The

data of tumor subtypes is used to identify the genes that are

differentially expressed among the subtypes, and those genes,

together with data of the outgroup, allows construction of a

phylogeny of cancers. Our algorithm estimates the statistical

significance of the tree branches by bootstrapping, a repeated tree

construction using a varying number of randomly chosen genes.

The distance between the branching points of the tumor subtypes

and the stem cells specifies their dissimilarity, which is caused in

part by differences in maturity, and ranks the subtypes according

to increasing differentiation. This ranking is then used to identify

genes whose expression continuously changes depending on the

degree of maturation.

Our methodology is validated by being able to correctly

reproduce experimental results concerning the relationship in

differentiation status of liposarcoma, breast cancer and AML

subtypes [2,6,18] and concerning genes related to adipocytic

differentiation [6,31]. Our method is useful for identifying genes

that are overexpressed in some tumor subtypes (Fig. 6c). For

instance, genes whose expression is increased in a particular tumor

type but not in normal tissue-specific stem cells and differentiated

cells may represent candidates for targeted therapy, possibly with

lessened side effects. Interestingly, some of the genes found to be

differentially expressed in only one or a few liposarcoma subtypes

can be targeted by currently available drugs. It will be an

important next step to test those genes for a causal role in

tumorigenesis.

In recent years, bioinformatic tools have been widely used to

analyze the vast amount of data produced experimentally. In

analyses of microarray data, simple algorithms for phylogenetic

tree reconstruction, such as Average linkage (UPGMA) [34],

produce rooted bifurcating trees and are routinely applied to

visualize similarities in gene expression. The most prominent

example for this type of analysis are heatmaps, a graphical

representation of the clustered expression matrix where colors

represent the measured gene intensities; a dendrogram is often

added which shows the bifurcating tree best describing the

differences in gene expression [35]. Another important

application of such algorithms is the clustering of tumor sam-

ples for improving or discovering subtype classifications (e.g.

[36]). Other more sophisticated tree reconstruction algorithms

are only rarely applied to expression data [22,37–42]. The

‘molecular clock’ assumption of UPGMA (specifying that

changes occur at a constant rate, [43]) renders this algorithm

inappropriate for our investigation. Other algorithms such as

Maximum Parsimony, Neighbor-Joining (NJ) [44], or Least-

Squares [45] enable us to root the tree and to estimate the

differentiation status of tumor subtypes by a simple compar-

ison of the lengths between the root of the tree and the

branching points of the leaves. We do not use character-based

methods such as Maximum Parsimony due to the necessity of

artificially discretizing the continuous values of gene expression

intensities.

The estimation of evolutionary distances between tumors from

gene expression data is hindered by the fact that small differences

in the biology of tumors may cause large differences in gene

expression. Examples of such situations are given by genes which

trigger the expression of cascades of other genes [40] and

mutational events affecting the expression of several genes [46].

In a recent paper [46], Park et al. proposed the use of correction

methods that estimate mutational distances from the observed

expression distances. This approach represents an interesting new

avenue to further explore in future work.

The phylogeny of tumor subtypes identified by our methodol-

ogy cannot be used to reconstruct the evolutionary history of a

single tumor sample. The fact that dedifferentiated liposarcomas,

for example, branch earlier than well-differentiated liposarcomas

is not to be taken as evidence that one subtype evolved into the

other. Rather, it specifies the dissimilarity of the bulk of tumor cells

between cancer subtypes from stem cells at the time of

observation. Similarly, our methodology cannot be used to

identify the cell of origin of a tumor type. Both the position of a

subtype in a differentiation-based phylogeny and the similarity of a

subtype to an in vitro differentiation time course provide

information about the bulk of tumor cells only; to determine

whether these cells are produced from tumor stem cells which

arose from cells of similar, earlier or more complete differentiation

stages is outside the scope of this approach. Furthermore, the

ability of a phylogenetic tree to reconstruct evolutionary

trajectories when applied to genetic data rests on the assumption

that the genetic material records the evolutionary history of the

system. In the case of phenotypic information such as gene

expression data, this assumption does not hold, and hence any

information about the origin of the investigated cancer subtypes

cannot be obtained.

The generality of our approach and the extensive availability of

high-quality input datasets (e.g. GEO) makes this methodology a

unique tool to investigate differentiation-related genes and the

relationship in maturity of cancer subtypes. The use of data from

patient samples reduces the problems encountered with in vitro

studies regarding the reproducibility of the results in other systems

and their significance to in vivo situations.

Methods

Dataset compilation
We use gene expression data of sarcoma samples from Singer

et al. [27] and Barrentina et al [30]. The gene expression was

measured on Affymetrix U133a oligonucleotide arrays. The

classification in [27] was performed using unsupervised hierarchi-

cal clustering and an SVM-based supervised classification method.

To root the tree, we use expression data of 17 normal fat samples

from the same study as well as expression data of 3 human

embryonic stem cell lines (hESCs) and 3 hESC derived

mesenchymal precursor lines (downloaded from NCBI Geo [47]

accession number GSE7332 [48]). We use gene expression data of

AML [47] patient samples available within GEO (accession

numbers GSE1159, GSE9476 [49], GSE1729 [50], and

GSE12417 [51]). The breast cancer dataset is also compiled from

Microarray data published in GEO with dataset numbers

GSE7390 [16], GSE2990 [15], GSE3494 [17], and GSE9574

[23]. A problem of micrarray meta-analyses is that the different

dataset sources may introduce a bias. We therefore applied

hierachical clustering to the compiled breast cancer dataset and

did not observe a clustering according to the sources.

Statistical methods and analysis
Data preprocessing. The CEL files are normalized and

summarized with the rma function of Bioconductor 2.2 [52–54]. For

the phylogenetic tree construction and mainly as a strategy to

remove potential noise from the data, we only consider genes that

show significant differences in their expression profiles when

comparing tumor subtypes. These differentially expressed genes

are determined with a one-way ANOVA. In addition, our R

scripts support as alternative methods for finding differentially
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expressed genes the Welch approximation (R function oneway.

test(…, var.equal = FALSE)) [55] and the Kruskal-Wallis test

(kruskal.test()) [56]. As default cutoff we choose Benjamini-

Hochberg corrected p-values [20] of 0.01. To obtain a

differentiation baseline, we include expression data of normal

fully differentiated tissue and, as an outgroup for the phylogenetic

tree construction, the expression profile of tissue-specific stem cells.

Pairwise distances of the cancer subtypes and baseline samples are

computed with the Pearson Correlation Distance (d = 1-p) or the

Euclidean Distance of the average group intensities.

Phylogenetic tree reconstruction methods. The phyloge-

netic trees are reconstructed with several distance-based methods.

The fitch program includes the implementations of the Weighted

Least Squares (WLS) [45] and Minimum Evolution (ME) [57]

methods, neighbor provides the Neighbor-Joining (NJ) [44] and

UPGMA algorithms [34]. Both programs are available in the

Phylip package version 3.67 [58]. WLS and ME are methods

designed to find the tree topology that fits the distance matrix best

by optimization. The difference between these two algorithms is

the optimization criterion. WLS minimizes the sum of squares

error of the distances in the tree (dT) compared to the ones in the

distance matrix (d):

X

i,j

(di,j{dT
i,j)

(di,j)
2
:

The denominator thus weighs the deviations of d from dT for

distantly related species less. As we often have very distant in vitro

outgroups in the data, this is an important reason for us to choose

WLS as the default tree reconstruction method. ME uses the same

criterion to fit branch lengths to a given tree topology as WLS, but

returns the topology with the smallest sum of branch lengths, not

the one with the smallest sum of squares error. Another related

method is Balanced Minimum Evolution (BME), implemented in

the FastME program [39]. Both WLS and BME have shown good

performance on microarray data [38]. FastME is orders of

magnitude faster than the Phylip implementation of WLS and thus

suitable for very large datasets. NJ is another computationally very

efficient distance-based tree reconstruction method and also

popular because of its accuracy (e.g. [59]). UPGMA [34] is a

hierarchical clustering algorithm that works in a ‘bottom-up’ way:

at the beginning, all elements form individual clusters which are

consecutively combined until all elements are contained in only a

single cluster. In each iteration, the pair with the smallest distance

is combined into a higher-level cluster and the distance matrix is

updated by calculating the distances to the newly formed cluster.

The strength of the algorithm is twofold: it is computationally very

efficient and it does not depend on the a priori selection of the

number of clusters, in contrast to the k-means or SOMs

algorithms.

Bootstrapping procedure. To assess the statistical signif-

icance of the phylogeny, the reconstruction is repeated 10,000

times with random subsets of the differentially expressed genes.

We draw the bootstrap sample size n from the discrete uniform

distribution on the interval [50, N], where N is the total number of

differentially expressed genes. Then n genes are sampled with

replacement from the set of these N genes. We further bootstrap

the tumor samples to incorporate the uncertainty of tumor

classification. Therefore we sample for each tumor subtype ni

experiments with replacement from the set of the ni experiments of

this subtype. Once a consensus tree is determined, it is rooted and

visualized with Dendroscope version 2.2.2 [60].

Profile clustering. The phylogenetic tree explicitly spec-

ifies the differentiation order in the internal branch nodes. We

then use the order of samples determined by the tree to cal-

culate expression profile clusters with mfuzz [61], a fuzzy c-

means R package commonly used for clustering profiles of time

series. This algorithm is similar to the k-means algorithm and

returns the probabilities that a gene belongs to particular

expression profile cluster. As in the k-means algorithm, the

number of expression profile clusters has to be set in advance

and was set to 20 for the clustering of liposarcoma expression

profiles in Fig. 4.

Comparison of our methodology to other clustering and
dimension-reduction methods

Greedy ordering of subtypes. We use a naı̈ve greedy

algorithm in which subtypes are linearly ordered by their distance

from hESC. The distance calculation and the bootstrapping are

equivalent to the ones used by the phylogenetic tree

reconstruction. Bootstrap values can be interpreted exactly as in

the phylogenetic trees, i.e. peripheral blood samples are positioned

farthest from hESC in all replicates (bootstrap value of 100%),

while M5 is located closest to peripheral blood mononuclear cells

in 82% of the replicates.

Self-Organizing Maps (SOMs) [62]. SOMs are a type of

unsupervised clustering algorithms that map high-dimensional

data into a 2-dimensional grid – typically hexagonal or

rectangular. The number of nodes in the grid must be set in

advance, similarly to the k-means algorithm where the number of

clusters is a predefined variable. The algorithm results in a two-

dimensional map where similar data points tend to cluster

together. SOMs are commonly applied to microarray data to

cluster both genes [63] and tumors [64]. We calculate SOMs with

the original implementation in the SOM_PAK version 3.1 [65] with

the averaged group intensities of all differentially expressed genes

(ANOVA FDR 0.01). We set the topology to hexagonal and

choose the ‘bubble’ neighboring kernel.

Minimum Spanning Trees (MSTs). MSTs are a well-

established concept in graph theory. A spanning tree of a

connected weighted graph G is an acyclic connected subgraph of

G with the same set of vertices as G. A distance matrix can now

be interpreted as a complete graph in which the edge weights

correspond to the distances. The MST is the spanning tree that

connects all vertices of G with the smallest sum of edge weights.

MSTs have been shown to be useful for clustering and

classification of microarray data [66]. For the MST

calculation we use the spantree function of R, which is an

implementation of Prim’s algorithm [67]. We apply this function

to the Pearson distance matrix calculated again with all

differentially expressed genes. A major disadvantage of this

method is the lack of an established algorithm to find consensus

MSTs for the resulting trees after bootstrapping, in contrast to

phylogenetic trees where the availability of a wide range of

methods and implementations makes it easy to summarize

bootstrap results (e.g. [68,69]). Furthermore, there are no

ancestral states (inner nodes) in an MST, as opposed to

phylogenetic trees where subtypes are leaves in the tree and

other nodes are created as ancestral states.

Availability
The R code and the compiled AML dataset are available from

the authors upon request. A user-friendly GUI that supports most

of the methods described in this paper is available as Plugin for

MAYDAY [70].
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Supporting Information

Figure S1 Acute myeloid leukemia (AML) consensus tree

topologies. The trees in this figure correspond to all 38 topologies

of the bootstrap consensus trees of 120 different combinations of

parameters (see Methods for details). Topology 7 is the one

produced by our default parameter combination: ANOVA, BH,

p-value cutoff 0.1 and WLS with Pearson correlation distance

(Fig. 2). The table shows the parameters that return the given

topologies. Topology 7, for instance, is only observed with the

Pearson correlation distance, and topologies 8, 13, 17, 25, 31, 33

and 37 are reconstructed only by the UPGMA algorithm.

Found at: doi:10.1371/journal.pcbi.1000777.s001 (0.64 MB EPS)

Figure S2 Breast cancer consensus tree topologies. The figure

shows the ten different consensus trees we obtain by applying 60

different parameter combinations to the breast cancer dataset. The

tree topologies resulting from the UPGMA algorithm and the

Euclidean distance (2, 4, 5, 7, 8, 9) are unable to identify the right

order of subtypes. The remaining parameters do not have such a

strong effect when using this dataset (Topologies 1, 3, 6, 10):

EP+G1 is always the most differentiated subtype and EP-G3 is

always closest to stem cells. Topologies 1 and 6 are favored by NJ

and FastME, while topology 3 is favored by Fitch and ME.

Found at: doi:10.1371/journal.pcbi.1000777.s002 (0.62 MB EPS)

Figure S3 Liposarcoma consensus tree topologies. This figure

shows the four different topologies of the consensus trees of 120

different parameter combinations. Topology 2 corresponds to our

default parameter combination (Fig. 4a). The table shows that this

topology is not observed when the Euclidean distance is chosen.

UPGMA also never returns this topology. The numbers show that

other parameters have little or no effect on the analysis of this data.

Found at: doi:10.1371/journal.pcbi.1000777.s003 (0.31 MB EPS)

Figure S4 Sarcoma consensus tree topologies. This figure shows

all eight different consensus trees we obtain by applying 120

different parameter combinations to the sarcoma data. Topology 5

is the one produced by our default parameter combination (see

Fig. 5) while topology 3 is the same but with the order of DD and

PL switched. The numbers in the table show again that these

topologies are never observed when the Euclidean distance is

chosen. FastME and NJ favor topology 3 while WLS and ME

favor topology 5. Conservative p-value cutoffs such as Holm 0.01

seem to favor topology 3. Again, UPGMA never produces these

topologies. The choice of the distance measure is the biggest

determinant of the tree topology.

Found at: doi:10.1371/journal.pcbi.1000777.s004 (0.57 MB EPS)
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