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Abstract

Adaptation of the chemotaxis sensory pathway of the bacterium Escherichia coli is integral for detecting chemicals over a
wide range of background concentrations, ultimately allowing cells to swim towards sources of attractant and away from
repellents. Its biochemical mechanism based on methylation and demethylation of chemoreceptors has long been known.
Despite the importance of adaptation for cell memory and behavior, the dynamics of adaptation are difficult to reconcile
with current models of precise adaptation. Here, we follow time courses of signaling in response to concentration step
changes of attractant using in vivo fluorescence resonance energy transfer measurements. Specifically, we use a condensed
representation of adaptation time courses for efficient evaluation of different adaptation models. To quantitatively explain
the data, we finally develop a dynamic model for signaling and adaptation based on the attractant flow in the experiment,
signaling by cooperative receptor complexes, and multiple layers of feedback regulation for adaptation. We experimentally
confirm the predicted effects of changing the enzyme-expression level and bypassing the negative feedback for
demethylation. Our data analysis suggests significant imprecision in adaptation for large additions. Furthermore, our model
predicts highly regulated, ultrafast adaptation in response to removal of attractant, which may be useful for fast
reorientation of the cell and noise reduction in adaptation.
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Introduction

Cells are able to sense and respond to various external stimuli.

To extend the working range of their sensory pathways,

biochemical mechanisms allow for adaptation to persistent

stimulation, resulting in only a transient response. The dynamics

of adaptation are important as they often represent the cells’

memory of previous environmental conditions, directly affecting

cellular behavior [1–7]. Fast adaptation means that cells stop

responding and that their biochemical pathways quickly ‘‘forget’’

the stimulus. In contrast, slow adaptation leads to long-lasting

effects in the cells. The dynamics of adaptation are often difficult

to understand in detail, since they emerge from multiple,

simultaneously occurring processes. In higher organisms, adapta-

tion is best documented in the insect and vertebrate visual system,

where multiple mechanisms adjust the receptor sensitivity to

ambient light levels. For instance, phototransduction in the

vertebrate eye involves up to nine different mechanisms for

adaptation [8]. However, even in the well-characterized chemo-

taxis sensory system in Escherichia coli [9–13], adaptation, in

particular its molecular mechanism and dynamics, is not well

understood. This constitutes a huge deficit as there has recently

been immense interest in the chemotactic behavior of bacteria

[14–18] and noise filtering [17,19,20]. Here, we use adaptation

time-course data from in vivo fluorescence resonance energy

transfer (FRET) measurements and quantitative modeling to

address this problem.

The chemotaxis pathway in E. coli allows cells to sense chemicals

and to swim towards more favorable environments by successive

periods of straight swimming (running) and random reorientation

(tumbling). Transmembrane chemoreceptors, including the highly

abundant Tar and Tsr receptors, cluster at the cell poles and act as

‘‘antennas’’ to detect various attractants (e.g. certain amino acids

and sugars) and repellents (e.g. certain metal ions) with high

sensitivity [21]. Receptors activate an intracellular signaling

pathway, which results in the phosphorylation of diffusible

response regulator CheY (CheY-P) via kinase CheA. CheY-P

binds to the flagellated rotary motors and induces tumbling. For

details of the pathway see the Supplementary Text S1. The

interactions between different proteins in the chemotaxis pathway

during signaling have been well characterized. Specifically, FRET

measurements on the response regulator CheY-P and its

phosphatase CheZ have elucidated the signaling in the chemotaxis

pathway [22–24].

Adaptation in E. coli is based on reversible methylation and

demethylation of receptors at specific modification sites, catalyzed

by enzymes CheR and phosphorylated CheB (CheB-P), respec-

tively. Tar and Tsr receptors have four major modification sites. In

addition, the Tsr receptor has two minor modification sites which

are methylated less strongly [25]. Receptor modification regulates
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the receptor activity and provides a recording of experienced

concentration changes [16,26,27]. As a consequence, the rate of

tumbling was found to adapt precisely for different ligand

concentrations [28,29]. To achieve the return of the receptor

activity to its pre-stimulus value, receptor activity-dependent

phosphorylation of CheB provides a negative feedback on the

receptor activity. In addition, the rates of methylation and

demethylation depend on the receptor activity [30–32], repre-

senting further layers of feedback regulation. To modify receptors,

CheR and CheB molecules can bind to a specific tether sequence

at the carboxyl-terminus of Tar and Tsr receptors, and act on

several nearby receptors, so-called assistance neighborhoods [33].

This is believed to compensate for the low numbers of CheR and

CheB (hundreds of molecules) [34], although larger numbers have

been reported [35].

Although a lot is known about the components of the

chemotaxis pathway, several open questions remain to be

answered in adaptation. (i) Despite their importance for cell

behavior, memory and noise filtering, the dynamics of adaptation

and the methylation level are largely unknown. This is because the

methylation level is difficult to measure precisely, relying on

quantification of receptor protein and radioactively-labeled

methylation substrate (methionine) incorporated into receptors

[25,36–38]. So far, only the initial rate of adaptation was inferred

from the rate of change in motor bias in response to saturating

amounts of added attractant [29]. (ii) The molecular mechanism of

adaptation, in particular demethylation, remains unclear. While

CheR binds strongly to the tether, suggested to increase its

concentration in the vicinity of methyl-accepting sites [39], the

binding affinity of CheB was found to be very low [40]. Instead,

binding of CheB-P to the tether induces an allosteric activation of

the receptor, increasing the demethylation rate [40]. Furthermore,

while the receptor activity-dependence of the methylation and

demethylation rates is believed to be a requirement for robust

precise adaptation (see below), it is not known if adaptation is

precise at the receptor level. Time-course data from in vivo FRET

experiments, monitoring receptor activity upon stimulation, is

ideally suited to study the adaptation dynamics and address these

questions.

Extensive mathematical modeling has described different

aspects of the chemotaxis pathway. However, modeling has

mainly focused on explaining the initial response to addition of

attractant, as well as precise adaptation, i.e. the complete return of

the signaling activity to pre-stimulus level long after the stimulus.

Briefly, the Monod-Wyman-Changeux (MWC) model was used to

successfully describe the signaling of two-state receptor complexes,

formed by 10–20 strongly interacting receptor dimers [24,41–44].

In this model, receptor-receptor coupling provides a mechanism

for signal amplification and integration. Alternative receptor

models are outlined in the Discussion. Furthermore, Barkai and

Leibler showed that precise adaptation is robust (insensitive to

parameter variations in the pathway), if the kinetics of receptor

methylation depends only on the activity of receptors and not

explicitly on the receptor methylation level or external chemical

concentration [45]. Their idea was later extended by others,

providing conditions for precision [46,47], as well as robustness to

noise by the network architecture [48] and assistance neighbor-

hoods [42,49]. Most recently, adaptation to exponential ramps

and sinusoidal concentration changes was investigated [20].

However, none of these studies have directly compared to

adaptation time-courses from FRET.

Here, we use in vivo FRET data obtained from cells adapted to

ambient concentrations of attractant a-methylaspartate (MeAsp; a

non-metabolizable variant of amino acid aspartate) and stimulated

in a flow chamber by various concentration step changes [23].

Recording the average initial response amplitudes for each added

and, after adaptation, removed concentration step change results

in dose-response curves (Fig. 1, symbols). We use a dynamic

version of the MWC model, which, in addition to mixed

complexes of Tar and Tsr receptors, includes a more detailed

description of the adaptation dynamics than used in previous

models of chemotaxis. Specifically, we predict multiple layers of

feedback regulation during adaptation, especially for demethyla-

tion by CheB. In addition, we take into account the kinetics of

attractant flow in FRET experiments. This allows us to

quantitatively describe dose-response curves (Fig. 1, lines), in

particular the observed reduced response amplitudes for removal

of MeAsp, which previously could not be explained by the MWC

model (Inset). To analyze the adaptation dynamics, we use the data

collapse, a condensed representation of time courses. This data

collapse enables us to evaluate the effect of ligand flow and

adaptation imprecision, to infer the kinetics of the receptor

methylation level, as well as to efficiently compare adaptation

models from the literature to experimental data. Finally, we

experimentally test two predictions to validate our adaptation

model. We change the adapted receptor activity, and use a non-

regulatable CheB mutant to bypass its negative feedback on the

receptor activity. Our combined study of experiments and

modeling shows that adaptation is relatively imprecise at the

receptor level for large stimuli, and that demethylation is more

tightly regulated than previously thought. This leads to very short

tumbles for sudden occurrences of unfavorable conditions,

allowing cells to quickly reorient their swimming direction after

a short tumble.

Results

Dynamic MWC model for in vivo FRET response
Our dynamic MWC model, described in the following,

combines the previously used MWC model for receptor signaling

by strongly-coupled receptor complexes (denoted here by static

Author Summary

Bacterial chemotaxis is a paradigm for sensory systems,
and thus has attracted immense interest from biologists
and modelers alike. Using this pathway, cells can sense
chemical molecules in their environment, and bias their
movement towards nutrients and away from toxins. To
avoid over- or understimulation of the signaling pathway,
receptors adapt to current external conditions by covalent
receptor modification, ultimately allowing cells to chemo-
tax over a wide range of background concentrations. While
the robustness and precision in adaptation was previously
explained, we quantify the dynamics of adaptation,
important for cell memory and behavior, as well as noise
filtering in the pathway. Specifically, we study the
intracellular signaling response and subsequent adapta-
tion to concentration step changes in attractant chemicals.
We combine measurements of signaling in living cells with
a dynamic model for strongly coupled receptors, even
including the effects of concentration flow in the
experiment. Using a novel way of summarizing time-
dependent data, we derive a new adaptation model,
predicting additional layers of feedback regulation. As a
consequence, adaptation to sudden exposure of unfavor-
able conditions is very fast, which may be useful for a quick
reorientation and escape of the cell.

Chemotactic Response and Adaptation Dynamics
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MWC model), with the dynamic effects of adaptation by receptor

modification, as well as ligand concentration flow. In the static

MWC model, mixed receptor complexes composed of Tar

(aspartate receptor) and Tsr (serine receptor, which also binds

aspartate with lower affinity) are considered in their in vivo ratio.

Using a two-state assumption, the activity of a receptor complex is

given by its probability to be in on (active), which depends on the

free-energy difference F~Fon{Foff between its on and off

(inactive) state [41,43],

A:pon~
e{Fon

e{Fonze{Foff
~

1

1zeF
: ð1Þ

This free-energy difference, F m,cð Þ, is determined by two

contributions, one from methylation (in terms of receptor

methylation level m) favoring the on state, and one from attractant

binding at MeAsp concentration c favoring the off state. The free-

energy difference F also depends on several parameters such as

free-energy difference per added methyl group, the number N of

receptor dimers in a complex, as well as the ligand dissociation

constants Kon
a(s) and Koff

a(s) for Tar (Tsr) receptors in their on and off

states, respectively. Most of these parameters were determined

previously (see Materials and Methods). Similar free-energy based

two-state models were recently used to describe clustering of ion

channels [50] and small GTPases in eukaryotic cells [51]. In the

new dynamic MWC model, we include the effects of variable

receptor complex sizes, adaptation dynamics, and MeAsp con-

centration flow on the initial response to concentration changes.

The dependence of the receptor complex size on the ambient

concentration and hence methylation level was determined as

follows: First, the receptor complex size was obtained for each

ambient concentration using a least-squares fit to addition dose-

response curves (see Fig. 2A and Materials and Methods). Consistent

with previous modeling results, we find that the receptor complex

size increases with increasing ambient concentration [41,52]. As

the simplest assumption, we used a linear relationship between

receptor complex size and ambient concentration (Fig. 2A),

allowing us to interpolate the receptor complex size for removal

dose-response curves. Analyzing the signaling pathway of E. coli,

we also found the phosphorylation reactions are sufficiently fast to

assume that concentrations of phosphorylated (and unphosphory-

lated) proteins are in quasi-steady state. Furthermore, the

concentrations of activated proteins are approximately propor-

tional to the receptor complex activity. Both these conditions allow

us to use the receptor complex activity as a substitute for the down-

stream activity measured by FRET reducing the number of model

parameters for fitting to data greatly (see Supplementary Text S1).

This approximation was also used in previous work, but was never

explicitly tested [41–43].

Adaptation occurs on a similar time scale as the kinetics of the

MeAsp concentration flow. In experiments, changes in MeAsp

concentration are established over several seconds, due to the

finite flow speed and mixing effects in the flow chamber. In our

model, we assume exponentially rising and falling concentration

changes upon addition and removal in line with previous

measurements by Sourjik and Berg (Fig. 2B) [23]. Adaptation is

mediated by methylation and demethylation enzymes CheR and

CheB, respectively. The process is described by the kinetics of the

average receptor methylation level m in a receptor complex,

dm

dt
~gR 1{Að Þ{gBA3, ð2Þ

where the adapted receptor-complex activity A� is determined by

the steady-state condition dm=dt~0~gR 1{A�ð Þ{gBA�3. Ac-

cording to our model, receptors are methylated when the complex

is inactive, and demethylated when it is active. Furthermore, we

postulate a very strong sensitivity of the demethylation rate on

activity, possibly due to cooperativity of CheB-P molecules. This

mechanism explains the strong asymmetry, which is observed in

experimentally measured time courses (cf. Fig. 2C) where

adaptation of inactive receptors (methylation) is slow compared

to the rapid adaptation of active receptors (demethylation). Hence,

during a concentration step change the initial response amplitude

of receptor complexes is reduced by simultaneous adaptation,

which is particularly important for removal of concentration (see

Fig. 2B Inset). Note that the asymmetry between slow adaptation of

inactive and active receptors, respectively, cannot simply be

changed by adjusting the rate constants of methylation and

demethylation individually, since they are constrained by the

adapted activity A�. For details of this adaptation model see

Materials and Methods, and for a potential molecular mechanism of

demethylation, see Discussion.

Experimental dose-response curves (Fig. 1, symbols) describe

the initial response of adapted wild-type cells to sudden changes

(addition and removal) in MeAsp concentration [23]. These

responses are taken from time courses measured by in vivo FRET

(cf. Fig. 2). Additional, previously unpublished dose-response

curves are provided in the Supplementary Text S1. For details of

the experiments see Material and Methods. Our dynamic MWC

Figure 1. Response of wild-type cells to step changes Dc of
MeAsp concentration at different ambient concentrations.
Dose-response curves: Symbols represent averaged response from
FRET data (WT1) after adaptation to ambient concentrations 0, 0.1, 0.5
and 2 mM as measured by Sourjik and Berg [23] (filled and open circles
correspond to response to addition and removal of attractant,
respectively). Solid lines represent the dynamic MWC model of mixed
Tar/Tsr-receptor complexes including ligand rise (addition) and fall
(removal), as well as adaptation (receptor methylation) dynamics. (Inset)
Dose-response curves for MWC model without adaptation dynamics
(lines). FRET and receptor complex activities were normalized by
adapted pre-stimulus values at each ambient concentration. Squared
errors between model and experimental data for the four dose-
response curves shown are 0.64 (dynamic MWC model) and 3.95 (static
MWC model), respectively. For comparison, fitting to eight addition and
removal dose-response curves using Kon

a(s), Koff
a(s), as well as a linear

function N c0ð Þ as fitting parameters, yields squared errors 0.83
(dynamic MWC model) and 2.09 (static MWC model), see Supplemen-
tary Text S1.
doi:10.1371/journal.pcbi.1000784.g001

Chemotactic Response and Adaptation Dynamics
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model, which includes the effects of adaptation and MeAsp flow,

quantitatively describes the experimental dose-response curves.

Specifically, adaptation leads to a non-saturated response for large

MeAsp step changes Dc at high ambient concentrations, which is

not seen in the static MWC model without adaptation dynamics

(Fig. 1 Inset). Note, however, that responses eventually do saturate

according to the dynamic MWC model for even larger

concentration step changes due to the presence of Tsr receptors

(at 0.5 mM ambient for Dcw40mM; not shown). The dynamic

MWC model describes the dose-response data significantly better

than the static MWC model, as indicated by their overall squared

errors in the caption of Fig. 1, as well as residual errors detailed in

the Supplementary Text S1. The receptor-complex activity, as

well as FRET data were normalized by their adapted pre-stimulus

values at ambient concentration to compare model and experi-

mental data (see Materials and Methods).

Data collapse of time courses for adaptation dynamics
The short-term behavior in the time-course data (Fig. 2C) is

essential in deriving our adaptation model, used to quantitatively

describe dose-response curves (Fig. 1). Can our adaptation model also

describe the long-term behavior in the time-course data, and hence

the complete adaptation dynamics? Our model for precise adaptation

predicts that the observable rate of activity change is given by

dA

dt
~

LA

Lm

dm

dt
z

LA

Lc

dc

dt
, ð3Þ

where the rate of change of the methylation level dm=dt is described

by Eq. 2, and dc=dt is the rate of change of the MeAsp concentration.

After a concentration step change, the MeAsp concentration is

constant with dc=dt~0, and the rate of activity change is given by

dA

dt
~

LA

Lm

dm

dt
~A 1{Að ÞN

2
gR 1{Að Þ{gBA3
� �

:f Að Þ, ð4Þ

where we used that LA=Lm~ LA=LFð Þ LF=Lmð Þ~A 1{Að ÞN=2

(see Material and Methods). Hence, the rate of activity change is a

function f Að Þ of the activity only, independent of ligand concentra-

tion and receptor methylation level (except for the minor dependence

of the receptor complex size on the ligand concentration, see

Supplementary Text S1). This predicts a data collapse of all

adaptation time courses, independent of the duration, size and

number of concentration step changes, onto a single curve

dA=dt~f Að Þ (Fig. 3A, thick gray line). This non-monotonous

function of the activity has three fixed points: the adapted activity

A~A�, where methylation and demethylation rates exactly balance

each other, as well as A~0 and A~1, where the receptor complex

activity is saturated in the off and on state, respectively. Figure 3A Inset

shows the experimental rate of activity change as extracted from our

quantitative time-course data from FRET for different concentration

step changes at an ambient concentration. We observe that, in

contrast to the prediction of the model, the rate of activity change

depends on the magnitude of the concentration step changes. For

addition of large concentration step changes (blue symbols), the rate is

reduced and the activity stays below the pre-stimulus value.

Furthermore, for total removal of MeAsp concentration (replacement

with buffer medium, green symbols), the magnitude of the rate is

reduced and the activity remains above the pre-stimulus value.

To explain the deviations from the predicted data collapse, we

consider the effects of MeAsp flow and imprecise adaptation in our

model. According to Eq. 3, each of the two effects contribute

independently to the rate of activity change. First, we include the

MeAsp flow for concentration step changes as described, and

simulate time courses based on the precise adaptation model

(Fig. 3A, solid lines). We find that in the demethylation regime

(negative rate of activity change), the kinetics of concentration step

removal gives rise to minor deviations from the curve f Að Þ in

qualitative agreement with experiment. However, in the methyl-

ation regime (positive rate of activity change), unlike the

experimental data, all time courses lie accurately on the f Að Þ
curve. Next, we consider imprecise adaptation, i.e. the incomplete

return of the activity to pre-stimulus level, which is apparent in the

time courses (Fig. 2C and Supplementary Text S1 for quantifi-

Figure 2. Model ingredients. (A) Size of adapted receptor complex N (total number of Tar and Tsr receptors per complex) as function of ambient
concentration c0 (corresponding to adapted methylation level m). Individual complex sizes (symbols) were obtained by fitting MWC model to dose-
response curves for addition of MeAsp. These values were fitted by a linear function (line). (A Inset) Energy contribution to receptor complex free
energy from methylation level m per receptor dimer. Shown are fitting parameters for Tar receptors from [41] (symbols), as well as linear fit
e mð Þ~1{0:5m (in units of kBT with kB the Boltzmann constant and T absolute temperature). (B) Profile of concentration step change as measured
experimentally using fluorescent marker (solid black line) [23], exponential fit used in dynamic MWC model for WT1 MeAsp profile (gray line; rate
constants ladd~0:6=s and lrem~0:5=s), and perfect step change (black dashed line). Addition and removal times are marked by arrows. (B Inset)
Response of mixed receptor complex to MeAsp removal for perfect (black dashed line) and exponentially fitted step change (gray line). (C) Typical
time courses of receptor complex activity in response to two different MeAsp concentration step changes, Dc~0:05 mM (top) and Dc~0:4 mM
(bottom), at ambient concentration c0~0:1 mM. Experimental FRET measurement (thin black line), as well as dynamic MWC model for precise (gray
lines) and imprecise adaptation (black lines; mmax~4:1 and K~0:5). FRET and receptor complex activities were normalized by adapted pre-stimulus
values before addition of MeAsp.
doi:10.1371/journal.pcbi.1000784.g002

Chemotactic Response and Adaptation Dynamics
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cation). In our model for imprecise adaptation, Eq. 7 in Materials

and Methods, the kinetics of the methylation level dm=dt depends

explicitly on the receptor methylation level, which leads to

significant deviations from the data collapse (Fig. 3A, dashed

lines). Adaptation after addition of increasing concentration step

changes results in a reduced adapted receptor complex activity

(adapted activity after removal is always the same as the

concentration is the ambient concentration). Total removal of

MeAsp concentration (buffer) results in an increased adapted

activity. Our imprecise adaptation model is in line with the

experimental data, showing that the data collapse is an effective

way to compare experimental and theoretical time courses and to

quantify the effects of ligand flow and imprecise adaptation. We

also studied the effect of changes in receptor-complex size on the

data collapse, which we found to be minor for the concentrations

considered here (see Supplementary Text S1). In addition to the

adaptation dynamics, the data collapse allows us to determine the

kinetics of the receptor methylation level, which is difficult to

measure directly. Figure 3B shows the rate of change of the

methylation level as a function of the receptor complex activity for

experimental data, as well as the dynamic MWC model. The data

and curves were obtained by dividing the rate of activity change

dA=dt following concentration step changes by A 1{Að Þ. If the

activity change is caused only by the adaptation dynamics, this

procedure yields a function proportional to the rate of change of

the methylation level, dm=dt. According to our precise adaptation

model Eq. 2, the rate of change of the methylation level is a

monotonically decreasing function of activity with one steady state,

marking the adapted receptor complex activity (Fig. 3B, thick gray

line). Corresponding to the rate of activity change in Fig. 3A, the

kinetics of ligand flow upon concentration step changes, as well as

imprecise adaptation result in deviations from this curve. As

before, we mainly find signatures of imprecise adaptation in the

experimental data in Fig. 3B Inset.

Comparison of different adaptation models
The data collapse of experimental time courses enables the

efficient evaluation of different adaptation models, including our

model and other models from the literature (Fig. 4A). All models

considered here show precise adaptation with the rates of

methylation and demethylation only depending on the receptor

complex activity, and the explicit activity dependencies given

respectively by the first and second term in the legend of Fig. 4.

For instance, the first model (solid red line) is given by Eq. 2. Two

classes of models are analyzed here. The first class of models,

including our model, is based on a linear activity-dependence of

the methylation and demethylation rates for binding of CheR and

CheB to inactive and active receptor, respectively. Feedback from

the activity-dependent phosphorylation of CheB is accounted for

by additional factors of the receptor complex activity. Our model

includes cooperative CheB feedback (solid red line), while linear

CheB feedback (dashed red line) and no CheB feedback (dotted

red line) are considered as well [15,42,49,53]. Another class of

models has been proposed, showing ultrasensitivity with respect to

CheR and CheB protein levels. In these models, the activity-

dependence of the methylation and demethylation rates for

enzyme binding is described by Michaelis-Menten kinetics, and

linear CheB feedback (solid blue line) and no CheB feedback

(dashed blue line) is considered [17]. The last model has the

property that the rate of change of methylation level becomes

independent of activity around the steady-state, leading to

extremely long adaptation times. Details of the alternative

adaptation models and the fitting procedure are given in the

Supplementary Text S1. While several models are consistent with

Figure 3. Adaptation dynamics as function of receptor activity for WT1 at ambient concentration c0~~0:1 mM for addition and
subsequent removal of small (red lines and symbols) and large (blue lines and symbols) MeAsp concentration step changes, as well
as removal of MeAsp back to zero ambient concentration (buffer; green lines and symbols). (A) Rate of change of receptor complex
activity dA=dt as occurs during adaptation. Thick gray line is the analytical result from the dynamic MWC model, where activity change is purely from
adaptation (methylation) dA=dt~ dA=dmð Þ dm=dtð Þ~f Að Þ. Colored lines show results from simulated time series for small (Dc~0:03 mM) and large
(Dc~0:4 mM) concentration step changes in MeAsp concentration, with activity dynamics recorded starting 10 s after the onset of concentration
step change. Precise (solid lines), as well as imprecise adaptation (dashed lines; mmax~4:1 and K~0:5) are considered. (A Inset) Rate of FRET activity
change from experimental time-course data. Small (Dc~0:03 mM) and large (Dc~2 mM) concentration step changes. (B) Rate of change of the
methylation level dm=dt corresponding to panel A (normalized by adapted activity A� and C~N=2, where N is the receptor complex size). Effective
rate of change of methylation level for all time courses is obtained by dA=dtð Þ= A 1{Að Þ½ �. (B Inset) Effective rate of change of methylation level from
experimental time-course data. FRET and receptor complex activities, as well as activity rate changes were normalized by adapted pre-stimulus
activities at ambient concentrations before addition of MeAsp.
doi:10.1371/journal.pcbi.1000784.g003

Chemotactic Response and Adaptation Dynamics
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the experimental data, our model compares most favorably. The

ultrasensitive Michaelis-Menten model without CheB feedback

seems not to be consistent with the data. Comparing simulated

time courses for the different adaptation models in Fig. 4B, our

model is best to capture the experimentally observed asymmetry

between adaptation to addition and removal of concentration step

changes. The quality of fit between the respective models and data

is indicated by their least-squares errors in the caption of Fig. 4.

Predictions
To further validate our adaptation model, we experimentally

tested two predictions. First, in our precise-adaptation model the

data collapse depends strongly on the steady-state activity. For

instance, increasing the steady-state activity from A�&1=3 to 1/2

changes the data collapse from the solid to the dashed red line in

Fig. 5A. Such an increase in the steady-state activity can be

achieved by decreasing CheB expression level, corresponding to a

decreasing demethylation rate, at constant CheR expression level.

To validate this prediction, a different wild-type strain (WT2) was

created, in which CheB expression was induced from a plasmid,

while all other chemotaxis proteins were expressed as before

(WT1). The steady-state activity was estimated to be A�&1=2
(compared to 1/3 in WT1). For details of the strains, see Materials

and Methods. The data collapse (Fig. 5A, orange circles) corresponds

well to the predicted curve (dashed red line). Second, the activity-

dependence of the demethylation rate is diminished according to

Eq. 6 when considering adaptation without feedback through

activity-dependent CheB phosphorylation, while keeping the

steady-state activity constant (Fig. 5C, green line). To validate

this prediction, a mutant strain was created, which contains non-

regulatable CheB with about 10 percent of CheB-P activity. The

CheB expression level was increased to produce the kinase activity

of WT2 (A�&1=2). All other chemotaxis proteins are expressed as

in WT2 cells. We find that the experimental rate of FRET-activity

change from time-course data (green squares) is consistent with

this prediction.

The statistical significance for each of the two predictions

(Fig. 5A and C) was tested as follows: For each prediction, we

randomly permuted a number of data points from the control

experiment and the prediction-testing experiment. Then we

calculated the distribution of squared errors between the rates of

activity change from the model and FRET measurement for the

permuted data sets (Fig. 5 B and D). For four permuted pairs of

data points the error is always above the error for the unpermuted

data sets (Fig. 5). For fewer permutations the error lies at the lower

bound of the distribution (not shown). This confirms that the

control and prediction-testing data sets are significantly different

and match our model.

Discussion

Sensing and adaptation are fundamental biological processes,

enabling cells to respond and adjust to their external environment.

Adaptation extends the range of stimuli a sensory pathway can

respond to, while its dynamics determines how long a stimulus will

affect the cell’s behavior. In this work, we developed a model to

quantitatively describe experimental dose-response curves, as well

as time courses of chemotaxis signaling in adapting wild-type cells.

Our model includes (i) the signaling activity of two-state mixed

chemoreceptor complexes in response to added or removed

attractant concentration step changes based on the Monod-

Wyman-Changeux model, (ii) the kinetics of the ligand concen-

tration in the flow chamber, and (iii) a detailed mechanism for

adaptation, including multiple layers of feedback regulation and

imprecise adaptation. In particular, we find that the finite ligand

flow speed and fast, activated demethylation explains for the first

time the gradually reduced amplitudes in removal dose-response

curves for increasing ambient concentrations (Fig. 1). Our adap-

Figure 4. Comparison of different adaptation models. (A) Rate of activity change during adaptation as a function of activity for FRET data
(WT1; symbols) and different adaptation models (colored lines). Experimental FRET activity change is measured at ambient concentration c0~0:1 mM
for added and subsequently removed concentration step changes Dc = 0.03, 0.05, 0.1, 0.4 and 2 mM. For the five models, the dependencies of the
methylation and demethylation rates on the receptor complex activity A are given in the legend and are explained in the text. Models were fitted to
the experimental dA=dt data using a least-squares fit, where the methylation rate constant gR was the only fitting parameter. The demethylation rate
gB was determined to produce the adapted activity A�&1=3. The parameters K1 and K2 were converted from [17]. (B) Representative time courses
for the different models in panel A for a concentration step change Dc~0:1 mM at ambient concentration c0~0:1 mM. FRET and receptor complex
activities, as well as activity rate changes were normalized by adapted pre-stimulus activities at ambient concentrations before addition of MeAsp.
Least-squares errors between experimental data and model in panel A are 0.0021 [1{A,A3], 0.0022 [1{A,A2], 0.0025 [1{A,A], 0.0025
[ 1{Að Þ= 1{AzK1ð Þ,A2

�
AzK2ð Þ], and 0.0036 [ 1{Að Þ= 1{AzK1ð Þ,A= AzK2ð Þ].

doi:10.1371/journal.pcbi.1000784.g004
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tation model introduces a strong receptor-activity dependence of

the demethylation rate, and hence is able to reproduce the

observed asymmetry of slow adaptation to addition of attractant

and fast adaptation to removal of attractant (Fig. 2C). Such

dynamics yields long runs up the gradient and short tumbles,

sufficient for random reorientation of the cell and escape from

potential toxins. Furthermore, this strong activity dependence has

the additional benefit of reducing the fluctuations in receptor

methylation level introduced by the adaptation mechanism itself.

We found for the total variance of the receptor-complex

methylation level SdM2T~0:87 compared to 2 for a previous

model for precise adaptation with weaker activity dependence

(details of the calculation can be found in the Supplementary Text

S1). This is because a fluctuation in the receptor methylation level

leads to an increased change in activity and hence increased rate

to return to the adapted activity.

Our model for precise adaptation predicts the data collapse of

adaptation time-courses, allowing the convenient study of the

adaptation dynamics (Fig. 3A). Specifically, the data collapse

allows to evaluate the effects of ligand flow and adaptation

dynamics, as well as imprecise adaptation. We found that

adaptation to large concentration step changes is significantly

imprecise (see Supplementary Text S1 for further details). We also

extracted the kinetics of the receptor methylation level dm=dt from

Figure 5. Effects of (A) steady-state activity and (C) CheB regulation by phosphorylation. (A) Black and orange dots correspond to the
rate of FRET activity change from experimental time-course data for WT1 (Fig. 4) and for WT2 (addition and subsequent removal of concentration
step change Dc~0:03 mM at zero ambient concentration), respectively. Red lines correspond to the predicted rate of activity change dA=dt~f Að Þ
purely from adaptation (solid and dashed lines correspond to steady-state activities A�&1=3 and 1=2, respectively). The methylation rate constant
gR~0:0019 s{1 is the same in each case. Dotted lines indicate bins used to quantify the difference between data sets in panel B. (B) Distribution of
squared errors x2

� �
between predicted rate of activity change and experimental data sets for WT1 and WT2, when randomly permuting 104 pairs of

data points between the data sets, one pair chosen within each bin in panel A. The error is calculated as the sum of errors for each data set (including
the permuted data points) against its respective model. The error of the unpermuted data sets is indicated by the arrow. (C) Green squares represent
the rate of FRET activity change from experimental time-course data for CheB mutant (addition and subsequent removal of concentration step
changes Dc~0:03 mM and 0.1 mM at zero ambient concentration). The green line represents the rate of change of receptor complex activity purely
from adaptation. Orange dots and red dashed line are the same as in panel A. Dotted lines indicate bins used to quantify the difference between data
sets in panel D. (D, left) Distribution of data points of the rate of activity change for activities above A~1:1 WT2 and CheB mutant data in panel C. (D,
right) Distribution of squared errors between predicted rate of activity change and experimental data sets for WT2 and CheB mutant, when randomly
permuting 104 pairs of data points between the data sets, one pair chosen within each bin in panel C. The error is calculated as the sum of errors for
each data set (including the permuted data points) against its respective model. The error of the unpermuted data sets is indicated by the arrow.
doi:10.1371/journal.pcbi.1000784.g005
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experimental time courses from the data collapse (Fig. 3B), which

is difficult to measure directly when relying on the quantification of

the receptor methylation level using standard biochemical

methods [25,36]. According to our model, the activity-dependence

of the receptor methylation level is a monotonously decreasing

function of the receptor complex activity. Ultimately, this kinetics

determines the compromise between long memory of previous

concentrations and quick recovery for sensing new concentration

changes [14]. Furthermore, we experimentally tested two

predictions to validate our adaptation model. We analyzed the

effect on the adaptation dynamics when changing the adapted

receptor activity, as well as introducing a non-regulatable CheB

mutant to remove the negative feedback from phosphorylation of

CheB by the kinase CheA. In both cases, our model is consistent

with experimental measurements (Fig. 5), supporting the finding of

multiple layers of feedback regulation in adaptation.

While the MWC model is relatively well established [24,41–44],

we also considered alternative models for receptor signaling. These

include a phase-separation model with mixed complexes separat-

ing into homogeneous complexes of Tar and Tsr at high ambient

concentrations, as well as a lattice model with finite coupling

between neighboring receptors (see Supplementary Text S1).

Lattice models were previously suggested [54,55], including a

lattice formed by coupled CheA molecules [56], but were found to

be inconsistent with FRET data [57]. We found that the dynamic

MWC model describes dose-response curves far better than the

alternative receptor signaling models investigated, particularly the

reduced response amplitudes upon removal of attractant. Fur-

thermore, the data collapse we introduced in this paper enabled us

to compare different adaptation models proposed in the literature

with FRET time-course data (Fig. 4). We found that while several

models are consistent with the data, our model compared most

favorably with the data.

We chose a simple model for adaptation with very few fitting

parameters to explain the observed asymmetry in adaptation time-

courses, i.e. slow adaptation to addition and fast adaptation to

removal of attractant. Compared to the static MWC model, there

are minor discrepancies between our model and experimental

addition dose-response curves (Fig. 1). However, these can be

rectified by refitting the dynamic MWC model by adjusting

adaptation rates and receptor complex size simultaneously (see

Supplementary Text S1), or by choosing an adaptation model with

a more complex activity dependence. It should also be noted that

adaptation rates needed to accurately describe dose-response

curves are larger than those found when fitting the adaptation

dynamics to the data collapse. This discrepancy may in part be

due to using only a single set of experimental data for the data

collapse, while dose-response curves were averaged over at least

three sets. In addition, more complex processes not taken into

account in our simple adaptation model, e.g. limited supply of

substrate (methionine) for methylation, or the binding and

unbinding kinetics of ligand, may be important for describing

the dynamics.

Although our adaptation model is independent of biochemical

details, our predicted fast demethylation at high activities may be

due to cooperativity of two CheB-P molecules. According to in vitro

experiments, CheB-P binding to the carboxyl-terminus of

chemoreceptors induces an allosteric activation of the receptor,

increasing the demethylation rate [40]. However, in contrast to

CheR, CheB-P binds only weakly to the tether [40]. Reconciling

these two observations, it is conceivable that two CheB-P

molecules are necessary for efficient demethylation at high

activities: one CheB-P molecule may bind to a tether to

allosterically activate a group of receptors (assistance neighbor-

hood), while another CheB-P molecule demethylates the receptors

in the neighborhood. As two CheB-P molecules are not required

to bind to the same receptor, this mechanism is not contradicted

by the small number of CheB molecules in a cell. An alternative,

simpler mechanism for cooperativity is dimerization of CheB-P

molecules, which, however, has not been observed experimentally

[22,58].

Our adaptation model likely also applies to attractants other

than MeAsp, since the dynamics of adaptation only depend on the

activity of receptor complexes, independent of the details of

external ligand concentration. According to the MWC model,

different attractants (or their mixture) are integrated at the level of

the free-energy of a receptor complex, which determines its

activity. However, the imprecision of adaptation we found in

FRET time courses at large MeAsp concentrations is in contrast to

earlier experiments, which showed that the frequency of tumbling

adapts precisely to aspartate, but not serine [28,29]. The

imprecision in adaptation to serine is readily explained if the

number of Tsr receptors is larger than the number of Tar

receptors per complex, since the available receptor methylation

sites in a complex are more quickly used up in response to serine

binding to Tsr receptors [42,49]. However, the ratio of Tar and

Tsr per complex is strongly dependent on the growth conditions,

making a definitive conclusion difficult [59]. Future experiments

may show if the imprecision observed in adaptation to MeAsp in

FRET is reflected also in the tumbling frequency, or if imprecise

adaptation is compensated for in order to yield perfect adaptation

at the behavioral level.

Materials and Methods

Strains
Two different wild-type strains of E. coli were used. Wild-type

strain 1 (WT1) is VS104 D(cheY cheZ) that expresses the FRET

pair consisting of CheY-YFP (YFP; yellow fluorescent protein) and

its phosphatase CheZ-CFP (CFP; cyan fluorescent protein) from a

pTrc-based plasmid pVS88, which carries pBR replication origin

and ampicillin resistance and is inducible by isopropyl b-D-

thiogalactoside (IPTG) [23]. Wild-type strain 2 (WT2) is VS124

D(cheB cheY cheZ) transformed with pVS88 and pVS91, which

carries pACYC replication origin and chloramphenicol resistance

and encodes wild-type CheB under control of pBAD promoter

inducible by L-arabinose. The CheB-mutant strain is VS124

D(cheB cheY cheZ) transformed with pVS88 and pVS97, which is

identical to pVS91 except it encodes the non-regulatable

CheBD56E. The D56E mutation was introduced into CheB by

PCR. It prevents CheB phosphorylation, but allows protein to

retain basal level of activity. Cells were grown at 275 rpm in a

rotary shaker to mid-exponential phase (OD600&0:48) in tryptone

broth (TB) medium supplemented with 100 mg=ml ampicillin,

34 mg=ml chloramphenicol, and 50mM IPTG. WT and CheB

mutant strains were induced by 0 and 0.0003% arabinose,

respectively, to produce comparable kinase activity (as assessed by

the change in the level of FRET upon saturating stimulation). The

CheB protein level was estimated using Western blots with CheB

antibodies, and was at approximately 0.5-fold (WT2) and

approximately 5-fold (CheBD56E mutant) the native level of CheB.

FRET measurements
The experimental procedures follow those detailed by Sourjik

and Berg [23]. Cells were tethered to a cover slip, and placed in a

flow chamber. Cells were subject to a constant fluid flow of buffer

or MeAsp at indicated concentration (flow speeds 1000 ml=min for

WT1, and 500 ml=min for WT2 and CheB mutant, respectively).

Chemotactic Response and Adaptation Dynamics
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Concentration step changes were achieved by abruptly switching

between buffer and MeAsp, or different MeAsp concentrations.

Fluorescence resonance energy transfer (FRET) between excited

donor, CheZ-CFP, and acceptor, phosphorylated CheY-YFP, in a

population of 300–500 cells was monitored using an epifluores-

cence microscopy setup. Emission light from CFP and YFP was

collected and their intensity ratio R was used to calculate the time-

dependent number of interacting FRET pairs of CheZ-CFP and

phosphorylated CheY-YFP in the cell population, which reflects

the intracellular kinase activity [23]. The number of FRET pairs

normalized by its adapted pre-stimulus value (after adaptation to

the ambient concentration, but before concentration step

changes) was calculated from the ratio R according to R{R0ð Þ=
DY=DCð Þ{R½ �

�
Rpre{R0

� ��
DY=DCð Þ{Rpre

� �� �
[23]. The

parameters R0 and Rpre are the ratio for a saturating dose of

attractant and the pre-stimulus value, respectively, both of which

are measured in each experiment. The fluorescence efficiency

ratio DY=DC is determined by the experimental setup [60], and

was 0.43 (DY=DC~2:3) for WT1 (WT2 and CheB mutant)

experiments. FRET measurements were taken with a time

resolution of 0.2 s (1 s) for WT1 (WT2 and CheB mutant).

Static MWC model
This model describes the response of adapted mixed receptor

complexes to instantaneous MeAsp concentration step changes

[24,43,44]. According to this model, the activity of a mixed

receptor complex is given by A~ 1zexp Fð Þ½ �{1
, where

F~N e mð Þznaln
1zc

�
Koff

a

1zc
�

Kon
a

 !
znsln

1zc
�

Koff
s

1zc
�

Kon
s

 !" #
ð5Þ

is the free-energy difference between the on and off states of the

complex. The indexes a and s denote Tar and Tsr receptor,

respectively. We assumed fractions of Tar and Tsr in a complex

according to their wild-type ratio, na : ns~1 : 1:4. The ligand

dissociation constants for MeAsp are Kon
a ~0:5 mM,

Koff
a ~0:02 mM, Kon

s ~106 mM, and Koff
s ~100 mM [43]. The

free-energy contribution e mð Þ is attributed to methylation, and

was recently extracted from dose-response curves for mutants

resembling fixed methylation states [41]. We used the interpolat-

ing function e mð Þ~1{0:5m (for data and fit see Inset of Fig. 2A).

All energies are measured in units of kBT (kB being the Boltzmann

constant and T the absolute temperature). Exponential rate

constants for the ligand flow were obtained from fits to ligand flow

profiles (cf. Fig. 2B), with ladd~0:6 s{1 and lrem~0:5 s{1 for flow

speed 1000 ml=min, and ladd~0:27 s{1 and lrem~0:28 s{1 for

flow speed 500 ml=min. The receptor complex size N was

estimated from least-squares fits to individual addition dose-

response curves corresponding to specific ambient concentrations

(and therefore adapted methylation levels). Note that complex size

for removal may be different for each data point as cells are

adapted to the increased concentration after each step change.

The complex size grows with ambient concentration [41,52] in a

roughly linear fashion, N c0ð Þ~a0za1c0 with a0~17:5 and

a1~3:35 mM{1. Both, individually fitted N values, as well as

the fitting function N c0ð Þ, are shown in Fig. 2A. We assumed an

adapted receptor complex activity A�~1=2:9&0:34 for WT1 as

assessed from the maximum and minimum values of the

experimental dose-response data in Fig. 1. Steady-state activities

for WT2 and CheB mutant were estimated to be A�&1=2. For

comparison of model and data, we normalized the receptor-

complex activity for WT1, WT2 and CheB mutant by their

respective activities when adapted to ambient concentration.

Precise adaptation
The dynamic MWC model combines the static MWC model

with a dynamical model for adaptation. In our model for precise

adaptation, the rate of change of the average receptor methylation

level m is given by (Eq. 2)

dm

dt
~gR 1{Að Þ{gBA3:

The methylation and demethylation rates do not depend directly on

the concentration of MeAsp or the methylation level, only on the

receptor complex activity A. Such dynamics leads to precise

adaptation of the receptor complex activity to adapted level A� for a

constant MeAsp stimulus [42,45]. This model takes into account the

receptor-activity dependence of the methylation and demethylation

rates, as well as additional layers of feedback regulation for

demethylation by CheB, including the activation of demethylation

enzyme CheB by phosphorylation and potential cooperativity

between phosphorylated CheB molecules. For Fig. 1–3, we

determined the demethylation rate gB~0:11 s{1 from a least-

squares fit to addition and removal dose-response curves (WT1)

using the receptor complex size N c0ð Þ from the static MWC model.

The methylation rate gR~0:0069 s{1 is given by the condition that

at steady state (dm=dt~0) the activity equals A�. The fit to the data

collapse in Fig. 4 resulted in gR~0:0019 s{1 (and gB~0:030 s{1),

used in Fig. 4 and 5 for WT1. For WT2 in Fig. 5A, we used the same

methylation rate constant as for WT1, but adjusted the demeth-

ylation rate constant to account for the increased adapted activity

A�. For the CheB mutant in Fig. 5C, the rate of change of the

average receptor methylation level m is predicted to be

dm

dt
~gR 1{Að Þ{~ggBA, ð6Þ

where we assume that the methylation rate is the same as for wild-

type cells. The demethylation rate constant ~ggB~gBA�2~gB=4
includes the basal activity of non-phosphorylatable CheB. Hence,

the only dependence of the demethylation rate on receptor complex

activity is due to binding of CheB to active receptors.

Imprecise adaptation
We incorporate the effect of imprecise adaptation, as suggested

by time courses (cf. Fig. 2C), by making methylation and

demethylation rates for wild-type cells (WT1) depend on the

methylation level [49]

dm

dt
~gR

mmax{m

mmax{mzK
1{Að Þ{gB

m

mzK
A3: ð7Þ

The parameter mmax is the maximum number of methylation sites

per receptor, K is the lower bound for the number of sites, which

need to be available for efficient methylation or demethylation.

We use mmax~4:1 to only allow Tar (not Tsr) receptors to become

methylated (the total number of methylation sites of a receptor

homodimer being 8). Further, we use K~0:5 to implement

reduced efficiency of methylation or demethylation at a low

number of available sites. Figure 2C shows time courses for

adaptation to two concentration step changes using the precise and

imprecise adaptation model (gR and gB are the same in both

models). The imprecise adaptation model fits the time courses

shown far better. However, there is a large variability of

imprecision seen in different data sets and more experiments are

needed to produce a general model of imprecise adaptation.

Chemotactic Response and Adaptation Dynamics

PLoS Computational Biology | www.ploscompbiol.org 9 May 2010 | Volume 6 | Issue 5 | e1000784



Rate of activity change
To calculate the rate of activity change, the time courses for

adaptation to step concentration changes were smoothed by

averaging every 20 subsequent data points starting approximately

10 s after the step onset. The derivative dA=dt was approximated

by the difference quotient.

Supporting Information

Text S1 Supplementary information.

Found at: doi:10.1371/journal.pcbi.1000784.s001 (0.52 MB PDF)
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