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Abstract

With relatively low efficiency, differentiated cells can be reprogrammed to a pluripotent state by ectopic expression of a few
transcription factors. An understanding of the mechanisms that underlie data emerging from such experiments can help
design optimal strategies for creating pluripotent cells for patient-specific regenerative medicine. We have developed a
computational model for the architecture of the epigenetic and genetic regulatory networks which describes
transformations resulting from expression of reprogramming factors. Importantly, our studies identify the rare temporal
pathways that result in induced pluripotent cells. Further experimental tests of predictions emerging from our model should
lead to fundamental advances in our understanding of how cellular identity is maintained and transformed.
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Introduction

Cellular states are plastic, and even terminally differentiated
cells (e.g., B-cells) can be reprogrammed to pluripotency by ectopic
expression of selected transcription factors [1,2,3,4,5,6,7]. This
finding raises the possibility of creating patient-specific stem cells
for regenerative medicine [8]. However, reprogramming efficien-
cies range from 0.0001% to 29% [5,6,9,10], with most reports
showing that successful induction of the pluripotent state is rare
even if all required factors are present [11,12]. The genetic and
epigenetic regulatory mechanisms that make reprogramming
possible, and determine its efficiency, are poorly understood [2].
Elucidating these mechanistic principles can help define optimal
strategies for reprogramming differentiated cells, and answer
fundamental questions regarding how cellular identity is main-
tained and transformed.

In spite of recent progress, our knowledge of the identities and
functions of the genes and proteins involved in regulating the
transformation of cellular identity is grossly incomplete [2,13,14].
Thus, it is not yet possible to construct a detailed molecular
mechanistic description of how epigenetic modifications and
expression of master regulatory genes are controlled. However,
ectopic expression of the same transcription factors can reprogram
different cell types [1,6,12], and the genetic and epigenetic
transformations observed during reprogramming of diverse
differentiated ~ cells  share = many  common  features
[2,11,15,16,17,18,19]. These common observations can be the
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basis for developing a conceptual understanding of the general
architecture of the genetic and epigenetic networks that regulate
transcription factor induced reprogramming and establish cellular
identity during differentiation.

We have taken a step toward this goal by developing a
computational model that is consistent with, and suggests general
mechanistic explanations for, empirical observations of transcrip-
tion factor induced reprogramming. The model makes experi-
mentally-testable predictions. If validated, descendents of this
model could also provide insights into the aberrant de-differen-
tiation events which characterize some of the most malignant
cancers.

Results

Model development

Elegant theoretical models for the molecular regulatory
networks responsible for stem cell renewal and differentiation
and the population dynamics of these processes have been created
[20,21,22,23,24]. Our goal is different. We aim to develop a model
for the architecture of coupled epigenetic and genetic networks
which describes large changes in cellular identity (e.g., induction of
pluripotency by reprogramming factors). Although the general
principles of interactions between genetic and epigenetic layers of
regulation have been described [25,26], no computational model
has been developed to study the outcomes of such interactions and
their biological consequences. Such a computational model would
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Author Summary

Most cells in an organism have the same DNA. Yet,
different cell types express different proteins and carry out
different functions. These differences are reflected by cell
epigenetics; i.e, DNA in different cell types is packaged
distinctly, making it hard to express certain genes while
facilitating the expression of others. During development,
upon receipt of appropriate cues, pluripotent embryonic
stem cells differentiate into diverse cell types that make up
the organism (e.g., a human). There has long been an
effort to make this process go backward— i.e., reprogram
a differentiated cell (e.g., a skin cell) to pluripotent status.
Recently, this has been achieved by overexpressing
specific transcription factors in differentiated cells. This
method does not use embryonic material and promises
the development of patient-specific regenerative medi-
cine. The mechanisms that make reprogramming rare, or
even possible, are poorly understood. We have developed
the first computational model of transcription factor-
induced reprogramming. Results obtained from the model
are consistent with diverse observations, and identify the
rare pathways that allow reprogramming to occur. If
validated by further experiments, our model could be
further developed to design optimal strategies for
reprogramming and shed light on basic questions in
biology.

be a useful complement to experiments in understanding the
processes that occur during reprogramming of differentiated cells,
and why reprogramming is rare. Here, we propose, to our
knowledge, the first computational model that describes how
cellular identity changes by creating a mathematical description of
interactions between epigenetic and genetic networks. Our goal is
not to describe the details of how specific regulatory proteins
interact, but rather, to understand general principles underlying
how cellular states evolve upon ectopic expression of certain types
of genes. The concise model we have developed explains why
reprogramming probability is low, and makes experimentally
testable predictions.

Almost all cells in a multi-cellular organism share the same
DNA sequence. Yet, different cell types express distinct genes and
perform different functions. Epigenetic modifications are major
regulators of cell-type specific gene expression. They function by
packaging DNA into configurations that allow only some genes to
be expressed, while other genes are tightly packed into
heterochromatin structures that hinder access of most transcrip-
tion factors [27]. Changes in cellular identity during developmen-
tal differentiation or transcription factor induced reprogramming
require modification of the epigenetic state of the cell. The
maintenance and alteration of cellular identity is regulated by a
complex set of interactions between developmentally important
genes, chromatin modifiers, transcription factors etc., the details of
which remain unknown. Toward developing a model for the
architecture of these complex regulatory networks we consider
only the developmentally important genes. For simplicity, each
ensemble of genes responsible for maintenance of a particular
cellular identity (e.g., Oct4, Sox2, etc., for pluripotency) is
described as a single module (Fig. la). Theoretical justification
for treating genes that control the embryonic stem (ES) cell state as
a collective unit exists [28]. We also carried out some studies with
each module consisting of a small number of genes (see
corresponding discussion below).

ES cells can differentiate into various lineages. Upon further
differentiation, cells become more restricted. For example,
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hematopoetic stem cells can differentiate into T' and B-lympho-
cytes, but not neural cells. Therefore, in our model, we arrange
gene modules in a hierarchy (Fig. 1a). Although each cell state can
potentially differentiate into many branches, without loss of
generality, we consider two branches to emanate from each cell
state. Thus, the cellular states are arranged on a Cayley tree. In
our model, a cell state (Fig. 1b) is specified by: 1] the state of the
epigenome, and ii] the expression levels of master regulatory
genes.

Specification and regulation of the epigenome. The
epigenome is specified by chromatin states. Histones with
positive marks (e.g. H3K4me3) promote transcription, and
histones with negative marks (e.g. H3K27me3) repress
transcription  [29,30]. Hypermethylated genes are also silent
[17,31]. Genes associated with both H3K4me3 and H3K27me3
simultaneously (bivalent marks) can recruit promoters, but
transcription is  suppressed [32,33,34]. Based on these
observations, in our model, each developmentally important
gene module can adopt one of three possible epigenetic states. It
can be silent either due to negative histone marks or DNA
methylation (denoted as the “—1” state), marked positively by
histone marks (denoted as the “+1” state), and marked bivalently
(denoted as the “0” state). From the standpoint of gene expression,
each module can be either actively transcribing (denoted as the
“+1” state) or not (denoted as the “0” state).

During interphase, DNA with genes packaged in a way
characteristic of the cell’s identity manages gene transcription
and protein synthesis. Before cell division, the chromosomes
condense. During telophase at the end of mitosis, the prevailing
protein environment could alter the chromatin states of deconden-
sing chromosomes in a daughter cell, thereby modifying the
epigenetic state of its DNA [15,35]. We divide the cell cycle into
two parts (Fig. 2). During phase one (termed interphase, for ease of
reference), the epigenetic state cannot be modified and gene
expression 1s subject to this constraint. In phase two (termed
telophase, for ease of reference), the epigenetic state can
potentially be altered by the protein environment established
during the preceding interphase.

Chromatin state maps show that the ES state is characterized by
an unusually large proportion of bivalent chromatin marks on
developmentally important genes [19,32,36]. Therefore, we define
the ES state as one where the gene module controlling this state
(expressing Sox2, Oct4, etc.) is in the open chromatin state and all
other master regulator genes are bivalently marked (Fig. 1b, left
panel). Since the identities of all master-regulatory genes are not
yet experimentally available, it should be noted that bivalency of
all master-regulatory modules in the ES state is an assumption that
extrapolates available knowledge to yet unidentified modules.

It is known that, as cells differentiate from the ES state,
bivalently marked genes remain bivalent, acquire a positive mark,
or are silenced by negatively marked histones or methylation
[19,32,36]. Other than pluripotent ES cells, upon receiving
appropriate cues, a cell state can only differentiate into other
states in the same lineage. Upon differentiation from the ES state
positive histone marks are removed at an earlier stage compared to
silencing of genes by DNA methylation, and reactivation of DNA
methylated genes 1s more difficult than those with negative histone
marks (summarized in Table 1). These facts are encapsulated in
our model by the following rules regarding how proteins expressed
by a particular gene module can modify epigenetic states during
telophase (Fig. 3b): 1] They favor putting positive marks on the
module that expresses them, which enables stable maintenance of
cellular identity. 2] They favor putting negative histone marks on
the modules regulating the immediate progenitor or an immediate
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Figure 1. Specification of the genetic and epigenetic states that describe cellular states. (a) Only the master-regulatory genes that govern
cell state are arranged in a hierarchy (house keeping, stress-response and many other genes are not considered). Each node of the hierarchy
represents an ensemble of master-regulatory genes that govern a particular cellular state. For example, genes in the top node are known master-
regulators of the embryonic stem cell state (e.g. Oct4, Sox2, Nanog). When a cell is in the ES state, only these three genes will be expressed while
other genes will not. Similarly, when a cell is fully differentiated, genes in one of the bottom modules will be expressed but not any other gene in the
network. Each master-regulatory ensemble can contain many genes, only three are shown in each node. Green and blue balls above the links indicate
that not only master regulatory proteins but also other proteins such as chromatin modifiers and housekeeping genes mediate interactions between
modules of master-regulators. (b) Fig. 1a has been coarse-grained such that only master-regulatory modules (nodes in fig. 1a) are shown. Cellular
identity is determined by both epigenetic (chromatin marks, DNA methylation) and genetic (expression profile) states. Examples of two states (ES
state and “left” pluripotent progenitor) are shown. For each example, two lattices are needed to describe the state of gene expression and the
epigenome: top lattice reflects the expression levels of master-regulatory proteins in the ES/progenitor state and bottom lattice reflects the

epigenetic state of master-regulatory genes in the ES/progenitor state.
doi:10.1371/journal.pcbi.1000785.g001

“sibling” in the hierarchy; this hinders differentiation into cells in
competing lineages and accidental de-differentiation to the
progenitor. 3] They favor putting bivalent histone marks on the
modules that regulate immediate progeny, which keeps cells poised
to differentiate. 4] They favor methylation of all modules that
regulate cell states in competing lineages or less differentiated
states in the same lineage. This has a similar effect as the marking
of histones in rule 2.

Rules 1-3 are based on experimental facts, and concern how
proteins expressed by a gene module can affect the histone marks
of only modules that regulate its immediate precursor, immediate
progeny (see Fig. 3b), or other states to which its precursor can
differentiate (i.c., “nearest neighbors” on the hierarchy of gene
modules shown in Fig. 1a).

Rule 4 states that proteins expressed by a gene module favor
silenced chromatin state of gene modules that are distal from it in
the hierarchy by DNA methylation (Fig. 3b). Although there are
no experimental measurements showing that methylation of
unrelated lineages is directly caused by master-regulatory genes
of current cell state, this rule is motivated by the global DNA
methylation of genes of unrelated lineages observed upon cell
differentiation [16,17] and the fact that global DNA hypomethyla-
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tion blocks differentiation [37]. To further investigate the effect of
such long-range interactions, we have perturbed the formulation
of rule 4 in different ways. We find that unless the long-ranged
nature of rule 4 is included, the in silico reprogramming trajectories
exhibit features which are inconsistent with experimental obser-
vations. In particular, stable expression of protein products of the
ES master-regulatory module becomes possible within the first
reprogramming cycle, in contradiction with the observation that
endogenous Oct4 is expressed shortly before completion of
reprogramming after at least 12 days of action of reprogramming
factors (see, for example Fig. 2 in [2] and references therein). Our
computational results are also inconsistent with this observation if
we allow proteins expressed by a module to put bivalent marks on
all modules that regulate states in the lineage that are below it,
rather than just the immediate progeny (rule 3 above).

Specification and regulation of gene expression. In our
model, gene expression during interphase is subject to
constraints imposed by the epigenetic marks as follows

(summarized in Table 1): 1'] if a gene module is positively
marked, its expression is favored. Expression of bivalently
marked gene modules is not favored, but it is not as strongly
suppressed as modules that are negatively marked or DNA
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Figure 2. Simplified model for progression through the cell cycle. The cell cycle is divided into two generalized phases: called interphase and
telophase for simplicity. Gene expression occurs during the interphase, while cell division and associated processes occur in the telophase. In the
interphase gene expression profile is governed by the stable epigenetic marks on the master-regulatory genes. In the telophase, however, protein
environment can change the epigenetic marks of the master-requlaory genes, particularly when DNA is decondensing after cell division.
Differentiation signals (newly expressed proteins) determine future epigenetic marks created during telophase due to the action of the new protein
environment. The color code representing genetic and epigenetic states is the same as in Fig. 1.

doi:10.1371/journal.pcbi.1000785.9002

methylated (see Eq. 3 in Methods). 2"] Diverse experimental
data [38,39] show that, due to effects such as feedback
regulation, etc., expression of genes from competing lineages
is mutually repressed. For example, GATA-1, erythroid lineage
specific gene, and PU-1, transcription factor for genes of
myeloid lineage are among the most studied master-regulatory
genes. They posses typical properties attributed to the master-
regulators in this manuscript: they enhance their own expression
[40,41] and mutually antagonize each others’ activity
[20,38,42]. We thus impose such mutually repressive
interactions to gene modules that regulate directly competing
cellular states (i.e., nearest neighbors in the hierarchy in Fig. 3a).

interphase and telophase (details in text).

Rules 14 (summarized in Table 1) noted above are meant to
describe how the epigenetic state is maintained and how it could
evolve due to protein products of signaling events or ectopic
expression of transcription factors. During telophase, there could
be a “tug of war” between the epigenetic state preferred by newly
expressed proteins and that preferred by proteins expressed in
accord with the preceding epigenetic state [35]. Similarly, rules 1’
and 2’ could lead to a tug of war between expression of different
genes. Our computations reveal possible outcomes of these battles.

The epigenetic modifications during telophase or gene expres-
sion patterns during interphase are simulated on a computer using
a Monte-Carlo algorithm, with rules 1-4 and 1’2" represented as

Table 1. Summary of the rules governing interactions between genetic and epigenetic networks during the two phases labeled

During Interphase:

During Telophase: proteins expressed by a gene module...

(1) if a gene module is positively marked, its expression is favored.
Expression of bivalently marked gene modules is not favored, but it is
not as strongly suppressed as modules that are negatively marked or
DNA methylated

(2") Diverse experimental data [38,39] show that, due to effects such as
feedback regulation, etc., expression of genes from competing lineages
is mutually repressed.

(1) ... favor putting positive marks on the module that expresses them, which enables
stable maintenance of cellular identity (2) ... favor putting negative histone marks on
the modules regulating the immediate progenitor or an immediate “sibling” in the
hierarchy

(3) ... favor putting bivalent histone marks on modules regulating immediate
progeny (4) ... favor methylation of all modules that regulate cell states in competing
lineages or less differentiated states in the same lineage

doi:10.1371/journal.pcbi.1000785.t001
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Figure 3. Rules that govern interactions within epigenetic and genetic networks. (a) During interphase, gene expression profiles of master-
regulatory modules are established. Gene expression is influenced by epigenetic marking of the corresponding gene and interactions between
expressed proteins. Two rules reflect this in our simulation: 1) when master-regulatory gene is in epigenetically marked positively, it favors expression
of the corresponding protein; 2) when two (three) neighboring genes are in epigenetically open states, they all favor expression of corresponding
proteins, but due to their mutually repressive action (see text) only one of two(three) genes are expressed. Which gene is expressed is chosen
stochastically. (b) During the telophase, the protein environment can alter the epigenetic marks on the master-regulatory genes. Epigenetic marks on
both neighboring and distant genes in the hierarchy can be altered. Long-range effect is typically mediated through DNA methylation which
epigenetically silences all of the master-regulatory genes of unrelated lineages and also ancestral states (see text). Short-range interactions affect
nearest-neighbors differentially: progenies master-regulatory genes are preferentially put into bivalent states while progenitor and competing
lineage modules are epigenetically silenced. The color code representing genetic and epigenetic states is the same as in Fig. 1. The numbers
corresponding to the rules are the same as in text and Table 1.

doi:10.1371/journal.pcbi.1000785.g003

effective Hamiltonians (Egs. 2-3, Methods). We specify the initial
epigenetic state of the cell or the proteins that have been expressed

module regulating the ES state favor putting positive chromatin
marks on gene modules regulating immediate progenies if LIF, etc.

in the previous interphase (including signaling products and
ectopic expression of transcription factors). If the gene expression
pattern is specified, simulation of telophase results in an epigenetic
state that becomes the input for simulation of the next interphase,
and so on (see Methods).

Differentiation

ES cells are cultured in specific media (e.g., containing LIF/
BMP4 for mouse ES cells) to prevent differentiation [43]. The
medium inhibits a self-induced differentiation pathway. We

represent this feature by assuming that proteins expressed by the
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are absent. Simulations of this situation show (Fig. 4) that, as in
experiments [2], ES cells differentiate randomly to one of their
progeny.

Our model exhibits robust differentiation (forward program-
ming) to specific cell states when the appropriate cues are
delivered. Appropriate cues are expression of proteins (e.g.,
signaling products) that become available during interphase. In
the next telophase, these proteins favor putting positive histone
marks on the gene module regulating the appropriate progeny of
the current cellular state (rule 1). Results from our computer
simulations (Fig. 4 in Text S1) demonstrate that our model exhibits
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Figure 4. Changing cellular identity during self-initiated differentiation of the ES cell-state. Process begins with cell division where
regulatory modules of progenies are put into epigenetically open states. In phase 2 only one of the three neighboring proteins can be actually
expressed in accord with Fig. 3a. Thus, one of three possibilities is realized: self-renewal, and differentiation to the “left” or “right” lineages. In the
absence of external stimuli, in our simulations, there is an equal chance to observe each outcome. Simulations are performed with parameter values
F=2000; J=3000; G=25; H=40; a=0; b=0.3. The color code representing genetic and epigenetic states is the same as in Fig. 1.

doi:10.1371/journal.pcbi.1000785.9004

high-fidelity responses to such differentiation cues. This is
consistent with the experimental observation that overexpression
of the master-regulatory genes of desired lineage leads to
predominant differentiation in that direction [44,45]. This result
is relevant because practical use of induced pluripotent cells will
involve differentiating them to desired cell types. We also find
an exponential decay of the number of progenitor cells (with
a signal strength-dependent lifetime), as has been noted before

[46].

Reprogramming

We simulate reprogramming experiments by starting with a
terminally differentiated cell state where genes from other lineages,
etc., have been epigenetically silenced. Our basic premise is that
terminally differentiated cells can reprogram because protein
products of the ectopically expressed genes can potentially alter the
epigenetic state of the cell as a cell progresses through the
telophase. In our low resolution model, we identify genes not by
names, but rather by their functional properties. We presume that
KIf4 and c-Myc are important ingredients of the reprogramming
“cocktail” because they promote progression through the cell
cycle, and this provides more opportunities for the other
reprogramming factors to perturb the epigenome during telo-
phase. This functional identification of Klf4 and c-Myc makes our
model general, and is validated by experiments showing that
shutting down p53 abrogates the need for Klf4 and c-Myc for
reprogramming (only Oct4 and Sox2 required) precisely because
this also allows faster progression through the cell cycle
[47,48,49,50,51]. (Interestingly, simulataneous action of c-Myc
and p53 knock-down decreases the efficiency of reprogramming
indicating existence of the optimum). Oct4 and Sox2 have an
enormous number of binding targets on the DNA, and are
responsible for maintenance of the ES state which likely implies
multiple interactions with master-regulatory genes. We therefore
identify the ectopic expression of these genes with the function of
being highly likely to perturb the epigenome during telophase.

Each gene module in our model corresponds to an ensemble of
carefully tuned mutually interacting master-regulatory genes that
govern a particular cellular identity. At the moment, not all of the
master-regulatory genes of cellular states are experimentally
identified, thus we use gene modules to represent these ensembles
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in a general way. Even though products of ectopically expressed
Oct4 and Sox2 have numerous targets [52], it is unlikely that the
epigenetic state of many such sets of genes will be simultaneously
altered. Thus, in order to mimic the effect of reprogramming
factors, we randomly pick one epigenetically silenced gene module
and change its state to correspond to open chromatin. To examine
the effects of overexpression of ectopic genes, we also study the
consequences of multiple epigenetic transformations at a time (see
discussions below).

Starting with a terminally differentiated state we perturb the
epigenome as described above, and then simulate the next gene
expression phase where both the module regulating the terminally
differentiated state and the one which was transformed to open
chromatin status can express proteins according to rules 1'-2" (or
Eq. 3). The protein atmosphere thus generated becomes the input
to simulation of the next telophase according to rules 1-4 (or Eq.
2). This can then potentially establish a new epigenetic state which
becomes input to simulation of the next gene expression phase;
1.e., the genetic and epigenetic states are allowed to come to a new
balance. Then, the epigenetic state of another randomly picked
silent gene module is changed to open chromatin because of the
effects of reprogramming factors. This procedure is continued
until a fully reprogrammed or a dead/arrested state is achieved
(see below).

We carried out 10, 000 independent replicate simulations of the
effects of ectopic expression of reprogramming factors on a
differentiated cell in a model with four levels in the hierarchy of
cellular states. Results from each simulation describe the fate of a
single cell in a population. Only 3 out of 10, 000 “cells”
successfully reprogrammed; i.e, as in experiments, reprogramming
1s rare. The percentage of cells that reprogram depends upon the
number of levels in the hierarchy (0.0001% and 2% of the cells
reprogram successfully for a five-level and three-level hierarchy,
respectively). This suggests that reprogramming efficiency should
improve for less differentiated cells. This has been demonstrated
directly in a well-defined lineage such as the hematopoietic system
[53]. Additionally, Hanna et al. demonstrated a notable increase
in the efficiency of reprogramming B cells upon Pax5 knockdown
[12]. Loss of Pax5 had been previously shown to cause
dedifferentiation of B cells to a common progenitor that upon
transplantation allowed T cell development [54].
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We report results for models consisting of 3-; 4- and 5-levels in
the hierarchy of gene modules, but in real organisms the depth of
the differentiation tree could be as large as tens of levels [55]. Since
our results indicate that reprogramming efficiency decreases
quickly with the increase in the depth of the hierarchy, it is
natural to ask why reprogramming is at all feasible. The reason is
that master-regulatory genes that regulate closely related states are
not mutually exclusive sets of genes. The difference between genes
that regulate closely related cellular states can be as small as one or
two genes [54]. However, genes that regulate cellular states distal
in the hierarchy are not correlated in this way. As our model does
not treat correlations between genes that regulate closely related
states, in effect, each gene module in our model represents master
regulatory genes that control the identity of a number of cellular
states that have many master regulatory genes in common. Thus, a
5-level hierarchy in our model might represent a 50-level depth of
differentiation in a real organism.

The results reported above were obtained for specific values of
parameters (Table 2) which represent rules 1-4 and 1'-2" (Egs., 2—
3 in Methods). Our simulation results are consistent with diverse
experimental observations (see Table 3 and discussion below) only
if the methylation constraints (rule 4) and mutual repression of
expression of gene modules (rule 2') are relatively strong effects
(i,e. H>G and J>F, see Table 2, Eqns (2-3), and parameter
sensitivity in SI for further details). As long as these two conditions
are met, the specific choice of parameter values only alters the
quantitative value of the number of successfully reprogrammed
cells, but reprogramming to the ES state remains rare.

Our simulation results suggest a mechanistic explanation for
why reprogramming is so rare. When reprogramming factors
attempt to change cellular identity by altering the epigenetic state
of a previously silenced gene module, the probability of success
depends upon the position of this module relative to the one that
regulates the terminally differentiated state. We find that the
position of the module whose epigenetic state 1s altered can belong
to one of three categories (Fig. 5a).

Suppose this gene module regulates a cellular identity in a
different lineage from the terminally differentiated state. In the
next interphase, both modules can express proteins as there are no
mutually repressive interactions between them. In the subsequent
telophase, proteins expressed by each module would favor
epigenetic silencing of the other (rule 4). Expression of proteins
characteristic of a cell type from a different lineage does not favor
reprogramming because it leads to cell death or arrest in our

Table 2. Parameters used to obtain the simulation results
reported in the main text.

Value of the

Parameter of the model parameter
Protein action on epigenetic lattice G=25
Mutual suppression by two proteins J=3000
Action from epigenetic to genetic lattice F=2000
Methylation strength H=40
Minimal protein expression level required to actively a=0

affect epigenetic state of the gene

Minimal epigenetic availability of the gene required b=0.3

to allow protein expression

Results do not change qualitatively as long as the parameters lie in the
following ranges: H>G; J>F>»H,G; 0.1<b<0.5 and 0<a<0.6.
doi:10.1371/journal.pcbi.1000785.t002

@ PLoS Computational Biology | www.ploscompbiol.org

Reprogramming Paths

model. Cell death could be mediated by various mechanisms
including genetic instabilities if the two open gene modules send
conflicting instructions to housekeeping genes. Of course, there is
also the chance that the cell will be rescued by stochastic
expression of some master-regulatory gene, or that the cell will
assume an “intermediate” cell state without master regulation that
could be viable, but does not reprogram, such as some arrested
states [18]; finally, there is a possibility that two master regulators
will not repress each other in full, but some minuscule amount of
expression of both will remain thus, arresting the cell. Within the
framework of our model we do not distinguish between these
possibilities, and classify cells in all these unusual, dead, or arrested
states to be dead/arrested.

The gene module whose epigenetic state is altered by
reprogramming factors could be in the same lineage as the
differentiated cell, but not be its sibling or progenitor. In the
following interphase, this module and the one that regulates the
terminally differentiated state can both express proteins. In the
subsequent telophase, according to our model, protein products of
the gene module regulating the terminally differentiated state will
favor epigenetic silencing of the module that was turned on by the
action of reprogramming factors (rule 4). But, the opposite is not
true because the cellular state regulated by the gene module whose
epigenetic state was altered by reprogramming factors could
potentially differentiate to the terminally differentiated cell type.
Thus, the altered gene module will be silenced again, and the cell
remains terminally differentiated.

Reprogramming factors could also change the epigenetic state
of a previously silenced gene module which regulates an
immediate sibling or the progenitor of the terminally differentiated
state. In the subsequent interphase, these two gene modules with
open chromatin status will not simultaneously express proteins at
high levels. This is because gene modules that are ‘“nearest
neighbors” in the hierarchy mutually repress each other (rule 2").
If the dominantly expressed gene module (determined stochasti-
cally) is the one which regulates a sibling or the progenitor of the
terminally differentiated state, then during the next telophase its
products will establish epigenetic marks consistent with a new
identity (rule 1). Thus, with a probability determined by stochastic
effects, a step toward reprogramming can occur via trans-
differentiation or de-differentiation.

These arguments suggest that a step toward reprogramming
occurs with significant probability only if the epigenetic state of a
gene module regulating a sibling or progenitor of the differentiated
cell is changed to open chromatin status by reprogramming
factors. This is a rare event in our simulations where the set of
master regulator genes that determine a cellular identity are
considered to be one gene module. In reality, this is even less likely
because it requires reprogramming factors to orchestrate changes
to a set of master regulator genes synchronously. For successtul
reprogramming to the ES state, a sequence of such rare events
must occur in a particular cell. This is because after a step toward
reprogramming occurs, the partially reprogrammed cell is subject
to all the constraints discussed above. Therefore, although cellular
identity is plastic, reprogramming a terminally differentiated cell to
the ES state is rare and requires many cell cycles.

Two examples of how states evolve under the influence of
reprogramming factors in our simulations are shown in Fig. 5b.
The first example shows a “cell” that does not successfully
reprogram, as after a successful trans-differentiation, ultimately the
cell is arrested/dead. In the second example reprogramming to the
ES state occurs successfully, and it shows an interesting feature. At
an intermediate time point, before the ES state is realized,
reprogramming factors have turned on expression of the
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Table 3. Examples of experimental features of reprogramming explained by the proposed model (see details in the text).

Experimental observation

Explanation

Reprogramming takes at least 12 days of continuous exposure to
reprogramming factors [11]

Stochastic nature of reprogramming [56]

Low yield of reprogramming process [2]

The fact that the same gene cocktail can reprogram different terminal
cell types [1,12]

An increase in the efficiency of reprogramming B cells upon Pax5
knockdown [12]. (Loss of Pax5 had been previously shown to cause
dedifferentiation of B cells)

In the simulations, reprogramming does not occur in small number of cell
divisions. This is because the most probable paths of reprogramming involve a
sequence of de-differentiation events to closely related cellular states (see Fig. 5
for details)

In the simulations, trajectories starting from identical differentiated state may or
may not undergo successful reprogramming. A trajectory in the simulation
corresponds to the processes in a single cell.

In the simulations, the majority of cells end up in dead/arrested state with only a
few that are successfully reprogrammed

In the simulations, and the mechanism we propose, exogenously added genes
must have multiple targets (e.g., Oct4, Sox2) enabling random epigenetic
perturbation of these targets regardless of the original differentiated state. cMyc
and KIf-4 enhance progression through the cell cycle, thereby providing
opportunities for random epigenetic perturbations.

In the simulations, trajectories starting from the less differentiated state (i.e.,
higher up in the cell hierarchy) have higher chance to undergo successful
reprogramming, thus making reprogramming more efficient compared to
reprogramming of the less differentiated state.

doi:10.1371/journal.pcbi.1000785.t003

endogenous gene module that regulates the ES state. But this is
transient, as this module is quickly silenced. We find that, unless
proteins expressed by each gene module can stably repress genes
that are distal in the hierarchy of states (rule 4, realized
presumably through DNA methylation), expression of endogenous
genes that regulate the ES state can occur early and prior to the
temporal increase in the number of bivalently marked genes
observed during reprogramming. In other words, our model
recapitulates the observation that endogenous expression of Oct4
and Sox2 is the last step toward reprogramming only if the “DNA
methylation” constraint is long-ranged. Thus, the model suggests
that transient blocking of methylation machinery might allow
endogenous expression of Oct 4, Sox2, etc., at intermediate time
points. This is consistent with the observation that DNA
methyltransferase and histone deacetylase (HDAC) inhibitors,
such as valproic acid (VPA), an HDAC inhibitor, improve
reprogramming efficiency [9].

Our model predicts that reprogramming occurs via a sequence
of trans-differentiations to immediate siblings or de-differentiations
to immediate progenitors in the hierarchy of cellular states. Note,
however, that our results do not imply that pure differentiated states will be
observed as reprogramming occurs. Oct4, Sox2, etc., have numerous
targets, and so genes from unrelated lineages will transiently be
expressed during reprogramming to the ES state (22). But, the
entire set of master regulatory genes for a cellular state from a
different lineage will not be expressed.

We illustrate this point by showing computer simulation results
from a model where we consider each gene module to be
comprised of three individual genes (Fig. 6). Reprogramming
factors can attempt to change the epigenetic state of the individual
genes randomly as before. However, in this more complex model,
if we allow only one gene’s epigenetic state to be modified in every
telophase, reprogramming becomes so rare that we cannot observe
it in a realistic computer simulation time. So, we allowed a larger
number of transformations per cycle. Choosing this number to be
too large corresponds to overexpression of reprogramming factors,
and this severely hinders reprogramming (Text S1, section 2). For
the results shown in Fig. 6, we randomly pick 12 genes and change
their epigenetic states during each simulated telophase. We assume
that the entire set of genes comprising a module must be expressed
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for its products to regulate the epigenetic or genetic network. This
is consistent with combinatorial control of regulation.

Tig. 6a shows two examples of u silico cells that successfully
reprogram to the ES state. Reprogramming takes place via a
sequence of trans-differentiation and de-differentiation events
wherein the entire set of genes that regulate a progenitor or
sibling of the previous cellular state is expressed. But, the
intermediate states are not pure differentiated states as some
genes from unrelated lineages are also turned on at the same time
(as observed in experiments [18]). If the terminally differentiated
state in our simulations is analogous to a B cell, our simulations
predict that all successfully reprogrammed cells must transit
through an impure state where all the genes regulating the
hematopoetic stem cell state are turned on (as in I'ig. 6a).

Although beyond the scope of this work, it would be reasonable
to test this prediction by applying a cre-lox based lineage-tracing
approach. Using one or more stem/progenitor specific promoters
that are inactive in the terminal state (e.g., B cell), in combination
with a lox-STOP-lox reporter, one could retrospectively determine
whether all the resulting iPS cells are labeled and hence have
transiently expressed markers of earlier stages within the same
lineage. An unrelated cell type, such as fibroblasts, should generate
unlabeled iPS cells because it would not be expected to transition
through hematopoietic progenitor stages and hence serve as an
appropriate control.

The results depicted in Fig. 6 could also potentially be assessed
quantitatively in experiments where the temporal evolution of the
gene expression patterns of a number of successfully repro-
grammed cells is observed. Consider a state where the master
regulator genes corresponding to a particular cellular identity are
all expressed. One could then ask: when these genes are
subsequently silenced during reprogramming, which complete
set of master regulatory genes start expressing proteins? One could
ask this question at various times during reprogramming and in
various successfully reprogrammed cells. This would enable
calculation of the following four point correlation function (C):

C(ij; 1,1+ At) = (Osi0(t + AD)ds1 (14 AD). 0511 (Dd550(0) > (1)

where 8 is the Kroenecker delta, t is time, t+At is a later instant in
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Figure 5. Reprogramming is a consequence of random perturbation of epigenetic state of the cell. In our model, reprogramming factors
can change the epigenetic state of randomly chosen regulatory modules (for reasons, see text). (a) Starting from a fully differentiated state,
reprogramming factors can perturb any of the remaining 14 positions (for the case of a 4-level hierarchy). Four outcomes are possible depending on
the perturbation site: death/arrest, trans-differentiation, de-differentiation or return to the initial cellular state. These outcomes are determined by
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simulating the system in accord with the rules described in the text and Figs. 2-3. The color code representing genetic and epigenetic states is the
same as in Fig. 1 (b) Examples of real trajectories observed in simulations illustrating different temporal evolution of epigenetic and genetic states.
Complete cell reprogramming appears as a consequence of several successful de-differentiation events as seen in the second example trajectory.
Simulations are performed with parameter values F =2000; J=3000; G =25; H=40; a=0; b=0.3. The color code representing genetic and epigenetic

states is the same as in Fig. 1.
doi:10.1371/journal.pcbi.1000785.9005

time during reprogramming (a cycle in our simulations), i and j are
labels of two genes, and S; is either 1 or 0 depending upon whether
the i"™ gene is expressing proteins or turned off.

Our computer simulations predict (Fig. 6b) that, at each stage of
reprogramming, the correlation function would have high values for
genes from lineages related to the terminally differentiated starting
point and low values for genes of unrelated lineages. We hope that
this prediction can also be assessed in future experiments. This
could involve permanent labeling as mentioned above, or possibly,
in the long-term, real-time monitoring of cell state transitions.

Discussion

To the best of our knowledge, we have developed the first
computational model that describes how terminally differentiated

cells may be reprogrammed by expression of ectopic genes. This is
achieved by a mathematical description of interactions between
epigenetic and genetic networks of master-regulatory genes that
govern specific cell states. The model also describes differentiation
in accord with experiments. Our model describes cellular states as
attractors on a generalized landscape of all possible genetic/
epigenetic configurations. Cellular states are stable, self-renewing
states unless a perturbing signal (either differentiation cue or
reprogramming factors are introduced).

As summarized in the table 3, major features of the reprogram-
ming process are explained by our results and the mechanism of
reprogramming it suggests. For instance, different cell types can be
reprogrammed with the help of the same set of factors [1,12,16]
because ectopic expression of genes that have many targets (e.g., Oct4
and Sox2) can perturb the epigenetic state regardless of the identity of

(a) (b)

© Genes in closed or bivalent
chromatin conformation

@ Genes in permissive
chromatin conformation

Magnitude of A

correlation function

Reprogramming

Examples of successful trajectories:

fastest observed pathway  including one transdifferentiation

Figure 6. Simulations of a model where each gene module regulating a cellular identity consists of three different genes. (a) In this
(similar to the previous) model, individual genes do not interact with each other. Rather modules interact with each other when all of the proteins in
a module are expressed. Since reprogramming factors change the epigenetic state of randomly chosen individual genes, several (here: at least three)
genes have to be changed to open chromatin status at the same time in order to allow a whole module to be able to express proteins. Examples of
simulated trajectories show activation of genes of unrelated lineages during successful reprogramming. Simulations are performed with parameter
values F=2000; J=3000; G=25; H=40; a=0; b=0.3. (b) If population averaged expressions of genes during reprogramming can be measured, one
can compute a 4-point correlation function (see Eq. 1). This correlation function describes the probability of activation of a given gene after the
master regulatory gene module, i, was silenced. Then all the genes can be grouped in three groups as our simulation indicates. Thus, the genes
defining the most likely paths to reprogramming can be identified as the ones with the highest magnitude of this correlation function. The
correlation function was computed by averaging over all successfully reprogrammed trajectories. The colors correspond to the magnitude of the
correlation function (as shown on the left).

doi:10.1371/journal.pcbi.1000785.9006
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the starting differentiated cell type. The importance of fast
progression through the cell cycle (due to cMye, Klf4, or p53
knockdown) is because this offers more opportunities for epigenetic
transformations during telophase. The important experimental
observation that endogenous Oct4 and Nanog expression [2] occurs
just prior to complete reprogramming is also recapitulated by our
model. The stochastic nature of the reprogramming process [56] and
its low yield [2] are because only a few types of trajectories can lead to
successful reprogramming, and they are realized rarely by stochastic
perturbation of the epigenome by the reprogramming factors. Our
model predicts the nature of these rare trajectories to be those that
progress through reprogramming via de-differentiation to closely
related cell types (immediate progenitors or siblings in the hierarchy).
Ways to directly test this prediction are suggested. However, any
feature that involves a specific molecular interaction between specific
molecules is not described by our model.

In our current model, we consider states with genes that express
proteins with conflicting demands to die/arrest. In reality, some of
these situations can give rise to steady states that do not arrest or
reprogram (such as the recently studied BIV1, MCV8, etc., cell
lines) [18]. The ideas emerging from our model are consistent with
observations made by manipulating these trapped states.

For example, consider the observation that removing repro-
gramming factors allows cells from the BIV1 cell line (isolated
during reprogramming of B lymphocytes) [18] to reprogram to the
ES state. This suggests that overexpression of reprogramming
factors prevents these cells from reprogramming to the ES state.
Our model suggests that this could be due to two reasons. First,
over expression of reprogramming factors (which have many
targets) could simultaneously change the epigenetic states of a
number of silenced genes to permissive chromatin status. Our
simulations of the model shown in Fig. 6 with a large number of
such simultaneous transformations (e.g., 22 at a time, rather than
12 at a time used for Fig. 5) prevents successful reprogramming
because of the large probability of obtaining dead or arrested
states. As noted above, one of these states that cannot reprogram
could correspond to the BIV1 cells.

Secondly, our model describes how lowering expression of
reprogramming factors in BIV1 cells could enable reprogramming.
In our simulations, we consider proteins expressed during each
interphase to act on the epigenome to reach a new balance which
then leads to a corresponding protein expression pattern before
another epigenetic transformation can occur due to the action of
reprogramming factors. This is analogous to assuming that the
reprogramming factors can act to change the epigenetic state of a set
of master regulator genes rarely. If reprogramming factors are
grossly overexpressed, this would not be true. So, before a new
protein expression pattern could be expressed consistent with a
newly acquired epigenome (say, de-differentiation to a progenitor),
another epigenetic transformation would occur, and the whole cycle
would start again. Simulation results showing this effect upon
overexpression of reprogramming factors are depicted in Fig. 3B in
Text S1. Removing reprogramming factors could potentially allow
reprogramming of cells trapped in such an infinite loop.

Our low-resolution model for the architecture of genetic and
epigenetic regulatory networks that determine how cellular
identities change is consistent with diverse observations (Table 3).
In formulating this model, we ruled out many models that were
inconsistent with known experimental results, but we cannot rule
out all other possible models. Therefore, the predictions of the
model (noted earlier) need to be experimentally tested (perhaps in
ways that we have suggested) to either falsify it or encourage
studying it further. If tested positively, the suggestions emerging
from our model regarding ways to enhance reprogramming yields

@ PLoS Computational Biology | www.ploscompbiol.org

1

Reprogramming Paths

should be further explored. It would also be interesting to study
other transcription factor induced cell state conversions [57,58]
within the conceptual and computational framework we have
developed for how cellular identity is transformed. In particular,
recent results of direct conversion between exocrine and endocrine
cells through ectopic expression of three alternative transcription
factors [59] should be examined.

It would be interesting to further investigate several assumptions
adopted in the model for the lack of specific information about
individual master-regulatory modules. For example, maximum
expression levels of different master-proteins within different modules
could differ, as well as coupling between genetic and epigenetic
networks could be different for different modules. Also, we assumed
that every simulated cell (as represented by a simulated trajectory) has
the same level of expression of reprogramming factors while in reality
cells can be transfected in a heterogeneous fashion. Also, the difference
in viral integration sites in different cells could lead to the different
expression levels of exogeneous genes thus making effect of
reprogramming factors heterogeneous across the population. In a
sense then, we have studied those cells which have expressed
reprogramming factors at levels above a threshold. It would be
interesting to further explore the consequences of such heterogeneity.
Another avenue for further exploration lies in defining the notion of
time during the reprogramming process, in this work cell cycling has
been adopted as a measure of time required for reprogramming while
in reality cells cycle with non-equal rates determined from some form
of cell division rate distribution (simplest form would be an exponential
distribution). It would be interesting to see applicability of the 4-point
correlation function based analysis for the situation when cell cycling
rates are not identical. Finally, de-silencing action of reprogramming
factors is assumed to be distributed randomly. It would be interesting to
consider situations when de-silencing distribution is not uniform across
the hierarchy. It is possible that non-uniform distributions can improve
the reprogramming efficiency.

From the standpoint of statistical physics, our model couples a
Potts model with short and long-ranged interactions in external
fields (Eq. 2) with an Ising model with short-ranged interactions in
an external field (Eq. 3). It may be fruitful to develop a deeper
field-theoretic understanding of such models.

Methods

All simulations are carried out with the help of two hierarchical
lattices because two lattices are required to properly describe the cell
state as shown in Fig. 1b. In the simulation code provided in Text
S2, we consider 4 levels in the hierarchy (such as the one in Fig. 1b).
Other possibilities (3 and 5 levels) have been considered also.

The epigenetic lattice has a discrete epigenetic state associated
with each node (—1,04+1). SP&"=—1] corresponds to closed
chromatin, S =0 corresponds to bivalent chromatin and
SN =41 corresponds to open chromatin. Genetic lattice
describes expression of proteins from master-regulatory modules.
It has discrete gene expression states associated with each node
(0, +1). S*"=0 corresponds to the absence of any protein
expression from the given gene, S*"=+1 corresponds to the
maximum protein expression from the gene. In the course of
simulation, cell states change in response to random epigenetic
perturbations according to the rules described above (see Table 1
for summary). There are two possible endpoints for the simulation
procedure: either the cell will assume a dead/arrested state, in
which case the simulation stops; or it will, as a consequence of a
random sequence of epigenetic transformations, be reprogrammed
to the ES-state, which is indicated by the stable turning on proteins
expressed by the of ES-regulatory module. In the latter case we

May 2010 | Volume 6 | Issue 5 | 1000785



stop the simulation procedure manually because, according to
experimental observations [2], stable expression of endogenous
Oct4 suppresses expression from the exogenous locus, thus
preventing future action of reprogramming factors.

In order to initialize simulations one has to specify either the
epigenetic or genetic state of the lattice (see Fig. 7). If we start by
specifying the protein expression pattern, computer simulations
are carried out to determine the epigenetic state that is realized in
telophase. A Monte-Carlo simulation algorithm is used in accord
with the following Hamiltonian, with its four terms representing
rules 1-4 (see Model development), respectively:
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SiP denotes the epigenetic spin state of the i™ module, and S;5
specifies the protein expression level of the i module. The angular
brackets denote the average expression level of the j™ module
obtained during the preceding interphase, and could include
protein products of ectopic genes or signaling events. |S;P|
represents the absolute value of S;P. The quantity G is a positive
parameter that represents the strength with which the protein
atmosphere can modify the epigenetic state by altering histone
marks. H is a positive parameter that represents the strength of the
DNA methylation constraint. The quantity, a, is a positive
constant that favors values of S;P<<a if proteins expressed by
gene, j, are present. As detailed in the Text S1 (see section 2), the
results of our simulations are inconsistent with experimental results
if H is not greater than G. As long as H>G, our qualitative results
do not depend upon the specific values of these parameters. The
specific value of a does not affect qualitative results. Results
presented in the main text are for a=0, and G =25, H=40 (in
units described below).

During simulation of the telophase, the epigenetic state Sepigen of
each module fluctuates. The output of the telophase simulation is
<SPEN> an average of these fluctuating values for each node of
the lattice (i.e. for each module). Because we have a discrete
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Figure 7. Flow chart of the simulation procedure. The simulation essentially mimics progression through the cell cycle in accord with Fig. 2. In each
phase of the cell cycle, interactions within and between genetic and epigenetic lattices are enforced through the Hamiltonians of Eq. 2 and 3. Mathematical
structure and choice of parameters are such that rules depicted in Fig. 3 are obeyed. For analysis of sensitivity to parameter variations see Text S1.

doi:10.1371/journal.pcbi.1000785.9007
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representation for the epigenetic marks (+1, 0, or —1) while
actually each gene bears multiple marks, using the average allows
us to reflect intermediate levels of positive and negative histone
marks on a gene. For example, an average value near zero for the
epigenetic state of a gene module implies that both positive and
negative marks are present on histones associated with it, a value
close to one represents an open chromatin state, etc.

Average values of epigenetic state serve as input for simulation
of interphase. If <SPE">~1 (gene is epigenctically available),
than it will favor protein expression during the interphase in
accord with the rules depicted on Fig. 3a. Similarly, if two
neighboring states are epigenetically available, only one protein
will be expressed due to mutual repression of neighboring master-
regulators. Separate Monte Carlo simulations are carried out to
establish gene expression patterns during interphase. The
following Hamiltonian, with the two terms in it corresponding to
rules 1" and 2’ (see Model development), respectively, is used:

H[{S#"} = —F Y (<S> —b)S"

en en
>SS

i#jenearest neighbors

3)

+J

The angular brackets denote the average value of epigenetic state
of the i™ module obtained during the preceding telophase. F is a
positive constant that represents how strongly a protein is
expressed or repressed if it is in open chromatin state or in
heterochromatin, respectively. The parameter, b, is a positive
constant; protein expression is favored if <S;?>>b. Note that the
form of the first term in Eq. 3 implies that protein expression is
more strongly repressed if a gene is packaged in heterochromatin
compared to if it is bivalently marked. J represents the strength of
mutual repression by other proteins. As detailed in the Text S1
(section 2), our results are inconsistent with experiments if J is not
greater than F. As long as J>F, the specific values do not affect
qualitative results. As long as the parameter b is larger than the
typical size of fluctuations in <S;P> (~0.1), the specific value of b
does not affect qualitative results. Results presented in the main
text correspond to b=10.3, and F=2000, J=3000 (for units, see
below).

Values of S fluctuate during this Monte-Carlo procedure.
The output of the simulation of the interphase is <S;**">, which
represents the average expression level of the regulatory protein in
the interphase. These averages are further used in the next
telophase simulation, thus, completing the cycle.
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The Monte-Carlo algorithm is standard [60]: the lattice spins
(+1/0/—1 on epigenetic lattice; +1/0 on genetic lattice) are
initialized randomly. The move consists of 1) randomly choosing
the node on the lattice; 2) randomly deciding on the choice of new
value of S; for this node (i.e. if S, P8 \as 0 then it can become — 1
or +1 with equal probability); 3) energy for this configuration is
computed according to the appropriate Hamiltonian; 4) attempted
changes in state are accepted with probability equal to min [1, exp
{[—BAH{S;}]]. The parameter,f, is analogous to inverse
temperature used in simulation of thermal systems, and sets the
scale for the parameters, I, G, H and J. If we pick this effective
temperature to be too high (B<F, G, H, J), the system is
disordered; specific cellular identities are not established and the
model has no biological significance. We use B=1 for results
reported in the main text. During each phase, the Monte-Carlo
procedure is carried out until running average values of
<SP/ gtop changing along the trajectory; ie., they converge
to a single well-defined value. For the reported parameters
(Table 2), 50,000 updates are sufficient for accurate averaging
during each phase.

A computer code written using the C++ language is provided as
Text S2 allows calculation of all the results we report. For details
regarding the output and input formats see the Text S1.
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