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Abstract

Molecular signatures are computational or mathematical models created to diagnose disease and other phenotypes and to
predict clinical outcomes and response to treatment. It is widely recognized that molecular signatures constitute one of the
most important translational and basic science developments enabled by recent high-throughput molecular assays. A
perplexing phenomenon that characterizes high-throughput data analysis is the ubiquitous multiplicity of molecular
signatures. Multiplicity is a special form of data analysis instability in which different analysis methods used on the same
data, or different samples from the same population lead to different but apparently maximally predictive signatures. This
phenomenon has far-reaching implications for biological discovery and development of next generation patient diagnostics
and personalized treatments. Currently the causes and interpretation of signature multiplicity are unknown, and several,
often contradictory, conjectures have been made to explain it. We present a formal characterization of signature multiplicity
and a new efficient algorithm that offers theoretical guarantees for extracting the set of maximally predictive and non-
redundant signatures independent of distribution. The new algorithm identifies exactly the set of optimal signatures in
controlled experiments and yields signatures with significantly better predictivity and reproducibility than previous
algorithms in human microarray gene expression datasets. Our results shed light on the causes of signature multiplicity,
provide computational tools for studying it empirically and introduce a framework for in silico bioequivalence of this
important new class of diagnostic and personalized medicine modalities.
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Introduction

A molecular signature is a computational or mathematical model

that predicts a phenotype of interest (e.g., diagnosis or outcome of

treatment in human patients or biological models of disease) from

microarray gene expression or other high-throughput assay data

inputs [1,2]. Multiplicity is a special form of data analysis instability

in which different analysis methods used on the same data, or

different samples from the same population lead to different but

apparently maximally predictive signatures [3,4]. This phenomenon has

far-reaching implications for biological discovery and development

of next generation patient diagnostics and personalized treatments.

Multiplicity in the best case implies that generation of biological

hypotheses (e.g., discovery of potential drug targets) is very hard

even when signatures are maximally predictive of the phenotype

since thousands of completely different signatures are equally

consistent with the data. In the worst case this phenomenon entails

that the produced signatures are not statistically generalizable to

new cases, and thus not reliable enough for translation to clinical

practice.

Some authors motivated by classical statistical considerations,

attribute signature multiplicity solely to the small sample size of

typical microarray gene expression studies [5] and have conjec-

tured that it leads to non-reproducible predictivity when the

signatures are applied in independent data [6]. Related to the

above it has been suggested that building reproducible signatures

requires thousands of observations [7]. Other authors have

proposed that the phenomenon of signature multiplicity is a

byproduct of the complex regulatory connectivity of the

underlying biological system leading to existence of highly

predictively redundant biomarker sets [8]. The specifics of what

types of connectivity or regulatory relationships may lead to

multiplicity have not been concretely identified however. Another

possible explanation of signature multiplicity is implicit in

previously described artifacts of data pre-processing. For example,

normalization may inflate correlations between genes, making

some of them interchangeable for prediction of the phenotype

[9–11].

Critical to the ability to study the phenomenon empirically is

the availability of computational methods capable of extracting

multiple signatures from the data. Several methods have been

introduced with this intent. The available methods encompass four

algorithm families. The first family is resampling-based signature

extraction. It operates by repeated application of a signature
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extraction algorithm to resampled data (e.g., via bootstrapping)

[6,12,13]. This family of methods is based on the assumption that

multiplicity is strictly a small sample phenomenon. The second

family is iterative removal, that is repeating signature extraction after

removing from the data all genes that have been found in the

previously discovered molecular signatures [14]. This approach is

agnostic as to what causes multiplicity and is heuristic since it does

not propose a theory of causes of multiplicity. The third family is

stochastic gene selection techniques [15,16]. The underlying premise of

the method of [15] is that in a specific class of distributions every

maximally predictive and non-redundant signature will be output

by a randomized algorithm with non-zero probability (thus all

such signatures will be output when the algorithm is applied an

infinite number of times). Similarly, the method of [16] will output

all signatures discoverable by a genetic algorithm when it is

allowed to evolve an infinite number of populations. The fourth

family is brute force exhaustive search [17]. This approach is agnostic as

to what causes multiplicity, and requires time that is exponential to

the total number of genes, thus it is computationally infeasible for

signatures with more than 2–3 genes (as almost all maximally

predictive signatures are in practice).

The above methods, useful first attempts as they may be, are

either heuristic or computationally intractable, are based on

currently unvalidated conjectures about what causes multiplicity,

and output incomplete sets of signatures with currently unknown

generalizability. The practical benefits of an algorithm that could

systematically extract the set of truly maximally predictive and

non-redundant signatures include: (i) a deeper understanding of

the signature multiplicity phenomenon and how it affects

reproducibility of signatures; (ii) improving discovery of the

underlying biological mechanisms by not missing genes that are

implicated mechanistically in the disease processes; and (iii)

catalyzing regulatory approval by establishing in-silico equivalence

to previously validated signatures in a manner similar to

bioequivalence of drugs.

To achieve these goals we provide a theoretical framework

based on Markov boundary induction that enables probabilistic

modeling of multiple signatures and formally connects it with

the causal graph (i.e., pathways) of the data generating process

[18–21] even when these pathways are not known a priori. We

introduce a provably correct algorithm (termed TIE*) that outputs

the set of maximally predictive and non-redundant signatures

independent of the data distribution. We present experiments with

real and resimulated microarray gene expression datasets as well

as with artificial simulated data that verify the theoretical

properties of TIE* and showcase its advantages over previous

methods in practical settings. In particular, it is shown that TIE*

having excellent sample and computational efficiency not only

extracts many more maximally predictive and non-redundant

signatures than all previous methods, but also that TIE* signatures

are reproducible in independent datasets whereas signatures

produced by previous methods are often not reproducible or have

lower predictivity. The theoretical and experimental results

obtained in the present study also suggest that some of the

previous hypotheses about the causes and implications of signature

multiplicity have to be radically reevaluated.

Materials and Methods

On analysis of signatures
To simplify analysis, and without loss of generality, instead of

considering all possible signatures derivable from a given dataset

(via a potentially infinite variety of classifier algorithms) we only

consider the signatures that have maximal predictivity for the

phenotypic response variable relative to the genes (variables) contained in

each signature. In other words, we exclude from consideration

signatures that do not utilize all predictive information about the

phenotypic response variable contained in their genes. This allows

us to study signature classes by reference only to the genes

contained in each class. Specifically, for a gene set X there can be

an infinite number of classifiers that achieve maximal predictivity

for the phenotype relative to the information contained in X.

Thus, when we say ‘‘signature X’’ we refer to one of these

predictively equivalent classifiers. This reduction is justified, for

example, whenever the classifiers used can learn the minimum

error decision function given sufficient sample (for a given set of

genes X, the minimal error decision function minimizes the error

of predicting the phenotypic variable T given X over all possible

decision functions). Most practical classifiers employed in this

domain as well as classifiers used in our experiments (SVMs) satisfy

the above requirement either on theoretical [22,23] and/or

empirical grounds [24].

Given the above reduction of signatures to equivalence classes,

the focus of this work is in extracting signatures that satisfy two

desirable optimality properties: (a) maximally predictive of the phenotype

(informally this means that they can form the inputs to a predictor

of the phenotype which for the given dataset and population

cannot be improved by any other classifier-gene subset combina-

tion), and at the same time (b) do not contain predictively redundant genes

(i.e., genes that can be removed from the signature without

adversely affecting the signature predictivity). Every suboptimal

signature (i.e., one that does not satisfy these two properties) can be

discarded from consideration when studying multiplicity.

Markov boundary characterization of signature
multiplicity

As is proved in Text S1, two signatures X and Y of the

phenotypic response variable T are maximally predictive and non-

redundant if and only if X and Y are Markov boundaries of T. A

Markov boundary M of T is a set of variables that (i) renders all

other variables outside M and T independent of T conditioned on

M (i.e., M is a Markov blanket of T) and (ii) no proper subset of M
is a Markov blanket of T [18]. This definition also implies causal

interpretability of M under distributional assumptions [18–21]. It

was shown previously that the so-called intersection property of

Author Summary

One of the promises of personalized medicine is to use
molecular information to better diagnose, manage, and
treat disease. This promise is enabled through the use of
molecular signatures that are computational models to
predict a phenotype of interest from high-throughput
assay data. Many molecular signatures have been devel-
oped to date, and some passed regulatory approval and
are currently used in clinical practice. However, researchers
have noted that it is possible to develop many different
and equivalently accurate molecular signatures for the
same phenotype and population. This phenomenon of
signature multiplicity has far-reaching implications for
biological discovery and development of next generation
patient diagnostics and personalized treatments. Currently
the causes and interpretation of signature multiplicity are
unknown, and several, often contradictory, conjectures
have been made to explain it. Our results shed light on the
causes of signature multiplicity and provide a method for
extracting all equivalently accurate signatures from high-
throughput data.
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probability distributions is a sufficient condition for uniqueness of

Markov boundaries [18], therefore it is also a sufficient condition

for uniqueness of optimal molecular signatures. However, the

extent to which signature multiplicity is present in distributions

that violate the intersection property is not known.

Figure 1 shows by means of an illustrative example implications

of signature multiplicity. It describes a class of Bayesian networks

that share the same pathway structure (with three gene variables A,

B, C and a phenotypic response variable T) and constraints on

their joint probability distributions. Each member of this class is

derived by parameterizing the joint probability distribution subject

to the constraints. An example of a parameterized Bayesian

network is provided in Figure S1. The following hold in all

Bayesian networks that belong to this example class:

N There exist two maximally predictive and non-redundant

signatures (Markov boundaries) of T: {A, C} and {B, C}.

Furthermore, {A, C} and {B, C} remain maximally predictive

and non-redundant signatures even in infinite samples from

that distribution (i.e., multiplicity does not vanish in the large sample).

N The pathway structure has very low connectivity (e.g.,

maximum in-degree = 1 and maximum out-degree = 2) (i.e.,

multiplicity does not require very dense connectivity).

N A and B are not deterministically related, yet they convey

individually the same information about T (i.e., multiplicity does

not require deterministic equivalence or extreme collinearity).

N If an algorithm selects only one maximally predictive and non-

redundant signature (e.g., {B, C}), then there is danger of

missing biologically important (causative) genes (i.e., A) and

focusing instead on confounded genes (i.e., B) (i.e., only some of

the predictively equivalent signatures have local causal interpretation).

N The union of all maximally predictive and non-redundant

signatures includes all genes located in the local pathway

around T, i.e., A and C (we define local pathway as genes directly

upstream or downstream of the response variable T.).

N In this example, the intersection of all maximally predictive

and non-redundant signatures contains only genes in the local

pathway around T (i.e., C).

The above example is concerned with the large sample case. In

practice, one deals with small samples where statistical inferences

have to be made about large sample predictivity and redundancy.

This creates an additional source of error and concomitant

multiplicity. An example of this is given in Text S2.

TIE* algorithm for identification of the set of maximally
predictive and non-redundant signatures

Figure 2 presents the high-level operation of the TIE* algorithm

that uses Markov boundary induction to identify the set of

maximally predictive and non-redundant signatures. Text S3

provides an example trace, proof of correctness, and implemen-

tation details of the algorithm. In step 1, TIE* uses a base Markov

boundary induction algorithm that identifies a single molecular

signature M of the phenotype with maximal predictivity and no

redundancy (Markov boundary). The same base algorithm is

applied repeatedly to versions of the original dataset in which some

subset of variables G has been removed (step 4). If a new signature

Mnew has the same predictivity for the phenotype as M, then it is a

Markov boundary and it is output (step 5). Steps 3–5 are repeated

until no subset G can be generated in step 3.

The base Markov boundary induction algorithm must be

suitable for the distribution at hand. Thus, TIE* is a generative

Figure 1. The figure describes a class of Bayesian networks that share the same pathway structure (with 3 gene variables A, B, C and
a phenotypic response variable T) and their joint probability distribution obeys the constraints shown below the structure. Red
dashed arrows denote nonzero conditional probabilities of each variable given its direct causes, and the absence of red dashed arrows denotes that
these conditional probabilities are zero. For example, P(T = 0 | A = 1)?0 while P(T = 0 | A = 2) = 0. Genes A, B and phenotypic response variable T take 3
values {0, 1, 2}, while gene C takes two values {0, 1}.
doi:10.1371/journal.pcbi.1000790.g001
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algorithm that is instantiated differently for different distributions.

In the experiments reported in this paper, we use as the base

algorithm HITON-PC (Figure S2), which is an instance of a very

broad class of Markov boundary inducers termed Generalized Local

Learning [25,26]. This choice of the base algorithm is motivated by

its empirical performance in microarray gene expression and other

high-throughput data as well as its theoretical properties [25–28].

TIE* is guaranteed to be correct in the large sample under its

stated assumptions. In the small sample some signatures that are

not maximally predictive and/or redundant will be statistically

indistinguishable from the maximally predictive and non-redun-

dant ones. This indistinguishability occurs at two different levels:

one is estimation of predictivity and testing for statistical

significance of differences in predictivity among signatures. The

second level is the performance of tests of conditional indepen-

dence (or functional equivalents such as Bayesian scoring) with

small samples inside the base algorithm which incurs errors of type

I and II. As the sample size grows, the algorithm will output only

truly maximally predictive and non-redundant signatures.

We present several experiments testing the new algorithm and

comparing it against 8 previously described multiple signature

extraction methods. The methods comprise of four resampling-

based algorithms, one iterative removal method, and three

stochastic gene selection methods (details in Text S4). Brute force

exhaustive search and genetic algorithms were not applied due to

their computational intractability.

Before applying TIE* to real data, we test its behavior in

controlled (i.e., simulated and resimulated data) experiments

where generative models are known and in the case of simulated

data all maximally predictive and non-redundant signatures are

known as well (details about data generation are provided in Text

S5). This allows us to test whether the algorithm behaves

according to theoretical expectations, whether it is robust to

moderate sample sizes, and whether it is sensitive to high

dimensionality. This also provides clues about the behavior of

TIE* and the baseline comparison algorithms in our experiments

with real human microarray data.

Reproducibility testing protocol, human microarray gene
expression datasets, and empirical criterion for assessing
maximal predictivity of signatures

To test reproducibility of molecular signatures, we adopt an

experimental design where one microarray dataset (‘‘discovery

dataset’’) is used for identification of signatures and estimation of

their predictivity by holdout validation [29], and another

independent dataset (‘‘validation dataset’’) originating either from a

different laboratory or from a different microarray platform is used for

validation of predictivity of the signatures. No overlap of subjects

between discovery and validation dataset analyses occurs in this

design. The criteria for dataset admissibility and exact protocol for

quality assurance and processing of pairs of datasets is described in

Text S6. In total, 6 pairs of gene expression microarray datasets

covering both human cancer diagnosis and outcome prediction

were used (listed in Table S1).

Operationally we define maximal predictivity for each dataset as

follows: we apply all tested methods for extraction of multiple

signatures to a dataset; then for each method we compute average

predictivity of the phenotype (over all identified signatures by this

method) measured by area under ROC curve (AUC); finally we

compute the maximum value of the above average predictivity

estimates and refer to it as ‘‘maximal predictivity’’.

Statistical comparisons of predictivity between methods in the

same dataset are accomplished by Wilcoxon rank sum test with

a= 0.05 [30]. This is a two-sided test of the null hypothesis that

two samples come from distributions with equal medians. When

we use this test, the first sample contains AUC estimates of all

Figure 2. High-level pseudocode of the TIE* algorithm. Non-redundancy is not explicitly checked during the operation of TIE* but is a required
property of the base Markov boundary algorithm. Details are provided in Text S3.
doi:10.1371/journal.pcbi.1000790.g002
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signatures identified by one multiple signature extraction method;

and the second sample contains AUC estimates of all signatures

identified by another method.

Results

Experiments with artificial simulated data
Tables S2 and S3 present the results of experiments with TIE*

and baseline comparison algorithms. The following are observed:

(i) TIE* perfectly identifies all 72 maximally predictive and non-

redundant signatures that exist in the distribution using datasets

with either 30 or 1,000 variables; (ii) iterative removal identifies

only 1 signature because all other signatures have a common

variable and thus cannot be detected by this method; (iii) KIAMB

fails to identify any optimal signature due to its sample inefficiency,

and because of the same reason its signatures have poor

classification performance; (iv) resampling-based methods either

miss many optimal signatures and/or output many redundant

variables in the signatures.

Experiments with resimulated gene expression
microarray data

We applied TIE* to resimulated gene expression data with

sample sizes: 300, 450,…, 1500, 2250, 3000,…, 30000. A

signature is operationally considered as non-reducible if it is not

properly included in any other signature output by this method

(i.e., it is a proxy of having no redundant genes). For example, if a

method outputs 3 signatures with the following genes: {A, B, C},

{A, B, X}, and {A, B}, only signature {A, B} is non-reducible. The

number of maximally predictive signatures (as confirmed in

independent data by holdout validation) and the number of

maximally predictive and non-reducible signatures output by the

algorithm for each sample size in resimulated data is shown in

Figure S3. As sample size increases, the number of output

maximally predictive signatures drops but then remains constant

in the range 160–644 (or 53–279 for non-reducible signatures) for

datasets with $4,500 samples. This is consistent with the existence of at

least two sources of multiplicity: one is small sample size and the other

is multiplicity intrinsic to the nature of gene-gene and gene-

phenotype relations. As sample size grows, the first source vanishes

and only the second one remains. Since the resimulated data

distribution closely mimics the real-life distribution (Text S5), this

experiment supports the hypothesized existence of multiple

maximally predictive and non-redundant signatures in very large

samples (.10,000) contrary to the theoretical model of [5].

Experiments with real human data showing that
signatures produced by TIE* have maximal predictivity in
independent validation datasets

Table S4 shows that TIE* achieves maximal predictivity in 5

out of 6 human microarray validation datasets. Non-TIE*

methods achieve maximal predictivity in 0 to 2 datasets depending

on the method. In the dataset where TIE* has predictivity that is

statistically distinguishable from the empirical maximal one (Lung

Cancer Subtype Classification), the magnitude of this difference is

,0.009 AUC on average over all discovered signatures; thus this

particular deviation from maximal predictivity may be considered

negligible for most practical purposes.

A detailed example of application of multiple signature extraction

methods to the Leukemia 5 Yr. Prognosis task is provided in Figure 3.

The figure shows predictivity estimated in the discovery dataset

(using an unbiased error estimator and protocol) against predictivity

verified in the validation dataset for each signature. As can be seen,

TIE* signatures have superior predictivity and lower variance

compared to the signatures output by other methods. Similar

behavior can be observed in other tasks as well.

Experiments with real human data showing that
signatures produced by TIE* are statistically reproducible
whereas signatures from other methods are often
overfitted

Figure 4 plots predictivity estimated in the discovery dataset

(using an unbiased error estimator and protocol) against pre-

dictivity verified in the validation dataset for all methods averaged

over all datasets and all discovered signatures. Recall that validation

datasets originate from different laboratories and/or using different

microarray platforms than discovery datasets. The horizontal

distance of each method to the diagonal measures the magnitude

of overfitting defined as the difference (e1-e2), where e1 = expected

performance in the validation data obtained by holdout validation

in the discovery dataset, and e2 = observed validation dataset

performance. TIE* rests slightly right of the diagonal denoting no

overfitting, or equivalently perfect statistical reproducibility on

average. However all other methods exhibit varying degrees of

non-reproducibility. Depending on method the average magnitude

of overfitting varies from 0.02 to 0.03 AUC.

Signatures produced by TIE* in human microarray data
have many genes in common

Analysis of the signatures output by TIE* reveals that they share

many genes in common. Table S5 shows the number of common

genes in 50%, 60%, …, 100% of output signatures for each

dataset. Genes differ in the percentage of signatures they

participate in. A heuristic that genes that belong to a larger

fraction of signatures are localized closer to the pathway(s)

affecting and being affected by the phenotypic response variable

may be useful in exploratory studies, however this does not hold in

all distributions [31].

Discussion

Computational complexity of the multiple signature
discovery problem

The properties of the data-generative process affect computa-

tional feasibility of the signature discovery. In the worst case, it is

computationally infeasible to discover even one of all optimal

signatures with all known sound algorithms (i.e., algorithms that

under specific conditions provably guarantee to provide the

desired output; for the purposes of the present paper, to find a

signature that is optimal in the population). However, there exist

several sound algorithms for extracting an optimal signature that

run in low-order polynomial time in real high-throughput data

(e.g., HITON-PC). Even if the computational cost of discovery of

one signature was constant, the number of all optimal signatures

can grow exponentially large in the number of genes measured (for

an example see Text S7). Thus the computational cost of

dissecting signature multiplicity ranges from low-order polynomial

(tractable) to super-exponential (infeasible) depending on the

distribution. The worst-case characteristics are a property of the

distribution analyzed and not the algorithm employed. One can

thus only hope that real-life high-throughput data distributions are

not representative of the worst-case theoretical ones. In addition,

algorithms are needed that exploit the structure of the generative

process to discover multiple signatures efficiently when the

distribution allows it. Our experiments support that real-life data

does not behave as the worst-case expected theoretical scenarios

Understanding Signature Multiplicity
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because TIE* terminated within at most several hours in each of

the 6 microarray datasets that contains more than 10,000

oligonucleotide probes (using a Matlab implementation on a

workstation with a single Intel Xeon 2.4 GHz processor and 4Gb

of RAM). One can postulate various reasons for the tractability

such as: (a) that biological pathways are sufficiently sparse thus not

allowing for an exponential number of optimal signatures; (b) that

to the extent that multiplicity denotes biologically redundant

function, there is an ‘‘economy’’ of such redundant mechanisms,

and (c) that a very large number of optimal signatures requires

constraints on the network topology that are inconsistent with the

structure of many biologically functional pathways.

Understanding causes of signature multiplicity
The results of the present study refute or suggest that

modifications are needed to several widespread positions about

causes of signature multiplicity. The example model pathway in

Figure 1 demonstrates that signature reproducibility neither

precludes multiplicity nor requires sample sizes with thousands of

subjects. It also shows that multiplicity of signatures does not require

dense connectivity of the underlying pathways. Similarly, it shows

that noisy measurements or normalization are not necessary

conditions for signature multiplicity. The resimulation experimental

data suggest that networks modeled on real gene expression data

can exhibit signature multiplicity even in large sample sizes and that

in this type of data, multiplicity is produced by a combination of

small sample size-related variance and intrinsic multiplicity in the

underlying network. The results with real human microarray

datasets show that multiple signatures output by TIE* are

reproducible and maximally predictive even though they are

derived from small sample, noisy, and heavily-processed data.

Our results are consistent with the hypothesis that signature

multiplicity in real-life datasets is created by a combination of

several factors that include the following: First, the intrinsic

information redundancy (due to gene-gene and gene-phenotype

relations) in the complex regulatory network of the underlying

biological system. Second, the variability in the output of gene

selection and classifier algorithms especially in small sample sizes.

Third, the small sample statistical indistinguishability of signatures

that have different large sample predictivity and/or redundancy

characteristics (example is given in Text S2). Fourth, the presence of

hidden/unobserved variables (example is given in Text S8). Fifth,

correlated measurement noise components that introduce a bias in

gene expression profiles (e.g., noise that is localized in regions of

microarray chips) [32]. Sixth, RNA amplification techniques that

systematically distort measurements of transcript ratios (e.g.,

Figure 3. Plot of classification performance (AUC) in the validation dataset versus classification performance in the discovery
dataset for each signature output by each method for the Leukemia 5 yr. Prognosis task. Each dot in the graph corresponds to a signature
(SVM computational model of the phenotype).
doi:10.1371/journal.pcbi.1000790.g003
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double-round T7-based amplification protocol) [33]. Seventh,

cellular aggregation and sampling from mixtures of distributions

that affect inference of conditional independence relations that are

needed to establish model equivalence according to our framework

for multiplicity [34]. Eighth, normalization and other data pre-

processing methods that artificially increase correlations among

genes (e.g., multivariate normalization in microarrays) [9–11].

Finally ninth, the engineered redundancy in the assay technology

platforms (e.g., multiple probes for the same gene). In datasets

produced by dissimilar underlying biological mechanisms, assayed

with different platforms and pre-processed and modeled with a

variety of algorithms, the relative contributions of the above

factors to multiplicity will vary. As a result, methods that rely on a

specific cause of multiplicity or combination of causes will not

output all maximally predictive and non-redundant signatures in

all types of high-throughput data.

Analysis of methods for multiple signature extraction
With regard to non-TIE* baseline comparison algorithms, we

note that resampling-based methods that use bootstrap samples to

extract signatures may stop producing multiple signatures in large

sample sizes. This is expected because resampling methods are

designed to address directly only the small sample multiplicity and

not the intrinsic multiplicity which persists in large samples.

Iterative removal, on the other hand, by its design always fails to

identify all maximally predictive and non-redundant signatures

that have genes in common. KIAMB among the baseline

algorithms has the strongest theoretical motivation because it

can be shown to discover all Markov boundaries for a subset of

distributions. However, a major limitation of KIAMB is that it has

sample size requirements that range from at least linear to

exponential to the number of genes in a signature (depending on

the test of independence employed). This makes the algorithm not

only computationally inefficient but also prone to statistical errors

in small sample sizes. This leads to its substantial observed

overfitting in the experiments with real data and its inability to find

the maximally predictive and non-redundant signatures in

simulated data. KIAMB, being a randomized search algorithm,

also guarantees to output all optimal signatures that satisfy its

distributional requirements, but only after infinite number of runs.

Figure 4. Plot of classification performance (AUC) in the validation dataset versus classification performance in the discovery
dataset averaged over 6 pairs of datasets. Axes are magnified for better visualization.
doi:10.1371/journal.pcbi.1000790.g004
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The method by design will discover the same signatures over and

over again further compounding its computational inefficiency.

Dealing with molecular signature multiplicity using a Markov

boundary framework and the TIE* algorithm does not require a

particular combination of factors causing signature multiplicity in

order to be able to discover all maximally predictive and non-

redundant signatures. Because of efficient heuristics, TIE* can

extract the signature set very quickly when the connectivity is

locally sparse, and the number of true optimal signatures is low-

order polynomial or smaller in the number of variables. A very

important factor for the performance of TIE* is the choice of the

base algorithm to discover non-redundant and maximally

predictive signatures in the distribution at hand. Latest develop-

ments in Markov boundary discovery provide such tools for high-

throughput data. One of the key advantages of these methods is

their ability to implicitly control for false discovery rate [25].

Future research
Our experiments used real data exclusively from human cancer

gene expression microarrays because of pragmatic reasons: known

identity of observed variables, number and size of datasets, and

maturity of standardization protocols that allows for multiple

independent dataset validation experiments. The methods intro-

duced here are however directly applicable to any high-

throughput data, and future research in this direction is warranted.

As an example of applicability of TIE* to high-throughput data

beyond gene expression microarrays, we applied the method to

proteomics mass-spectrometry data where TIE* identified hun-

dreds of signatures of ovarian cancer with AUC = 0.9520.98

(details in Text S9).
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