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Abstract

Visual attention is thought to be driven by the interplay between low-level visual features and task dependent information
content of local image regions, as well as by spatial viewing biases. Though dependent on experimental paradigms and
model assumptions, this idea has given rise to varying claims that either bottom-up or top-down mechanisms dominate
visual attention. To contribute toward a resolution of this discussion, here we quantify the influence of these factors and
their relative importance in a set of classification tasks. Our stimuli consist of individual image patches (bubbles). For each
bubble we derive three measures: a measure of salience based on low-level stimulus features, a measure of salience based
on the task dependent information content derived from our subjects’ classification responses and a measure of salience
based on spatial viewing biases. Furthermore, we measure the empirical salience of each bubble based on our subjects’
measured eye gazes thus characterizing the overt visual attention each bubble receives. A multivariate linear model relates
the three salience measures to overt visual attention. It reveals that all three salience measures contribute significantly. The
effect of spatial viewing biases is highest and rather constant in different tasks. The contribution of task dependent
information is a close runner-up. Specifically, in a standardized task of judging facial expressions it scores highly. The
contribution of low-level features is, on average, somewhat lower. However, in a prototypical search task, without an
available template, it makes a strong contribution on par with the two other measures. Finally, the contributions of the
three factors are only slightly redundant, and the semi-partial correlation coefficients are only slightly lower than the
coefficients for full correlations. These data provide evidence that all three measures make significant and independent
contributions and that none can be neglected in a model of human overt visual attention.
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Introduction

In daily life, eye movements center parts of a scene on the

human fovea several times a second [1]. The part of the visual field

falling onto the fovea is represented with the highest spatial acuity

and, compared to the periphery, receives disproportionately more

cortical processing resources [2]. The selection process is an

important aspect of attention, and it has a profound impact on our

perception [3]. The selection of fixation points is governed by

several factors. First, goal-driven, top-down mechanisms adapt eye

movements to the specific task [4,5]. Second, bottom-up

mechanisms that consider only sensory-driven aspects, such as

local image features [6], contribute to the fixation selection

process. Third, characteristics inherent to the visual apparatus,

such as the spatial bias to the center region [7] and geometric

properties of saccades [8], are widely acknowledged to influence

the selection of fixation points. However, the relative roles and the

interaction of these mechanisms are not understood, and a

quantitative understanding of the principles of fixation selection is

still lacking.

Attention models designed to cope with the complexities of

natural conditions are usually based on a so-called salience

map [6]. Filtering the input image with kernels reminiscent of

early visual processing generates feature maps at various

spatial scales. These are then combined into a single salience

map, which encodes the probability that an image region will

be attended [9]. In principle, the selection of features for such

models is unconstrained. First implementations were designed

to explain covert attention in experiments involving artificial

stimuli and based on a repertoire of simple features. Present

models slowly move towards a more complete list of relevant

features [10] and include more and more features (Betz T,

Kietzmann TC, Wilming N, König P (in press). Investigating

task dependent top-down effects on overt visual attention. J

Vis). Furthermore, they introduce probabilistic and decision

theoretic concepts [11,12,13]. Salience maps predict, to some

extent, fixations in complex scenes [14,15,16,17,18] for

humans as well as for monkeys [19]. The critical phrase

‘‘to some extent’’ is at the center of an intense debate. Is it

possible to refine models based on stimulus dependent salience

PLoS Computational Biology | www.ploscompbiol.org 1 May 2010 | Volume 6 | Issue 5 | e1000791



to model overt attention as well as intersubject variability

allows?

A major concern is that even if features of the salience map,

such as luminance contrast, are good correlates of fixation

probability, they do not necessarily drive attention causally

[7,20,21], but are contingent on higher-order statistics [22]. These

issues have raised considerable skepticism regarding models based

purely on low-level image features.

For these reasons, there is consensus that viable models of

human attention should not rely solely on stimulus properties.

Specifically, eye movements are influenced by spatial constraints

and properties of the oculomotor system. A wide range of studies

has demonstrated a preponderance of small amplitude saccades

[23]. Furthermore, under typical lab conditions observers have a

central bias—i.e., a tendency to fixate preferentially close to the

center of photographs of natural scenes, in excess of behavior

under truly natural conditions [24,25]. Furthermore, the recent

years have seen a major advance in our understanding of scene

layout. Including such information, which was automatically

generated by machine learning algorithms, leads to a very high

prediction accuracy in a search task for pedestrians [26].

Furthermore, recent work demonstrates that spatial properties

might have a large influence on overt attention [27]. While it is

clear that these spatial factors contribute to the selection of

fixation points, there is as yet no quantification of their general

influence.

That the task context influences eye movements has long been

observed [1,5]. In a study utilizing a variety of tasks—including

abstract interpretations, such as the judgment of social status—the

task was found to strikingly modify observed fixation patterns [5].

Also the complex activities of daily living reveal the task

dependence of human eye movements [28]. Models for visual

attention based solely on low-level visual features fail to capture

the effects of the task context. Several extensions to existing and

also new models have been proposed to address that shortcoming

[29,30,31]. An elegant information theoretic approach combines

visual appearance, spatial information and high-level information

further improving prediction accuracy (Kanan CM, Cottrell GW

(2010). Robust classification of objects, faces, and flowers using

natural image statistics. In Proceedings of the Computer Vision

and Pattern Recognition Conference (CVPR-2010)).

It was suggested early on that in a specific task context, the

information content of an image patch defines its salience [32,33].

This proposal has triggered bottom-up driven models of attention

incorporating a decision theoretic approach [11,12,13]. Hence the

information content of a patch may be viewed as a task dependent,

high-level feature. This view is suited to reconciling stimulus-

driven models and task-centered models. Recent studies empha-

sizing the importance of objects in overt attention are compatible

with this view [34]. However, information content is determined

either intuitively or based on a direct subjective rating.

Furthermore, there is presently no general algorithm available

that would reliably label objects in a visual scene. Instead studies

rely again on ratings of human subjects (http://labelme.csail.mit.

edu/). An explicit quantification of the contribution of task

dependent factors relative to feature-based factors is still missing.

In summary, it is widely acknowledged that image features, the

task of the observer, and the properties of the oculomotor system

contribute to the selection of fixation points. Still, in the absence of

quantitative data on the relative weight of the different factors,

settling the issue of how exactly each of these contributes towards

overt attention is not possible. In the present study, we attempt a

step in this direction: we quantify the relative contribution of

stimulus properties, task dependence, and oculomotor constraints

to the selection of fixation points. We capture stimulus dependent

properties by an analysis of low-level image features. Task

dependent factors are captured by the information content of

discrete parts of the stimulus in well defined tasks. The influence of

oculomotor constraints is taken into account by a generative

model including typical saccadic parameters and the central bias.

With this approach we obtain scalars for each of these three factors

for each image region, allowing us to quantify their independent

contributions to human eye movements.

To quantify the three different types of influences we sample

non-overlapping image patches (bubbles) from forest scenes and

face images. These isolated patches are shown in different

configurations in combination with a classification task. This

design is inspired by Gosselin and Schyns, who have introduced

the bubble paradigm to measure which parts of an image are used

by the observer to solve a classification task [35,36,37,38]. The

technique applies two-dimensional Gaussian filters to isolate

locations of visual cues, which are called bubbles. These are then

presented in varying combinations, revealing only a limited

controlled subset of the image content in combination with a

classification task. Based on the observers’ responses, Gosselin and

Schyns derived a map revealing the regions of an image that are

relevant for a specific classification task [35]. We use the bubble

technique in combination with an eye-tracking experiment to

obtain measures of different contributions to overt attention. Each

bubble is treated as an independent unit. Utilizing recorded eye

movements, responses in the classification task, feature analysis of

the image patches, and baseline data taken from a free viewing

eye-tracking study, we compute four measures: the stimulus

dependent measure captures low-level feature contrast and is

based on the luminance and texture distribution within each

bubble. The task-related measure ignores image features, but

quantifies how much information a bubble contains in the context

of a specific classification task. Additional high-level factors, e.g.

emotional and attentional state, might be relevant. We tried to

keep these constant as much as possible. This quantification does

of course not capture all possible top-down effects discussed in the

literature as a classification task provides a particular context. The

third measure, describing the spatial characteristics of eye

Author Summary

In our lifetime we make about 5 billion eye movements.
Yet our knowledge about what determines where we look
at is surprisingly sketchy. Some traditional approaches
assume that gaze is guided by simple image properties like
local contrast (low-level features). Recent arguments
emphasize the influence of tasks (high-level features) and
motor constraints (spatial bias). The relative importance of
these factors is still a topic of debate. In this study, subjects
view and classify natural scenery and faces while their eye
movements are recorded. The stimuli are composed of
small image patches. For each of these patches we derive a
measure for low-level features and spatial bias. Utilizing
the subjects’ classification responses, we additionally
derive a measure reflecting the information content of a
patch with respect to the classification task (high-level
features). We show that the effect of spatial bias is highest,
that high-level features are a close runner-up, and that
low-level features have, on average, a smaller influence.
Remarkably, the different contributions are mostly inde-
pendent. Hence, all three measures contribute to the
guidance of eye movements and have to be considered in
a model of human visual attention.

Influences on Overt Visual Attention
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movements, builds on a baseline study and takes into consideration

the global fixation bias and geometrical properties of saccades. By

evaluating the eye-tracking data of the main study, we obtain the

fourth measure that captures the empirical salience of each

bubble.

In comparison to full field stimuli, our bubble stimuli consist of a

manageable number of discrete perceptual units. Using discrete

units allows us to assign a single value for each of the measures to

each bubble. In particular, describing the task dependent

information of a bubble using the degree of agreement between

subjects with respect to a classification task requires individual

pieces of visual information. It is not clear how a measurement of

local information content could be achieved using full field stimuli

only. Accordingly, the problem of measuring local information is

exactly the one addressed when the bubbles technique was first

established [35].

Having acquired the four measures for each bubble, we finally

use linear multivariate regression to quantify the overall and

the individual, i.e., non-redundant, contributions of the task-

dependent, feature-based, and spatial-based factors influencing

attention.

Results

In this study, subjects had to classify visual stimuli based either

on face images or on forest scenes. We employed a total of four

different tasks. Face stimuli had to be classified either according to

gender or according to facial expression, with the stimulus

classes happy, sad, fearful, or disgusted. For the stimuli based on

forest scenes, one task (space) was to decide whether the scenery

was close and narrow – when the image was a close-up or displayed a

closed environment – or whether it was wide and open. The other

task was to judge the presence of indicators of human influence
such as houses, roads, paths, trunks of trees. Stimulus presentations

lasted for three seconds during which the subjects’ eye movements

were recorded. The majority of the stimuli were composed of 1 to

5 bubbles placed on a gray background. Half of the stimuli

consisted of bubbles originating from the same full field image

(condition same), whereas 15% of the stimuli combined bubbles

from different full field images belonging to the same stimulus class

(condition congruent). Another 15% of the stimuli were

composed of bubbles originating from full field images of different

classes (condition incongruent). To control for position effects,

we also showed stimuli (16%) in which the positions of the bubbles

are shuffled (condition permuted). The remaining 4% of the

stimuli were full field images, which we used to confirm that

subjects agreed on the classes of the images underlying the bubble

stimuli. The bubbles themselves were constructed from square

image patches with a side length of 6 visual degrees. To each

patch, we applied a space-variant filter to imitate the retinal

resolution when fixating the center of the bubble and a Gaussian

mask to avoid visible edges.

75 subjects took part in this study, each performed 280 trials.

We used a total of 2061 gray-scale stimuli for all subjects. This

resulted in 21000 trials, recorded with 131935 fixations.

Bubbles are Treated as Units
In a first step, we investigated viewing behavior relative to

bubbles. Subjects made, on average, 6.2 fixations in each trial

where bubbles were presented. Of these, 94% were no more than

3 visual degrees distant from the closest bubble center and thus

were located well inside a bubble. Three percent were located at

the screen center and can be attributed to anticipation of the

decision screen that followed each trial. The remaining 3% were

scattered across the screen. Hence, the fixations were rare in the

space between bubbles and were clearly targeted at bubbles.

We designed the bubbles in such a way that maximal and

complete information is available when subjects fixated the center

of the bubble (see Methods). Hence subjects would not gain

anything by scanning different positions within the same bubble.

This, however, does not necessarily prevent them from doing so.

We tested this to confirm that bubbles were indeed treated as

perceptual units. Of the total number of fixations that targeted

bubbles, 60% originated from outside the respective bubble (‘‘first

fixations’’). The remaining 40% were due to saccades within a

bubble (‘‘subsequent fixations’’). The distributions of distances to

bubble centers for these two groups of fixations were significantly

different (p,0.01, KS-test, Figure 1). The median of the distances

Figure 1. Fixations on bubbles. (A) An example trajectory recorded during the experiment. The fixation labeled with zero is the first fixation in
that trial, which was excluded from analyses. (B) Distributions of distances between fixation locations and the closest bubble center for ‘‘first
fixations’’ into a bubble (median 1.05u) and ‘‘subsequent fixations’’ within the same bubble (median 0.91u). For comparison, the distribution that
would result if all fixations were sampled from the Gaussian window used to construct the bubbles (median 1.18u) is also given.
doi:10.1371/journal.pcbi.1000791.g001

Influences on Overt Visual Attention
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to the closest bubble center was 1.05u for ‘‘first fixations’’ and

larger than the median of 0.91u for ‘‘subsequent fixations’’. For

pairs of first and subsequent fixations, the subsequent fixation was,

on average, 0.16u closer to the bubble center. Additionally, both

distributions were more sharply peaked than the distribution that

would have resulted if fixations had been sampled from the

Gaussian mask used for bubble construction (p,0.01 in both

cases, KS-test, see Figure 1). Altogether, the fixation data do not

indicate that individual bubbles were scanned for information, but

suggest that participants targeted bubble centers and made small

corrective saccades towards bubble centers when landing off-

center. The data is hence consistent with the assumption that

bubbles were treated as perceptual units.

Building on the property that bubbles are treated as units, we

derive a measure characterizing the empirical salience of a

complete bubble. It is based on the fixation counts of a bubble in

specific stimulus configurations (see below). In the above example

of Figure 1 these fixation counts amount to 3, 3, 0, and 0 for

bubbles A, B, C, and D, respectively. These counts are then

averaged over subjects.

Information of Different Bubbles is Integrated
The average classification performance for the original images

(full field stimuli) was 94%, as measured by the fraction of

responses that were correct with respect to the image class

established in pre-experiments. For the four tasks average

performance was 87%, 94%, 99% and 94% (expression, gender,

influence, and space). When comparing the different tasks, please

note that in expression the chance level is 25% and in all others

50%. The high-level of performance indicates that participants

understood the tasks and had a shared interpretation of stimulus

classes.

In order to be independent of predefined ‘‘correct’’ responses in

the following analyses, we use the more general measure of stimulus

information. It is defined by the maximal possible entropy of the

distribution of responses minus the entropy of the actual response

distribution (see Methods). When all subjects agree on the

classification of a stimulus, that stimulus contains maximal

information with respect to the classification tasks. When their

response distribution is flat, the stimulus contains no information.

In the case of expression, with 4 choices the stimulus information ranges

from 0 to 2 bit, in the other tasks from 0 to 1 bit. Stimulus information

thus captures the degree of consensus from the subjects classifying

the stimuli.

Next we investigated stimulus information in the reduced

stimuli composed of bubbles. Presenting bubble stimuli composed

of bubbles taken from the same base image (condition same) yielded

average stimulus information of 1.18 bit, 0.66 bit, 0.74 bit, and

0.54 bit for the four tasks expression, gender, influence, and space,

respectively. Presenting stimuli composed of bubbles taken from

different images of the same response class (condition congruent)

average stimulus information changed to 1.31 bit, 0.62 bit, 0.67

bit, and 0.61 bit (expression, gender, influence, and space). In contrast, in

presenting stimuli composed of bubbles taken from images of

different response classes (condition incongruent) it dropped to 1.12

bit, 0.55 bit, 0.58 bit, and 0.34 bit. These data demonstrate that

stimulus information is far from complete and that no ceiling

effects are to be expected.

To address the integration of information we analyze stimulus

information as a function of the number of bubbles (Figure 2).

First, we compare measured stimulus information in the same

condition with estimates of a probabilistic model of information

integration (see Methods). The model, which we denote as

p-model, integrates the response distributions of individual

bubbles to estimate the stimulus response distribution and is

presented here as a hypothesis. In the following, we only test

plausibility of the p-model; we give a more detailed account in the

Discussion. Stimulus information is computed from the entropy of

the stimulus response distribution as described above. The p-

model assumes independence of the information in different

bubbles and integrates the information optimally. To predict

stimulus information as a function of the number of bubbles, a

sample of the bubbles, which were presented on their own, is

selected. Then the respective response distributions of these stimuli

are integrated using the p-model. This procedure is repeated 1000

times for each number of bubbles and each task. The resulting

average information values are compared to the empirically found

information values of the stimuli containing the respective

numbers of bubbles (Figure 2). The selection of single bubble

stimuli for integration is done independent of image class. In the

expression task, which uses face stimuli, we observe a pronounced

surplus of experimentally observed average stimulus information

(green line) compared to the prediction of the p-model (dashed

black line). This higher-than-expected stimulus information

indicates a violation of the assumption of independence of the

information in different bubbles and is investigated below. In the

gender task, which also uses face stimuli, at four and five bubbles a

surplus of measured information is observed as well. Due to the

larger variance of these two data points it does not reach

significance. Stimulus information in the influence task, which uses

natural scenes, is well predicted by the p-model, and no significant

deviation of estimate and data could be detected (p.0.05,

bootstrapped confidence intervals). For space, stimulus information

is a little, but significantly, smaller than predicted by the p-model

(p,0.05, bootstrapped confidence intervals). In this condition, the

integration strategy of the subjects does not quite reach optimal

performance. These data suggest that the p-model provides a

reasonable description of the information integration. The

mentioned deviations are further investigated below.

Now, we investigate the integration of information for the

different conditions. We compare stimulus conditions same and

congruent. In contrast to the former, the latter is composed of

bubbles that originate from different full field images of the same

response class. Data obtained in same and congruent conditions give

rise to nearly identical values of stimulus information in all tasks,

and their difference is never significant (p.0.05, bootstrapped

confidence intervals, Figure 2 green and red lines). Specifically,

this includes the large deviation from the prediction of the p-model

in the expression task. This indicates that the information of bubbles

is integrated in the same way, irrespective of whether the bubbles

originate from the same or different congruent full field stimuli.

To further elucidate the cause for the deviations of the data

from the p-model estimates, we consider the interaction of bubble

information and spatial location. For this purpose, we employ

permuted stimuli. These are composed of bubbles placed at

positions not matching their location in the respective full field

stimuli (see Methods). In all tasks, including the expression task, the

stimulus information in this permuted condition is well predicted by

the p-model (Figure 2A, blue line). For the face stimuli, this,

together with the large differences between the p-model and the

same and the congruent condition for high numbers of bubbles,

demonstrates that the subjects’ integration of information is

influenced by bubble locations. This can be understood intuitively

if one assumes that bubbles at certain locations (e.g., mouth) are

given more weight, irrespective of the actual content of the bubble

(e.g., smile). Indeed, the main result for permuted stimuli is an

improved fit by the p-model. On the other hand, position effects

are not a likely cause for the deviations in the space task. There,

Influences on Overt Visual Attention
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the permuted and same conditions show no pronounced differences.

The stimulus information for both is slightly below that of the p-

model.

To test more directly whether bubble position and arrangement

have an influence on information integration in the tasks gender,

influence, and space, we performed an additional test and considered

the differences between the response distributions of normal

stimuli and their permuted versions. To specify whether these

differences reflect a significant effect of permutation, we investigate

whether the differences are consistent with the assumption that the

responses for normal and permuted stimuli are sampled from the

same stimulus answer distribution, independent of bubble

arrangement. As the overwhelming majority (98.6%) of the

differences between permuted and non permuted stimuli is located

within the 95% confidence region of the zero hypothesis, no

significant effect of permutation could be detected. It must be

noted, however, that the test power is limited by the small number

of trials using permuted stimuli.

We arrive at the conclusion that the p-model provides a good

description of integration of information for face stimuli in the

permuted condition and for forest scenes in all conditions. In the

same and the congruent condition, face stimuli consisting of many

bubbles are processed using additional configural information

[39].

Three Different Saliences of Bubbles and their Relation to
Fixation Behavior

Now we address the relative contributions to fixation behavior

of the stimulus dependent salience, task dependent information,

and geometric properties of the stimuli. First, to address the

stimulus dependent salience, we consider the low-level visual

information of luminance contrast and texture contrast. These

features are presumably processed in a bottom-up manner and

have been used in other studies before. Second, to address the task

dependent information, we consider the measure of bubble

information, which captures the contribution of a bubble to the

Figure 2. Stimulus information versus number of bubbles for the four tasks. Stimulus information estimated using the p-model is plotted
for all four tasks (black dashed line). This is contrasted with the measured stimulus information in the same condition (green line) and in the congruent
condition (red line). The blue line marks the measurements that result if the positions of bubble stimuli of the same condition are shuffled (same,
permuted). The colored stars mark significant differences (p,0.05, bootstrapped confidence intervals) between the curve belonging to the respective
condition and the p-model estimate. For visibility, the 95% confidence interval is marked by error bars only for condition same.
doi:10.1371/journal.pcbi.1000791.g002

Influences on Overt Visual Attention
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classification responses of subjects (see Methods). Third, to address

the geometric properties, we investigate whether a simple

generative model of fixation behavior that is based on the spatial

arrangement of bubbles, central fixation bias, and geometrical

constraints of average saccadic length and direction is informative

with respect to the frequencies of fixation of different bubbles.

Finally, these three components are used to explain the empirical

distribution of fixations on bubbles, represented by empirical

saliences. The measure of empirical salience is a context

independent measure that represents how often a bubble is fixated

relative to any other bubble. To obtain a measure which is

independent of the specific stimulus context (instead of values for

each stimulus) we combined the data from all stimuli and

computed the best linear fit (see Methods). With this measure in

turn the actual averaged fixation counts on the individual stimuli

can be reconstructed with an average accuracy of 94.4%. Hence

the empirical salience gives a faithful description of the fixation

probability of a bubble in all stimulus configurations. The three

former components and their relation with empirical salience are

now considered in turn.

Correlation of Low-Level Stimulus Features with
Empirical Salience

In agreement with a large body of previous research

[11,12,21,40,41,42], we characterize low-level visual information

contained in a bubble by its luminance and texture contrast. We

estimate the contribution to fixation behavior by considering

fixation probability conditioned on these feature contrasts. This

allows determining the correlation of local features, as used in

common stimulus-driven models of overt attention, with the

empirical salience of bubbles.

The luminance and texture contrast of bubbles are determined

by standard procedures (see Methods). To infer the conditional

fixation probability, we recur to a previous study where gaze

movements on full field images have been recorded, and the

conditional probability to fixate a location given its feature values

was determined empirically [43]. Here we use the same procedure

and the results of the previous study to convert both luminance

contrasts and texture contrasts into fixation probabilities. To

obtain a model that incorporates both, we combine the resulting

probabilities, assuming independence of the contributions of the

two feature contrasts.

Figure 3A shows an example stimulus from the expression task

with the individual bubbles labeled with their stimulus dependent

salience. Bubble A, located on the right eye and eyebrow, contains

high luminance and texture contrasts. This is mapped to a high

value of the stimulus dependent salience (see Methods). Relative to

the other bubbles of the expression task, bubble A has a high

stimulus dependent salience and a high empirical salience, placing

it in the upper right-hand corner of the scatter plot of stimulus

dependent salience vs. empirical salience (Figure 3B). Bubble B,

centered on the upper lip, has a lower stimulus dependent salience,

but is looked at slightly more often than bubble A, placing it in the

upper left-hand corner of the scatter plot. Bubble C, showing hair,

has the strongest stimulus dependent salience of all four bubbles,

but is only rarely looked at, placing it in the lower right corner of

the plot. Bubble D, also showing hair, has very low stimulus

dependent and empirical salience, placing it in the lower left

corner of the plot. In this specific example, stimulus dependent

salience and empirical salience appear unrelated.

To determine the predictive power of the feature-driven model,

we correlate the predicted fixation probabilities for individual

bubbles with their empirical salience (both log transformed, see

Methods). Figure 3B shows a scatter plot of stimulus dependent

salience of all bubbles in the expression task versus their empirical

salience. It shows a weak, albeit not significant, correlation

(p.0.05, t-test). Similarly, no significant correlation is observed for

the space task (Figure 3C). In the remaining two tasks, gender and

influence, we do observe a significant correlation. This shows that

the strength of the correlation of low-level features with selected

fixation points varies as a function of the task for photographs of

faces as well as of natural environments.

Correlation of Bubble Information with Fixated Bubbles
We take the contribution of a bubble to stimulus information as a

surrogate for high-level information. We estimate bubble infor-

mation for all bubbles that were shown in isolation or in

combinations by assuming that the information of individual

bubbles in a stimulus is integrated according to the p-model.

Under this assumption, bubble information can be estimated in a

global fit that maximizes the agreement between the subjects’

responses to all stimuli and the alleged information contained in

each single bubble (see Methods). This global fit estimates the

information contained in each bubble, including those that were

shown in isolation.

As a model of information integration we use the p-model

introduced above. The results of the global fit based on the p-

model may be viewed as a high-level feature specific to the context

Figure 3. Relationship between stimulus dependent and empirical salience. (A) Example stimulus from the expression task with bubbles
labeled by their stimulus dependent salience. (B) Scatter plot of stimulus dependent vs. empirical salience for the expression task. The positions of the
bubbles from the example stimulus are marked by colored dots. The correlation coefficient r is given as a figure inset. (C) Correlation coefficients for
all four tasks (E – expression, G – gender, I – influence, S – space). One star marks a significant correlation (p,0.05, t-test); two stars mark a highly
significant correlation (p,0.01, t-test).
doi:10.1371/journal.pcbi.1000791.g003
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of the current task. Figure 4A shows an example of a stimulus of

the expression task where the total measured stimulus information is

2 bit. The individual bubbles are labeled with their fitted response

distributions and bubble information values. The global fit gives

the information content as 0.40, 1.84, 0.13, and 0.01 bit for

bubbles A, B, C, and D, respectively. In turn, estimating the

stimulus information by the p-model results in 1.97 bit. This is

close to the measured stimulus information with an error of 0.03

bit. Over all the bubble stimuli, the mean errors of stimulus

information predicted from the fitted bubble answer distributions

are 0.32, 0.20, 0.26, and 0.24 bit for the tasks expression, gender,

influence, and space, respectively. For comparison, we computed the

errors that would be expected if the predictions by the p-model

were the true underlying response distributions of the stimuli (see

Text S1 B). In that case, the subjects sample their responses from

the predicted response distributions and the resulting average

errors serve as lower bounds for the expected errors. The resulting

errors are 0.29, 0.16, 0.16, and 0.18 bit (expression, gender, influence

and space). This implies that the deviation from the p-model stays

within a factor of 2 of the theoretical lower limit and is consistent

with the observation above that the p-model faithfully describes

the dependence of stimulus information on the number of bubbles

(Figure 2). Hence, bubble information is reliably estimated by the

global fit with the p-model.

Figure 4B and C show the frequencies of bubble information for

the four tasks. The majority of bubbles have low bubble information

values. Only a few have very high information. Bubble information

varies over the whole possible range in all four tasks.

We now investigate the correlation between bubble information

and empirical salience (both log transformed, see Methods).

Figure 5A shows the example stimulus with the individual bubbles

labeled by their bubble information, and Figure 5B shows a scatter

plot of bubble information and empirical salience for the expression

task. Bubble A, located on the right eye, is somewhat informative

and looked at very often, placing it in the upper right corner of the

plot. Bubble B, located on the smiling mouth, is much more

informative than A but looked at only slightly more often, placing

it in the upper right corner of the plot, to the right of bubble A.

Bubble C, showing hair, has less information than A and B but is

still somewhat informative. It is looked at less often than A and B.

Bubble D, finally, has almost no information and is also looked at

very seldom. In this specific example, bubble information and

empirical salience are closely related.

Investigating the complete set of bubbles, we find that for the

expression task the correlation of bubble information and empirical

salience is highly significant (p,0.01, t-test). Although there is a

noticeable drop in correlation for the tasks gender, influence, and

space; all are highly significant (p,0.01, t-test) as well (Figure 5C).

Hence there are strong correlations between bubble information

and empirical salience in all four tasks.

Correlation of Spatial Arrangement with Fixated Bubbles
We use a generative model to predict the empirical salience of a

bubble independent of its visual content, but given its location.

The generative model, as defined in the Methods section, predicts

gaze trajectories on a stimulus given the initial fixation spot and

the spatial arrangement of bubbles. Please note that the spatial

arrangement of the bubbles alone does not contain information on

the frequency of fixations on different bubbles. The model takes

into account the central bias of fixations and geometric constraints

Figure 4. Bubble information. (A) Example stimulus from the expression task where the individual bubbles are labeled by their fitted response
distributions and the corresponding bubble information. The four numbers above the black line give the response probabilities for the classes
‘‘disgusted,’’ ‘‘happy,’’ ‘‘fearful,’’ and ‘‘sad.’’ The bold number below the line gives the bubble information (in bit). For the whole stimulus, the
measured response distribution and stimulus information (in bit) is given in the lower right corner. (B) The distribution of bubble information for the
expression task. The bubble information of the four bubbles of the example stimulus is marked by colored dots. (C) The distribution of bubble
information for the other three tasks gender, influence and space.
doi:10.1371/journal.pcbi.1000791.g004
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on the length and direction of saccades. It does not incorporate an

explicit inhibition of return (see Discussion). Both the central bias

of fixations and the geometric constraints on saccades are grand

averages over a large number of full field stimuli from many

different categories (see Methods). The model generates fixation

sequences on bubble stimuli. From these sequences the average

probabilities of fixating individual bubbles on a stimulus are

computed. These only locally valid values are now transformed to

a global scale in the same way as the relative frequencies of

fixations made by actual subjects were transformed into empirical

saliences (see Methods). We now consider the correlation of this

spatial bias salience with empirical salience (both log transformed).

Figure 6A shows an example of a stimulus from the expression task

where the individual bubbles are labeled with their spatial bias

saliences, and Figure 6B shows a scatter plot of spatial bias salience

versus empirical salience. Bubbles A and B are looked at very often

and have relatively high spatial bias saliences, which is probably

due to the fact that they are close to the center of the stimulus and

close to each other. Bubbles C and D, which are farther away from

the center and have lower spatial bias saliences, are looked at

much more rarely. In this specific example, spatial bias and

empirical salience are closely related.

For all bubbles of the expression task, the correlation between

spatial bias salience and empirical salience is highly significant. For

the other three tasks, the correlation is highly significant as well

(Figure 6C). The correlation of empirical salience with the

prediction based on spatial properties is of comparable strength

in all four tasks.

Partializing the Information in Low-Level Stimulus
Features, Bubble Information, and Spatial Arrangement

For a combined view we compare the values of all three

predictor variables and empirical salience for the example stimulus

(Figure 7). Gathering the information from Figure 3, 5, and 6

reveals bubble information as the best predictor (e.g., the order of

the bubbles according to bubble information is the same as

according to empirical salience), followed by the spatial bias and

the stimulus dependent salience. This example is reasonably

representative for the expression task. In other tasks the contribution

of stimulus dependent salience, bubble information, and spatial

bias salience is more balanced. However, the individual correla-

tions of empirical salience with the three predictors do not address

how much the effects of one of these predictor variables are

already addressed by another, because of correlations between

individual predictors. In the following we address this question,

which is crucial for the investigation of the causal role of the

individual predictors.

We employ a multivariate linear model to predict empirical

salience from the joint set of all the predictors. We analyze how

well a linear combination of the stimulus dependent salience,

bubble information, and spatial bias salience of each bubble can

explain the attention it attracts, as reflected by the empirical

Figure 5. Relationship of task dependent and empirical salience. (A) Example stimulus of the expression task with individual bubbles labeled
by their bubble information. (B) Scatter plot of bubble information and empirical salience for the expression task. The positions of the example
bubbles are marked by colored dots. The correlation coefficient r is given as a figure inset. (C) Correlation coefficients for all four tasks. Two stars mark
highly significant correlations (p,0.01, t-test).
doi:10.1371/journal.pcbi.1000791.g005

Figure 6. Relationship of spatial bias and empirical salience. (A) Example stimulus of the expression task with individual bubbles labeled by
their spatial bias salience. (B) Scatter plot of spatial bias and empirical salience for the expression task. The positions of the example bubbles are
marked by colored dots. The correlation coefficient r is given as a figure inset. (C) Correlation coefficients for all tasks. Two stars mark highly
significant correlations (p,0.01, t-test).
doi:10.1371/journal.pcbi.1000791.g006
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salience values. As in the pair-wise correlations, we use the log

transform of each predictor variable and correlate with the log

transform of empirical salience. The model structure is as

follows:

log Empirical Salienceð Þ

~b1

zb2log Spatial Biasð Þ

zb3log Stimulus Dependent Salienceð Þ

zb4log Task Dependent Salienceð Þ

To address correlations between individual predictor variables, we

use semi-partial correlations, which correlate one predictor with

empirical salience while controlling for the effect of all other

predictors (compare Methods).

Table 1 gives the results of this correlation analysis for the four

tasks, and Figure 8 summarizes these results visually. The

multivariate regression coefficient (R) is highly significant

(p,0.01, F-test) for all four tasks, but varies considerably across

tasks. For expression, the multivariate correlation is highly

significant, with 48% of variance explained. Bubble information

is the best individual predictor, the pair-wise correlation being

highly significant. The individual predictive power of spatial bias

salience is smaller, but the pair-wise correlation is still highly

significant. Stimulus dependent salience, on the other hand, does

not significantly correlate with empirical salience. These results

indicate that subjects have much information about where to

expect informative bubbles a priori and that their attention is

guided by this task dependent knowledge. This is exactly what one

would expect of a system that is specialized in effectively

recognizing facial expression. It is clearly inconsistent with a purely

bottom-up driven account of overt attention. For the gender task,

Figure 7. Relationship between empirical salience, stimulus dependent salience, bubble information and spatial bias salience for
an example stimulus. The example stimulus from the expression task is given on the left. The four values characterizing each bubble are shown on
their respective scales (right panel). The range of spanned values for each variable is mapped to the same interval for comparison. The colors code for
the identity of the different bubbles.
doi:10.1371/journal.pcbi.1000791.g007

Table 1. Results of the multivariate regression.

Task Stimulus dependent salience Bubble Information Spatial bias All together

Expression Correlation coefficient r 0.130 0.631** 0.437**

Semi-partial correlation coefficient sr 0.091 0.527** 0.252*

Multivariate regression R2 = 0.476**

Gender Correlation coefficient r 0.235* 0.326** 0.362**

Semi-partial correlation coefficient sr 0.213* 0.304** 0.329**

Multivariate regression R2 = 0.269**

Influence Correlation coefficient r 0.324** 0.345** 0.456**

Semi-partial correlation coefficient sr 0.324** 0.155 0.406**

Multivariate regression R2 = 0.360**

Space Correlation coefficient r 0.067 0.290** 0.412**

Semi-partial correlation coefficient sr 0.055 0.243* 0.401**

Multivariate regression R2 = 0.245**

Pair-wise regression coefficients and semi-partial regression coefficients for the different predictors are given for each task. The total variance of empirical salience that is
explained by all three factors is given in the last column. One star marks significant correlations (p,0.05); two stars mark highly significant correlations (p,0.01).
doi:10.1371/journal.pcbi.1000791.t001
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the multivariate correlation coefficient is smaller than for expression,

but still highly significant, with 27% of variance explained. Spatial

bias salience and bubble information have almost the same pair-

wise correlation coefficient, both correlations being highly

significant. In contrast to the expression task, the pair-wise

correlation of the stimulus dependent salience is also significant.

For the influence task, the multivariate correlation is also highly

significant, with 36% of variance explained. Again all three

predictors show significant, even highly significant, pair-wise

correlations. Spatial bias salience has the highest correlation

coefficient, followed by bubble information and stimulus depen-

dent salience, the latter two being almost identical. For the space

task, the multivariate correlation coefficient is smallest, but still

highly significant, with 25% of variance explained. Spatial bias

salience is the best predictor, followed by bubble information. Both

these pair-wise correlations are highly significant. In contrast to

influence, the correlation coefficient of stimulus dependent salience

is very small and not significant.

The previous observations on the relative predictive power of

individual predictors in the different tasks are also supported by

the semi-partial correlation analysis. The only exceptions are a

rather large decrease from the pair-wise to the semi-partial

correlation for bubble information in the influence task, reflecting a

rather small unique influence of bubble information on empirical

salience, as well as a noticeable decrease of the semi-partial

correlation coefficient compared to the pair-wise correlation

coefficient for the spatial bias based predictor in the expression task.

On the level of individual predictors, we make several

observations. Spatial bias salience shows a strong and stable

contribution in all four tasks. The unique contribution of bubble

information is strong as well, but varies considerably over tasks. In

the case of influence, it is not even significant. Stimulus dependent

salience is the weakest predictor of the three, but shows significant

correlations in gender and influence. Each single predictor shows

significant normal and semi-partial correlations in at least some of

the tasks. Furthermore, the relative contributions of the predictors,

in terms of both uncontrolled and semi-partial correlations, vary

considerably over tasks. Hence the contribution of the three

different factors is dependent on the task, and none can be

generally dismissed in an explanation for guidance of overt

attention.

Discussion

In this study, we quantify and compare the influence of low-level

stimulus features, task dependent features, and spatial biases on

overt visual attention. The major achievement is a direct and

quantitative comparison of the individual influences of these factors

on fixation behavior in a single study. The experimental approach

builds on the bubble paradigm as introduced by Gosselin and

Schyns [35]. It makes use of visual stimuli composed of small image

patches, called bubbles, based on face images and forest scenes.

Subjects classified stimuli according to facial expression and gender,

or according to scenic openness and human influence, respectively.

The subjects’ eye movements show that bubbles are not scanned for

information and verify our assumption that bubbles are treated as

perceptual units. To each bubble, we assigned an empirical salience

that adequately represents the fixation probability of the bubble. We

further quantitatively assessed three factors that are thought to

influence visual attention: first, stimulus dependent salience

reflecting the probability of fixating a bubble given its luminance

and texture contrast; second, bubble information reflecting how

much information a bubble contains with respect to the

classification task; and third, spatial bias salience reflecting the

fixation probability given the location of the bubble. Bubble

information was estimated based on the subjects’ classification

responses to stimuli composed of one or several bubbles using a

model of information integration. We showed that this model is a

reasonable approximation of the integration. Interestingly, we found

that information of individual bubbles is integrated even if bubbles

originate from different images of the same class and independent

from their spatial arrangement in the case of forest scenes.

Figure 8. Influence of the three factors on empirical salience. The multivariate regression results are given for all four tasks expression (E),
gender (G), influence (I), and space (S). The height of each bar depicts the R2 value; each shaded area represents the squared semi-partial correlation
coefficient, which reflects the unique contribution of the respective factor. The white area in each bar represents the amount of variability of
empirical salience that can explained by more than one factor.
doi:10.1371/journal.pcbi.1000791.g008
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Having measured the three factors bubble information, stimulus

dependent salience, and spatial bias salience, we then quantified

how well they predict fixation behavior. We found that a

substantial portion of variance of empirical salience could be

explained by all three factors combined, although the share of

variance explained varies across tasks. Pair-wise correlations

between empirical salience and each of the factors indicate clear

differences between the three factors. Empirical salience shows

high correlations with spatial bias throughout all four tasks,

whereas both the correlations with stimulus dependent salience

and bubble information vary strongly with tasks. Stimulus

dependent salience is the weakest predictor, but reaches significant

levels in the gender and influence tasks. Bubble information is the best

predictor in the expression task but for the other tasks it reaches

slightly lower correlations with empirical salience than does spatial

bias. Surprisingly, the semi-partial correlation coefficients, which

reflect the unique contributions of each predictor controlling for

the influences of the other factors, are only slightly lower than the

pair-wise correlation coefficients. This indicates that all three

factors act almost independently on visual attention. In summary,

we find that all factors contribute, but that the absolute and

relative strength of contribution depends on the task.

We now look into the potentially critical issues and shortcom-

ings of our paradigm. These fall into two overall categories. First,

we discuss the validity of our different measures. Second, we

analyze how much the results obtained using our bubble paradigm

generalize to more natural conditions.

Validity of Bubble Measures
Empirical Salience. One basic assumption of the present

approach is that the empirical saliences of different bubbles are

independent from each other — i.e. the empirical salience of a

bubble is not influenced by any other bubble on the same stimulus.

An indicator of a violation of this assumption would be a change of

the ratio of fixations falling onto two bubbles when other bubbles

were presented simultaneously. We tested whether empirical

salience values can predict the average number of fixations made

by the subjects onto each bubble in all stimuli. The test resulted in

very small errors showing that our assumption of independence

between bubbles with respect to empirical salience is not violated.

Stimulus dependent salience. We characterized stimulus

dependent salience as the conditional probability of fixating on an

image patch given its local luminance and texture contrast for

several reasons. First, these two low-level features were shown to

correlate with fixation behavior in many previous studies

[21,40,41,42]. Hence, the present study can be compared

directly with this previous work. Second, in an independent

study, we observed that the strength of influence of different low-

level features on overt visual attention is highly correlated over

image categories and tasks (Betz T, Kietzmann TC, Wilming N,

König P (in press). Investigating task dependent top-down effects

on overt visual attention. J Vis). Hence, the potential benefit of

additional features appears small. Third, as a control we compared

stimulus dependent salience with a measure of salience obtained

by a publicly available model, often used as a baseline [9,44].

Indeed, the correlation of the two sets of saliences is high and in all

tasks in the range of 0.4–0.7. Furthermore, the correlation of

salience according to the model by Itti and Koch with empirical

salience of bubbles is not qualitatively different from the data

presented here. Fourth, previous studies showed that luminance

contrast influences the response of area V1, but not the response of

higher areas [45,46]. These results indicate that luminance

contrast is a good measure for the relevance of stimulus

dependent signals in early visual cortex and justifies the term

‘‘low-level’’. Fifth, another recent study claims that stimulus

dependent salience is well described by luminance contrast without

the need to introduce more complex kernels [47]. Sixth, texture

contrast, which is defined as second-order luminance contrast, is

usually considered a low-level feature in that sense as well and

triggered some debate in the literature [40,41]. For these reasons

we decided to base our characterization of low-level contributions

on luminance and texture contrast.

Spatial bias salience. We characterized spatial bias salience

through a generative model of fixation behavior. The model takes

into account the central bias of fixations (0th order) and geometric

constraints on the length and direction of saccades (1st order).

While the location of a particular fixation has an influence on the

next fixation, we do not model higher order dependencies.

Specifically, we do not account for inhibition of return, which

would be a 2nd order relation of direction and length of saccades.

Inhibition of return is characterized as a small delay of saccades

that return to the location of a previous fixation. As the current

investigation is not concerned with these dynamic aspects, it is not

of relevance here. Furthermore, recent studies report that

inhibition of return might actually not change viewing strategy

for complex scenes [48,49].

Bubble information. Estimation of bubble information is

based on the complete data set and involves a specific model of

information integration. Both issues are considered in turn. In

principle it would have been possible to estimate bubble

information directly from stimuli presenting single bubbles only.

This approach comes, however, with several disadvantages. First,

the presentation of only single bubbles as stimuli is rather

inefficient. To get reliable estimates of bubble information, each

single bubble stimulus would have to be shown much more often.

Since a participant cannot respond to the same single bubble

stimulus twice and should not see individual bubbles too often,

many more participants would be needed. Additionally, the

responses on stimuli with several bubbles would be left unused,

further diminishing efficiency. Given that in the present study 75

subjects were investigated, more than in any of the eye tracking

studies cited above, this issue of efficiency quickly gets prohibitive.

Second, using qualitatively different stimuli for computing

empirical salience and bubble information potentially introduces

systematic biases. For example, the difficulty of the classification

task is increased considerably on single bubbles compared to

stimuli with several bubbles. This might lead to performance near

chance level, which in turn could cause subjects to lose motivation

and concentration. Third, for the purpose of the present study our

interest is focused on an estimate of bubble information in the

context of the stimulus. In the event that estimates of information

of isolated bubbles and bubbles in more complex context diverge

(e.g. a systematic increase or decrease), the latter would be the

relevant measure as it matches the viewing conditions during the

task. These reasons further grow our confidence in the validity of

the applied methods.

Several models of information integration are conceivable. The

mode of information integration is an important topic in its own

right and a complete treatment is beyond the scope of the present

paper. We assume a probabilistic integration model but also

considered two other models of information integration: first a

local model that captures stimulus information by the maximally

informative bubble, second a global model that differs from the

probabilistic model by capturing contra factual evidence for the

different choice possibilities. Compared to the p-model these

models both show lower performance (see Text S1 D).

Furthermore, under the assumption of the p-model being the

true model of information integration, the estimates for bubble
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information resulting from the global fitting procedure are

unbiased and have moderate variance (see Text S1 C and Figure

S1). This indicates that the predictions based on the p-model are

generally good estimates of bubble information.

In conclusion, although we did not show that a probabilistic

model for information integration is the true or optimal model we

demonstrated that the estimates for stimulus information obtained

through it are robust and consistent with the majority of the data.

The influence of configural information in face stimuli has been

described before and does not pose a problem in the current

context. The question of which is the optimal model of

information integration is left to be answered by future research.

For these reasons we decided to show stimuli with varying

numbers of bubbles in a homogeneous set and to employ the

information integration model and global fitting procedure. In so

doing we assess the two behavioral measures, bubble information

and empirical salience, from the same subjects during the same

experimental trials and make optimal use of experimental data to

improve the signal to noise level.

Effects of bubble position on information integration. The

discrepancy between stimulus information in bubble stimuli of

condition same versus permuted in task expression (see Figure 2) could

have several causes. The faces are similarly positioned in all stimuli

so that the location of the bubbles hints at which bubbles contain

relevant information: subjects might know a priori where informative

regions, e.g. the eyes or the mouth, are located and select fixation

targets accordingly. Furthermore, faces are special perceptual stimuli.

Specific brain areas are devoted to the processing of face stimuli, and

identification can be completely disrupted by reversing a face image

[50,51]. Position effects could, therefore, play a more important role

for the classification of face images than for the classification of forest

scenes [39]. Indeed, a major effect of permutations in the expression

task is a largely improved fit of the p-model. This indicates that, once

the standardized positioning is violated, different bubbles are treated

as independent pieces of information, enabling the ‘‘normal’’ mode

of information integration. The effect of bubble position is less

pronounced in the gender task. For the gender stimuli, supposedly more

regions contain information and the correlation between bubble

position and bubble information is weaker. In summary, our data

indicate that position effects have some influence in face stimuli, but

less so in the forest scenes.

Generalization to Full Scenes
Do the observed correlations between empirical salience, on the

one side, and stimulus dependent salience, bubble information, and

spatial bias salience, on the other side generalize to full field images?

This is a variation of the eternal question where to place the

balance between complex natural conditions and well controlled

laboratory stimuli. Here, the answer depends critically on whether

the four measures we employ are preserved on full field stimuli. For

example, it is decisive whether the empirical salience of image

patches measured on full field stimuli is comparable to the empirical

salience measured on bubble stimuli. In the same way, bubble

information, stimulus dependent salience and spatial bias salience

need to be preserved. If the four measures that characterize a

bubble were preserved when the bubble is embedded in a full field

stimulus then the relationship between the measures, in particular

the correlations between them, would be preserved as well and our

results should generalize to full scene viewing. We consider this

question for each of the measures in turn.

Stimulus based salience, as we defined it, is just dependent on a

local image patch. It is thus preserved for full field stimuli. Bubble

information measures how much information with respect to a

task is contained within a single bubble. The amount of

information contained appears largely independent of bubble

context and thus only depends on the image patch itself. Spatial

bias salience, as we define it, is based on global fixation and

saccade biases assessed from a large variety of full field stimuli.

Hence, the effect of spatial bias should be largely independent of

whether an image patch is embedded into a full field or bubble

stimulus. The question of whether the measure of empirical

salience is preserved on full field stimuli is more intricate. The

observer may very well fixate image regions in the bubble stimuli

that would never draw her attention given the complete image.

We tested this by correlating empirical salience of bubbles with the

fixation densities of the full field images containing those bubbles

(r = 0.79, r = 0.75, r = 0.55, r = 0.32 for expression, gender, influence,

and space, respectively; p,0.01 in all cases). Since empirical

salience of individual bubbles is well preserved on full field stimuli,

we expect that our findings generalize to full scene viewing.

Previously, it was debated whether the informative regions

uncovered by Gosselin and Schyns’ bubble paradigm [35] are

valid for full scene viewing as well. Murray and Gold argue that

the bubble stimuli change the information integration strategy

employed by the observer [52]. A former study showed that

observers used different stimulus regions to identify faces,

depending on which regions were covered by Gaussian white

noise (Schwartz O, Bayer HM, Pelli DG (1998). Features,

frequencies, and facial expressions [ARVO abstract #825].

Investigative Ophthalmology and Visual Science, 39(4)). It is

conceivable that for full field images, which include redundant

features, observers normally base their classification decision on

only one or two of these features. The bubble stimuli force the

observers to use different features on different trials, because only

small fragments of the stimulus are shown on any given trial

(Gosselin and Schyns argue, however, that these concerns are

unfounded [53]). These potential problems are not relevant for our

study since we do not claim that certain bubbles would be used by

the observers to solve the classification task on full fields, whereas

other bubbles would not. Instead, we quantify the information of

each single bubble, i.e., how well the task can be solved given only

this bubble. By using the information integration model, we

actually incorporate the observer’s strategy to use different image

regions, depending on which regions are shown. Hence, our

measure of task dependent information is not invalidated by the

use of bubble stimuli.

In summary, we consider the present experimental paradigm a

most sensible compromise, balancing between the complexities of

natural conditions and well controlled laboratory stimuli, and

suitable for the questions addressed.

Relationship of Low-Level and High-Level Features to
Bottom-Up and Top-Down Neural Signals

One of the most debated issues concerning overt visual attention

is the role of bottom-up and top-down signals on a neural level.

This issue is not integral part of the results of the current study. In

the present study we discuss the influence of stimulus dependent

salience and bubble information. Stimulus dependent salience

translates directly to low-level stimulus features and to some

degree, these features can be identified with bottom-up signals. It

has been shown that neurons in V1 are sensitive to these features

[45,46,54]. To reach relevant motor centers and influence eye

movements, these signals have to traverse the hierarchy of the

visual system [55]. This may be viewed as a bottom-up process.

The second measure, bubble information, relates to high-level

features of the visual stimulus interpreted in a specific context.

Considering complex response properties in high-level brain areas,

these are a natural place to extract such information [56]. Again,
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in view of abundant connectivity, it is plausible that such

information is sent down to lower areas of the hierarchy in a

top-down manner. However, receptive field properties of neurons

in V1 are complex, and non-classic surround effects are far from

understood [57]. Furthermore, it has been proposed that essential

characteristics of a salience map are already captured in the

response properties of V1 neurons [14]. For that reason we are

cautious using the terms top-down and bottom-up signaling, and we

took care not to make unwarranted speculations about the site of

the integration of the observed contributions of low-level and high-

level stimulus features.

A Unified Theory of Overt Visual Attention
Many low-level image features were suggested to play an

important role for the guidance of visual attention [9]. When

compared to random image locations, fixated regions of natural

and artificial images are characterized by higher decorrelation of

intensities of nearby image points [42,58], higher luminance

contrast [19,41,42,58], texture contrast [19,41], color contrast

[59,60], orientation contrast [15], flicker and motion contrast [20],

strong statistical dependencies between frequency components of

different orientation like curved lines (Saal H, Nortmann N,

Krüger N and König P (2006) Salient image regions as a guide for

useful visual features. IEEE AICS), edges [18], occlusions or

isolated spots [61], and disparity [62]. These effects, however,

appear to be relatively weak [18], and another study reports that

locations of extremes of luminance intensity, luminance contrast,

high spatial frequency content, and edge density do not match

with locations of fixations [63]. Yet another study puts forward

contradicting evidence in favor of the role of high spatial frequency

content [64]. The strength of these effects was found to vary with

image type [15,40]. Still, the idea is that with increasing

complexity of the features investigated a faithful description of

human overt visual attention can be reached.

This line of research has come under attack from two sides. On

the one hand, Kienzle and colleagues show that much of the

observed correlation of selected fixation points in a free viewing

task on gray-scale images of natural scenes can be captured by an

extremely simple center surround mechanism [47]. On the other

hand, recent studies found that high-level features play an

important role in overt visual attention and act more strongly on

fixation behavior than low-level features when subjects engage in

visual search tasks [65,66,67]. In more natural settings, task and

context have a strong impact on eye movements as well [68]. Also

models of visual attention that employ top-down processing were

successfully applied to visual search tasks [31,69,70,71,72]. Recent

work tries to combine low-level and high-level cues [73,74]. The

latter study specifically investigates the salience of light sources

(very high luminance contrast) in natural scenes at dawn and dusk.

They show that high-level features and spatial biases make the

largest contribution in a mixture model, which is in line with the

results reported here. However, in the work by Vincent et al. [74]

the definition of high-level features like foreground/background

contains a subjective component and might correlate strongly with

low-level features like disparity. Indeed, we could recently

demonstrate that disparity has a strong influence on the selection

of fixation points in stereoscopic presentation [62], close regions

being viewed earlier than far regions. Furthermore, about 40% of

this effect survives in 2D presentation. This highlights the problem

to define objectively low-level and high-level cues and to analyze

their independent contribution to the guidance of gaze move-

ments. Some experimental studies assessed the informativeness of

image regions by subjective ratings [32,33]; or they made use of

identified informative regions of face images for different tasks

[75]. In agreement with our data, these investigations show that

fixation patterns vary for different tasks even if the visual input is

identical — i.e., that high-level features like task dependent

information have an influence on attention, and that more

informative regions are fixated upon more often than less

informative ones. The advantage of our approach is that it

enables us to quantitatively measure task dependent information in

an objective way. Another study presents an information theoretic

approach to the combination of different cues [76]. They

demonstrate that the model clearly outperforms models with pure

bottom-up architectures. Furthermore, Ehinger and colleagues

give a highly informative comparison with current contextual

guidance models [26]. Our results are in line with these studies.

Averaged over all the tasks investigated, high-level features

contribute more than low-level features. Some experimental

studies assessed the informativeness of image regions by subjective

ratings [32,33]; or they made use of identified informative regions

of face images for different tasks [75]. In agreement with our data,

these investigations show that fixation patterns vary for different

tasks even if the visual input is identical — i.e., that high-level

features like task dependent information have an influence on

attention, and that more informative regions are fixated upon

more often than less informative ones. The advantage of our

approach is that it enables us to quantitatively measure task

dependent information in an objective way.

One center issue of the debate about low-level and high-level

features is whether, and to what degree, they have a causal role

versus pure correlative effects. A study on images whose luminance

contrast was locally modified shows that fixations are attracted by

increases as well as decreases of luminance contrast, but that the

effect within the region of normal variance of luminance contrast is

small [21]. Furthermore, these observations cannot be explained

by induced changes in texture contrast [40]. This argues against a

causal effect, but in favor of a pure correlative effect of luminance

contrast in a free viewing task on natural stimuli. Our present

results agree with the aforementioned studies inasmuch as the low-

level factors exhibit, on average, weak effects on fixation behavior.

However, our analysis of the correlation of empirical salience with

the three predictors uncovers a surprising fact. The semi-partial

correlations are only a little smaller than the full correlations. This

indicates little redundancy of the three predictors — i.e. low-level

features are not coincident correlations of high-level features in

many tasks. This argues that none of the predictors can be

neglected, but that a true integration is to be achieved. This is very

much in the spirit of recent proposals, putting the problem of overt

attention in a Bayesian framework [11,12].

Concerning the role of spatial biases on visual attention, it was

pointed out that the spatial bias towards the screen center has to

be taken into account when studying the effect of image features

on selection of fixation points [7,63]. Furthermore, some work has

been done on the statistical properties of saccade length and

directions. Human saccades can be modeled as a Levy flight with a

heavy-tailed distribution [8] and it can be shown that under

certain assumptions such a distribution leads to optimal scanning

behavior. Research on higher order correlations, i.e. dependencies

of selected fixation points within a trajectory, is still rare [77].

Given our current knowledge of spatial properties, a comparison

of several models of fixation behavior revealed that the best

performance is obtained from a strategy combining top-down

information and spatial bias, which, however, was defined as the

restriction of fixations to one side of the image [72]. Our results

support this view, showing a surprisingly high correlation between

spatial bias and visual attention. This effect is strong and consistent

in all tasks tested. This contrasts with the emphasis on low-level
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and high-level features in current models of visual attention.

Forthcoming models should put the spatial properties of eye

movements on an equal footing with other factors.

The present study contributes to focusing discussions of models

of attention on quantitatively testable properties. Low-level

stimulus features, task dependent information content, and spatial

viewing biases jointly explain a substantial fraction of the variation

of empirical salience — i.e., a unifying theory of visual attention

will have large predictive power. Furthermore, each of the three

factors contributes significantly. A unified theory of overt visual

attention has to account for all of them.

Methods

Ethics Statement
All subjects were informed about the experimental procedure,

the eye-tracking device, and their right to withdraw from the

experiment at any time. However, they were initially kept naı̈ve as

to the purpose of the experiment and were debriefed after the

experiment. All participants consented in writing to take part in

the experiment and to allow scientific usage of the recorded data.

The experimental procedure conformed to the Declaration of

Helsinki and national guidelines.

Participants
75 student volunteers participated in the experiment (39 female,

36 male). Their ages ranged from 18 to 41, with a mean of 24.2

years. All had normal or corrected-to-normal vision, which was

confirmed by a vision test with Landolt rings. Participation was

voluntary, and participants either were granted extra course

credits or received monetary compensation for their participation.

Apparatus and Recording
Participants’ eye movements were recorded with the head-

mounted Eyelink II eye-tracking system and the Eyelink II

software package (SR Research, Ltd., Mississauga, Ontario,

Canada). Monocular eye-position data were sampled with

infrared-based tracking only, using a sampling rate of 250 Hz.

The saccade classification of the Eyelink system is based on

velocity and acceleration. A saccade starts if an initial acceleration

threshold of 8000u/s2 is exceeded and a distance of at least 0.1u is

covered with a minimal velocity of 30u/s. Fixation points are then

defined by the samples in between two saccades. Stimuli were

presented on a 21-inch Samsung Syncmaster 1100 DF 2004

(Samsung Electronics Co. Ltd., Korea) CRT monitor at a distance

of 80 cm from the subject, using a display resolution of 10246786

pixels and a refresh rate of 120 Hz. These settings resulted in a

spatial resolution of 33 pixels per degree of visual angle. No

headrest was used.

Stimuli
All stimuli were based on gray-scale face images [78] and forest

scenes (the forest scene photographs were used with permission

from W. Einhäuser and P. König [21]). Photographs used for the

construction of stimuli were selected on the basis of pre-

experiments (forest scenes: Steinwender J (2005) Context depen-

dency of overt attention in natural scenes. Bachelor’s thesis,

University of Osnabrück; faces: pre-experiment, data not shown).

Face images had to be classified in different tasks (see below)

according to gender (gender) and expression (expression), forest

images according to scenic openness (space) and human influence

(influence). Only photographs that were evaluated consistently by

all participants of the pre-experiments were included in the present

study. These responses defined the different classes used below

during stimulus construction. We selected a total of 24

photographs of faces and 36 photographs of forest scenes. The

stimulus sets were balanced in the context of each of the four tasks.

In 4% of all trials, stimuli were photographs shown in full field

condition (Figure 9). Although these full fields were shown during

the main experiment to control for changes in classification, their

main purpose was to serve as a basis for the creation of bubble

stimuli. In 96% of the trials, bubble stimuli constructed from the

same basic set of photographs were presented. These were created

in three steps. First, 6.0u square patches were selected from the

available full field photographs. Second, the image patches were

space-variant filtered, imitating the retinal resolution as a function

of eccentricity, and masked by a Gaussian envelope. Third, these

bubbles were recombined and placed on an equiluminant gray

background in different ways to create a variety of bubble stimuli.

A total of 2061 gray-scale stimuli were used.

The selection of image patches from full fields was governed by

the following criteria: first, we selected image patches from

locations where the fixation density obtained in the pre-

experiments was very low or very high. This way of selecting

patch positions yields a set of patches with diverse empirical

saliences. Second, since bubbles should be independent units of

information, they must not overlap. Third, for each bubble on a

particular full field stimulus, there should be bubbles on other full

field stimuli that occupy the same position. This constraint allowed

controlling for position effects when combining bubbles from

different full fields. Ideally, some of these bubbles on other full

fields should be close to minima and some to maxima of their

respective fixation distribution. We used a randomized algorithm

to generate an appropriate selection. Since the aligned geometry of

the face stimuli made it impossible to fully satisfy the latter

Figure 9. The different stimulus classes. Subjects had to classify
faces and forest scenes according to four tasks (expression, gender,
influence, and space). For the forest scenes, the different response
possibilities are given above the example stimuli. The stimuli are shown
as full fields and are used for bubble stimuli construction. For copy right
reasons, we cannot show the face stimuli here but we refer the reader
to Tottenham et al. [78]. The face stimuli are taken from the ‘‘NimStim’’
stimulus set.
doi:10.1371/journal.pcbi.1000791.g009
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constraint, a residual set of bubbles for the face stimuli was selected

by hand. The resulting distribution of bubble centers for the

expression task is shown in Figure 10A.

The selected image patches were first filtered using an

eccentricity-dependent frequency filter that simulates the decline

of visual acuity towards the edges of the visual field as resulting

from the non-uniform distribution of photoreceptors on the

human retina [79]. This approach ensures that all information

present in a bubble can be gained by fixating the bubble center

and that scanning bubbles is inefficient. To prevent potential

artifacts resulting from sharp apertures, the space-variant filtered

patches were masked using an isotropic Gaussian window with a

standard deviation of 1.0u. This made the bubbles blend

inconspicuously into the gray background. An example is shown

in Figure 10B.

The final bubble stimuli were created by combining bubbles. In

a small fraction, individual bubbles were shown (12%). The

remaining stimuli were composed of two (42%), three (26%), four

(14%) or five bubbles (2%). Combining several bubbles, depending

on their full field stimulus of origin, allows different conditions

(Figure 10C). Same stimuli (50% of all stimuli, including single

bubbles) were composed entirely of bubbles from the same full

field image. Congruent stimuli (15%) were composed of bubbles

from different full fields that were classified in the same way during

the pre-experiments (they belong to the same class). Incongruent
stimuli (15%) were composed of bubbles from full fields of different

classes. Permutations (16%) were created by shuffling the

positions of the bubbles. The final stimulus set was created using a

randomized algorithm that optimized the set with respect to the

constraint that each individual bubble should appear in the same

number of stimuli.

Classification Tasks
During the experiment, participants classified visual stimuli in

four different tasks. In the first task, participants tagged stimuli

according to the facial expression of the actors into the classes

‘‘happy,’’ ‘‘sad,’’ ‘‘fearful,’’ or ‘‘disgusted.’’ Similarly they classified

gender into ‘‘male’’ or ‘‘female.’’ For the space task, participants were

asked to choose between ‘‘close and narrow’’ or ‘‘wide and open.’’

They were instructed to respond ‘‘close and narrow’’ if the image

was a close-up or if it would not be possible to leave the scene—for

example, if leaves and branches were blocking the view. They

were told to respond ‘‘open and wide’’ if it was possible to look far

ahead. For the influence task, we asked participants to look for

indicators of human influence such as houses, roads and paths,

trunks of trees, fences, and hewn stones and to classify the stimuli

into either ‘‘present’’ or ‘‘absent.’’ The wording of the instructions

was the same for all participants.

Procedure
A complete experimental session lasted approximately one

hour. It was divided into four blocks, one for each of the four

classification tasks. Face stimuli and forest scene blocks were

presented alternately. In the beginning of the experiment,

participants were instructed about the procedure, and example

bubble stimuli were shown. They were directed to classify the

stimuli by pressing numbers on the keyboard’s keypad and to take

their best guess in cases where they were not sure about the

stimulus’ class.

Before the beginning of each block, the eye tracker was

calibrated, and task and answer choices for that block were

explained and exemplified. Each block consisted of 70 trials that

were presented in constrained random order (see below). Each

trial began with the presentation of a fixation cross in the middle of

the screen. Whenever the fixation of the cross indicated a notable

decline in tracking quality, the eye tracker was recalibrated. This

ensured that the mean tracking error for at least one eye was

always lower than 0.4u. If the cross was fixated properly, the

conductor of the experiment triggered the stimulus presentation.

We excluded the very first fixation from all subsequent analysis, as

it directly reflects the preceding fixation of the fixation cross. The

trial lasted for 3 seconds and was followed by the answer screen,

which stayed on until participants responded by using the

keyboard. There was no time limit for the decision. Before the

next trial started, visual feedback of the participant’s response was

given to minimize classification errors due to typos (Figure 11).

The stimuli shown to each participant and their order were

selected by a randomizing algorithm that respected the following

constraints: for each participant, each stimulus was shown at most

once; each bubble was presented at most four times; and stimuli

with the same bubble were not shown in direct succession.

Furthermore, on average, each stimulus should be shown to 8

participants, and the variation in the number of participants that

have seen a particular stimulus should be as small as possible.

Figure 10. Bubble stimuli. (A) Distribution of bubble positions for
the expression task. (B) A single bubble based on a patch of 6 visual
degrees from a full field face stimulus. The patch was filtered using an
eccentricity dependent frequency filter simulating the drop of spatial
acuity and a Gaussian mask to avoid edge effects. (C) Different types of
bubble stimuli were generated. Stimuli of the same condition are built
from patches of the same image. Stimuli of the congruent and
incongruent condition are built from patches of different images of
the same class or of different classes, respectively. Permuted stimuli
were created for each of the three conditions by shuffling the positions
of bubbles.
doi:10.1371/journal.pcbi.1000791.g010
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Data Analysis
In the following, we first define a measure for the empirical

salience of bubbles as quantified by fixation probability. Then we

derive measures for the spatial bias, and the stimulus dependent

and task dependent effects. These three measures will be used to

investigate the relative contributions to the empirical salience of

stimuli. All three measures put the bubbles in a global order.

Empirical salience. To obtain a global quantification of

empirical salience, we assume that on any stimulus S, the ratio

between the number of fixations at a bubble A, FS(A), and the

number of fixations at another bubble B, FS(B), is independent of

the context in which both are presented. This implies

FS Að Þ
FS Bð Þ~

EA

EB

ð1Þ

for any stimulus S with bubbles A and B, where EA and EB are

global measures of empirical salience, which are independent of

stimulus context. From this, it follows that the equation

FS Að ÞP
L[S FS Lð Þ~

EAP
L[S EL

ð2Þ

holds for any stimulus S and any bubble A. Because every stimulus

was presented to several subjects, we have, in fact, several left-

hand sides of this equation. We average them for each stimulus

and bubble. Next, the resulting equations are grouped into a linear

system, and we compute the empirical salience as the best

approximate solution. We eliminate one degree of freedom by

imposing a scale, demanding that all empirical saliences sum to

one.

Stimulus dependent salience. To characterize the bottom-

up contribution to fixation behavior, we use a feature-based

salience model. It models the conditional probability of fixating a

location of an image, given a set of local low-level image features.

Here we consider luminance contrast and texture contrast as

features.

Luminance contrast is defined as the standard deviation of the

luminance intensity in an image patch, normalized by the mean

intensity of the entire image [19,42]. We calculate it using circular

patches weighted by a Gaussian window, G, in close analogy to the

computation of a bubble. Formally, the luminance contrast of a

pixel, LC(x), is given by

LC xð Þ~ 1

Itask

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I x{Dð Þ{�II xð Þð Þ2:G Dð Þ

q
ð3Þ

where I(x) is the map of luminance intensity at each pixel, D is the

displacement relative to the center of the bubble, and �II~I :G is

the smooth luminance map obtained by a convolution with a

Gaussian of the same size as the Gaussian used in bubble

construction. Please note that the normalization deviates from the

definition given by Reinagel and Zador [42] and Einhäuser et al.

[19]. In these previous studies luminance contrast was normalized

in each individual image. Here, however, the bubble stimuli show

only a limited aperture of the respective full field stimulus. Hence

varying normalization of bubble stimuli, due to not visible

differences in the respective full field stimuli would make contrast

values incomparable. Furthermore, in conditions congruent and

incongruent, several different full field stimuli contribute. There is no

obvious generalization of an image-specific normalization proce-

dure to these conditions. For these reasons we follow the

suggestion of Zhang et al. [12] and normalize luminance contrast

by the mean luminance contrast over all the images of one task

(Itask). This is based on the assumption that the influence of a

bubble’s contrast on the viewing behavior depends on the whole

range of contrast values appearing in the images of one category.

Figure 12A shows a luminance contrast map of one of our full field

stimuli.

Texture contrast is defined as the standard deviation of the

luminance contrast values in an image patch, normalized by the

mean luminance contrast of the entire image [19]. Formally,

TC xð Þ~ 1

LCtask

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LC x{Dð Þ{LC xð Þ
� �2:G Dð Þ

q
ð4Þ

where LC~LC:G is the map of the Gaussian weighted mean

luminance contrasts. Analogous to luminance contrast, we

normalize by the mean luminance contrast over all images in

one task. The luminance contrast map, LC, used for the

computation of the texture contrast, is calculated with a Gaussian

window of a quarter of the size of a bubble. For the subsequent

computation of texture contrasts, the same Gaussian window, G, as

for bubble creation is used. The luminance contrast and texture

contrast of a single bubble are defined as the contrast values at the

center of the bubble.

Based on the feature contrasts of each bubble, we now derive a

scalar describing the stimulus dependent contribution to fixation

probability (Figure 12). In a previous study we investigated the

relation of luminance contrast and texture contrast with fixation

probability in natural stimuli [40,43]. From the observed

distribution of selected fixation points and the image statistics,

we used Bayes’ rule to determine the conditional probability to

fixate a given location. Importantly, the data were well described

by a model assuming independent contributions of luminance

contrast and texture contrast. Here we use this mapping, which

originates from an independently obtained data set, to predict

Figure 11. Experimental procedure. Each trial began with the
presentation of a fixation point used for drift correction. Subsequently,
the stimulus was presented for 3 seconds. The response screen was
displayed until the subject responded to the classification task by
pressing one of the indicated keys. The subject’s choice was then
shown as feedback.
doi:10.1371/journal.pcbi.1000791.g011
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fixation probability based on the luminance contrast and texture

contrast of the bubble stimuli.

For computational efficiency and optimal usage of data we bin

the luminance contrast and texture contrast values of each image.

We chose 20 bins with boundaries so that the number of available

image locations falling into each bin is constant. Next, the

probability of a feature value (luminance contrast or texture

contrast) occurring at a fixated location was calculated. Then priors

on the image features and fixation locations are computed. The

priors on the image features are constant due to the equilibration of

the distribution. The priors for the fixation locations were estimated

for each image category. Both the feature and fixation location

priors were corrected for the spatial viewing biases to obtain a

measure based purely on low-level image features. The probability

of fixating a location, given its local features, was then estimated

using Bayes’ rule. Finally, the stimulus dependent salience value of

each bubble was calculated as the product of the fixation

probabilities based on luminance and texture contrast.

Spatial bias salience. As a next step we investigated to what

degree the fixation of bubbles can be predicted by a spatial bias

towards the screen center [7] and the statistics of saccade length

and orientation [23]. Figure 13 shows the structure of a generative

model based on bubble positions and on the parameters of the

Gaussian window used for bubble construction (bubble masks),

global fixation statistics (central bias), and saccade statistics. Using

the specific bubble locations as input to the model is necessary to

account for the strong fixation preference towards bubbles found

in the experimental data, the very purpose of using bubbles. The

fixation and saccade bias maps are derived from empirical data

recorded in a previous study of our laboratory using the same

experimental (Walter A (2006) Baseline Study on Overt Visual

Attention. Bachelor’s thesis, University of Osnabrück. Walter

showed images of urban scenes/man-made objects, natural

images, fractals, and pink noise images under a free viewing

condition to 27 participants. We pooled over all her data from all

of these categories.). The fixation bias map contains the

distribution of fixations in absolute (screen) coordinates; the

coordinates of fixations relative to their preceding fixations form

the saccade bias map. For each trial, both maps are computed and

convolved with a Gaussian kernel, with a standard deviation of

0.5u and then normalized to integral of one. Finally, we average

across trials weighting each trial equally independent of the

number of fixations made.

Based on the three maps, we simulate gaze trajectories of 75

virtual participants in 280 trials each in close analogy to the actual

experiments. For each simulated trial, the global stimulus

independent fixation map and the stimulus specific bubble mask

are combined by point-wise multiplication. This combination

results in an intermediate map of the spatial bias specific for the

position of the bubbles in the stimulus considered (Figure 13C).

Next, the saccade bias map is combined with the intermediate map

by first aligning the center of the saccade map with the last fixation

location (or the screen center for the first fixation within a trial),

then multiplying both maps point-wise and normalizing the result

to integral one (Figure 13E). The next simulated fixation is then

randomly drawn from that probability distribution. This procedure

is repeated until as many simulated fixations are drawn for the

simulated trial as were made in the corresponding original trial.

From the simulated data we obtain a scalar measure for the

fixation probability of each bubble, independent of the task and

Figure 12. Computation of stimulus dependent salience. For each bubble, stimulus dependent salience was computed by considering the
luminance and texture contrast map of the embedding full field (A and C). Luminance and texture contrast at the location of the bubble (marked by
red circles for one example bubble) are then mapped to fixation probabilities (red dots). These mappings (B and D) map luminance and texture
contrast bins (see text) to fixation probabilities and were obtained in a baseline study using a large number of stimuli from different categories. The
resulting fixation probabilities based on luminance and texture contrast were multiplied yielding the stimulus dependent salience.
doi:10.1371/journal.pcbi.1000791.g012
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the spatial structure of the respective full field images. Instead, this

spatial bias salience is based solely on the spatial position of the

bubbles and the global properties of fixation points and saccades.

Bubble information. To characterize task dependent

influences on fixation behavior, we derive a scalar measure for

the information a bubble contains with respect to a classification

task. First, we assume that each individual bubble is associated

with a probability distribution that captures how likely the subjects

are to decide for each stimulus class (response distribution). If this

distribution is flat, the bubble contains no information relevant for

classification, and performance of subjects viewing only this bubble

would be at chance level. If one of its components is one and all

others are zero, then the bubble contains maximal information.

This is captured by the entropy of a bubble’s response distribution.

If I(B) denotes the information content and PR(B) denotes the

response distribution of bubble B, with entropy E(PR(B)), then

I Bð Þ~Emax{E PR Bð Þð Þ ð5Þ

where Emax denotes the maximal entropy that can occur for

probability distributions like PR(B) and depends only on the

number of degrees of freedom of PR(B). For tasks expression, gender,

influence, and space, Emax is 2, 1, 1, and 1, respectively.

Second, along the same lines we assume that our participants’

responses to a stimulus S are independent and identically

distributed according to the response distribution of the stimulus.

In the case of a stimulus S composed of a single bubble B the

distribution of observed answers is an estimate of PR(B). To

estimate the empirical saliences of single bubbles from measured

classification responses to stimuli composed of several bubbles, we

need to make an assumption on how the response distributions for

single bubbles are related to the joint response distribution of a

stimulus containing those bubbles. Here, we assume optimal

probabilistic integration of the independent response distributions

of single bubbles (p-model). We describe the response distribution

PR(S) of a stimulus S = {B1, …, Bn} by the function Z operating on

the individual response distributions PR(B1), …, PR(Bn).

Z PR B1ð Þ, . . . ,PR Bnð Þð Þ~PR Sð Þ ð6Þ

We call Z the information integration function. It integrates the

response distributions of single bubbles independent of the

Figure 13. Simulation of fixation trajectories based on spatial biases. Spatial bias salience was computed from simulated fixation trajectories
based on the central bias of fixations, saccade statistics, and bubble positions. Given the current fixation location, the next fixation is generated by, first,
multiplying the central bias map (A) with the bubble position map (B). Second, the resulting intermediate map (C) is multiplied with the probability
distribution over saccade vectors (D) centered at the current fixation. The next fixation is then sampled from the resulting map (E). For example,
assuming a fixation of the upper left bubble in panel C, the multiplication (indicated by the white coordinate frame) of the intermediate map (C) and
saccade statistics (D) results in the depicted next fixation map (E). Repeating this sampling procedure resulted in the simulated fixation trajectory.
doi:10.1371/journal.pcbi.1000791.g013
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bubbles’ absolute position or their relative arrangement. Further-

more, it does not relate to the visual content of the bubbles. It is

defined as

Z PR B1ð Þ, . . . ,PR Bnð Þð Þ c½ �~ 1

v
P

i~1,:::,n
PR Bið Þ c½ � ð7Þ

where v~
P

d Pi~1,:::,n PR Bið Þ d½ �, with the summation over

different stimulus classes d, is the appropriate normalization. Z

is formally derived by writing the probability for a stimulus

S = {B1, …, Bn} to be of class c, PR(S)[c], in terms of the

corresponding probabilities for the individual bubbles in S to be of

class c, PR(Bi)[c] under the assumption that the individual bubbles

are independent.

For each stimulus, we can formulate an equation like (6). Hence

for each task, we can formulate as many equations like (6) as there

are stimuli in that task. These equations operate on response

distributions. Each equation can, however, be transformed into a

set of scalar equations by considering the different components of

the response distributions (probabilities for the different classes)

separately. This yields 1791, 600, 588, and 585 equations for the

tasks expression, gender, influence and space, respectively (expression has

four instead of two response possibilities, yielding more scalar

equations). This contrasts with 282, 94, 88, and 89 free parameters

in the four tasks, equaling the number of bubbles used for stimulus

construction in these tasks, multiplied by the number of possible

responses minus 1. We solve this over a determined system of non-

linear equations by a maximum likelihood method. Details of this

fitting procedure are given in Text S1 A. Finally, we determine

estimated bubble information from the estimated response

distributions of single bubbles according to equation (5).
Correlation analysis. We employ pair-wise correlation

analyses (Pearson’s correlations) to address the net effect of

individual predictor variables. To address how well a linear

combination of the stimulus dependent salience, the bubble

information, and the spatial bias salience of each bubble can

explain the attention it attracts, as reflected by the empirical

salience values, we employ a multivariate model. Finally, to

correlate one predictor with empirical salience while controlling

for the effect of all other predictors, we use semi-partial

correlations. For example, when we are interested in the

correlation of bubble information and empirical salience

controlled for the influence of stimulus-based salience and spatial

bias salience, we consider the residuals of a multivariate

correlation (with intersection) of stimulus-based salience and

spatial bias salience with bubble information. These residuals are

the differences between the prediction of the multivariate model

and the actual bubble information values. We now correlate these

residuals with empirical salience. The result is called the semi-

partial correlation coefficient of bubble information and empirical

salience.

For all, the simple pair-wise correlation analysis, the multivar-

iate correlation and the semi-partial correlation analysis, we used

the log transform of the predictor variables and the log transform

of empirical salience. This standard practice [80] has the main

effect of making the distributions of the individual variables more

normal.

Supporting Information

Text S1 Description of the computation of bubble information

and of other models of information integration.

Found at: doi:10.1371/journal.pcbi.1000791.s001 (0.30 MB PDF)

Figure S1 Distributions of bubble entropy estimates for different

initial bubble entropies (see text) for the expression task. Each plot

accumulates the data for all initial bubble entropies in a small

interval around the displayed value. The distributions were

obtained from simulations (see text).

Found at: doi:10.1371/journal.pcbi.1000791.s002 (0.20 MB TIF)
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