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Abstract

A powerful way to separate signal from noise in biology is to convert the molecular data from individual genes or proteins
into an analysis of comparative biological network behaviors. One of the limitations of previous network analyses is that
they do not take into account the combinatorial nature of gene interactions within the network. We report here a new
technique, Differential Rank Conservation (DIRAC), which permits one to assess these combinatorial interactions to quantify
various biological pathways or networks in a comparative sense, and to determine how they change in different individuals
experiencing the same disease process. This approach is based on the relative expression values of participating genes—i.e.,
the ordering of expression within network profiles. DIRAC provides quantitative measures of how network rankings differ
either among networks for a selected phenotype or among phenotypes for a selected network. We examined disease
phenotypes including cancer subtypes and neurological disorders and identified networks that are tightly regulated, as
defined by high conservation of transcript ordering. Interestingly, we observed a strong trend to looser network regulation
in more malignant phenotypes and later stages of disease. At a sample level, DIRAC can detect a change in ranking between
phenotypes for any selected network. Variably expressed networks represent statistically robust differences between
disease states and serve as signatures for accurate molecular classification, validating the information about expression
patterns captured by DIRAC. Importantly, DIRAC can be applied not only to transcriptomic data, but to any ordinal data
type.
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Introduction

Molecular signatures based on the measured abundance of

biomolecules (e.g., mRNA, proteins, metabolites) have the potential

to discriminate among disease subtypes, to predict clinical

outcomes, or to provide insights into the mechanistic underpinnings

of disease progression. Moreover, with sufficient data, these

signatures begin to enable the identification of perturbed networks

that reflect core aspects of the disease process—and thus could

provide insights into functionally relevant drug targets as well as new

approaches to diagnostics [1,2]. However, distinguishing signal

from noise in high-throughput data such as mRNA microarray

experiments presents a significant challenge. This noise commonly

results from technical issues in data production and the integration

of datasets from different platforms, laboratories, or even experi-

ments within a lab. Noise in high-throughput data also stems from

biological variability in the sources, such as genetic polymorphisms,

different stages of the biological process, disease stratification, and

stages of disease progression. In the study of human disease

processes, this variability poses a unique hurdle as there are often

only data for a single point in time; when comparing data between

individuals who appear to have the same disease, one does not know

whether the observed differences reflect disease subtypes or different

stages of a single disease type.

A fundamental tenant of systems approaches to biology and

medicine is that dynamically changing biological networks mediate

physiological, developmental, and disease processes, and that the

key to understanding these processes is translating network

dynamics into phenotypes. As such, a powerful method to mitigate

some forms of biological noise (hence increasing the utility of high-

throughput data as a diagnostic and scientific tool) is to convert the

molecular data from individual genes or proteins into an analysis

of comparative biological network behaviors. Typically, studies

search for a small number of individual genes whose differential

expression is highly correlated with phenotypic changes. However,

malignant phenotypes in many diseases arise from the net effect of

interactions among multiple genes and other molecular agents

within biological networks. For example, cooperating oncogenes

interact synergistically to evade tumor suppression mechanisms

such as cell-cycle arrest and apoptosis [3,4]. The combinatorial
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nature of such disease-induced perturbations leads to a highly

complex picture of the underlying biological processes. As such,

the biological insight gleaned from the expression patterns of

individual genes is often limited. Other pitfalls associated with

individual gene expression analysis have been proposed and

discussed elsewhere [2,5,6].

The importance of studying network behavior—evident in most

phenotypes, disease or otherwise—is particularly well-documented

for cancer. Research has linked modulated function on the level of

either metabolic networks [7–9] and/or signaling networks [10–

12] to cancer hallmarks including angiogenesis, increased growth,

metastasis, and evasion of immune detection. Similarly, recent

global genomic analyses in glioblastoma multiforme [13,14] and

pancreatic cancers [15] have revealed both varying numbers and

frequencies of genetic alterations within distinct core networks of

each disease. In light of these findings, microarray data analysis

methods have begun to shift towards identifying biologically

meaningful pathways or networks. We consider all pathways to in

fact be part of interconnected biological networks, and henceforth

use the term network rather than pathway. In general, network

regulation controls the expression levels of related genes

responding to specific conditions. Existing tools for network-based

expression analysis commonly investigate informative patterns of

up-regulation or down-regulation (i.e., increases or decreases in

expression) of genes in different disease states. For example, the

widely-used gene set enrichment analysis (GSEA) platform

identifies networks that are significantly enriched for individual

genes that are highly correlated with a phenotype [5,16]. Other

methods employ a single statistic to represent the collective activity

of a network (e.g., mean or median gene expression) [2,17];

perturbed levels of network activity (i.e., collective up- or down-

regulation) are then examined to identify those networks most

differentially expressed between phenotypes. These frameworks

have been applied to diverse cancer systems and serve as a robust

source of biological discovery [2,18].

Studying cellular regulation of networks in terms of ‘‘unidirection-

al’’ changes may, however, overlook subtle, yet influential, changes in

the relationships among the genes within a network. This drawback

directly reflects the combinatorial operation of genes in networks, in

which the actions of one gene greatly influences the actions of other

genes. By accounting for these combinatorial interactions we can

begin to alleviate the signal-to-noise issues in disease-perturbed

networks (as well as dynamically changing networks mediating

physiology or development). In particular, even the elementary

interactions captured by the relative orderings among two or three

genes have been shown to provide powerful biomarkers for

separating phenotypes [19–21]. With methods that aim to identify

statistically significant up- or down-regulation of genes or networks,

results will also depend largely on the context of the microarray

experiment. Cellular regulation in a case with a number of up- or

down-regulated genes in one phenotype versus another manifests as

an increase in absolute expression levels above some threshold,

relative to all other genes on the microarray. Even when thresholds

are tuned to produce statistically significant results, the findings are

still based on indirect measurements, (i.e., fluorescence) and therefore

may depend heavily on the experimental set up, type of data

normalization, and other factors. In addition to the technical

limitations of microarray experiments, biological context can greatly

impact results. For instance, if nearly all genes are differentially

expressed between two phenotypes, then no single network will be

statistically ‘‘enriched’’ for change. It is also possible that neither

individual network genes nor any network as a whole will display

notable over- or under-expression in response to environmental or

disease-related stimuli. The importance of accounting for combina-

torial gene interactions—and to do so without need to reference all of

the genes on the microarray—again becomes clear.

We have developed a new method called Differential Rank

Conservation (DIRAC) which considers combinatorial behavior,

and provides quantitative measures of how network expression

differs within and between phenotypes. The DIRAC approach

assesses cellular regulation of a network in the context of the relative

levels of expression for participating genes. For each microarray, the

expression values of the network genes are ordered from highest

expression (ranked first) to lowest expression (ranked last); regulation

is then quantified entirely by the rankings of genes within a selected

network. Consequently, DIRAC identifies and measures network-

level perturbations from a completely novel perspective, namely the

‘‘combinatorial comparisons’’ of network genes as opposed to

increases or decreases alone, allowing one to study how this ordering

changes in different conditions—and thus begin to infer the

consequences of combinatorial gene interactions. As a result, this

approach has two key advantages over tools that measure absolute

changes in expression levels. First, it accounts for gene-gene

interactions; second, the results do not depend on the other genes

on the microarray or on the method of normalization used. These

are both critical points in dealing with signal-to-noise issues. Notably,

as DIRAC treats each network independently, it can still identify

perturbed networks even when every gene on the microarray is

differentially expressed (in contrast to enrichment measures).

Our strategy for representing network rankings uses pairwise

comparisons of gene expression levels. Such pairwise comparisons

can yield two-gene predictors with simple decision rules for

classification of expression profiles [22,23]. These decision rules

have in turn resulted in highly accurate two-gene diagnostic

classifiers based on relative expression reversals that have proven

effective for molecular identification of cancer [19–23]. We extend

the relative expression reversal concept to networks. However,

analyzing sample-to-sample changes for every possible distinct

ordering of gene expression values within a network is not

computationally feasible; there are simply too many possible

orderings, i.e., permutations. Knowing the states of all pairwise

Author Summary

The systems approach to medicine derives from the idea
that diseased cells arise from one or more perturbed
biological networks due to the net effect of interactions
among multiple molecular agents; by measuring differ-
ences in the abundance of biomolecules (e.g., mRNA,
proteins, metabolites) we can identify reporters of network
states and uncover molecular signatures of disease.
However, a major limitation of previously published
network analyses is the focus on small numbers of
individual, differentially-expressed genes, hence the failure
to take into account combinatorial interactions. We report
a new technique, Differential Rank Conservation, for
identifying and measuring network-level perturbations.
Our rank conservation index is based entirely on the
relative levels of expression for participating genes and
allows us to detect differences in network orderings
between networks for a given phenotype and between
phenotypes for a given network. In examining cancer
subtypes and neurological disorders, we identified net-
works that are tightly and loosely regulated, as defined by
the level of conservation of transcript ordering, and
observed a strong trend to looser network regulation in
more malignant phenotypes and later stages of disease.
We also demonstrate that variably expressed networks
represent robust differences between disease states.

Differential Rank Conservation (DIRAC)
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orderings is equivalent to knowing the full ranking, which

motivates our representation. For each distinct pair of genes

within a network, we consider a binary variable indicating whether

or not the mRNA abundance of the first gene is less than that of

the second gene; in fact, we restrict attention to the probability of

this event within a phenotype for each pair of genes. In this way,

we avoid the combinatorial complexity of permutations and

represent the ‘‘expected’’ ordering of network genes for a given

phenotype as a binary template. Unlike the probabilities of full

orderings, pairwise frequencies are reliably estimated with typical

sample sizes, while still capturing a great deal of information about

network regulation. We subsequently compute a matching score to

signify how closely each sample’s network ordering matches a

phenotype-specific template.

We can use DIRAC at the population level to quantify

conservation differences between networks for a given phenotype.

Specifically, DIRAC allows us to use rankings to identify and

contrast tightly and loosely regulated network types of a single

phenotype:

i. a network is considered tightly regulated within its phenotype if

the ranks of network genes are mostly unchanged among

samples;

ii. a network is considered loosely regulated if the ranks of network

genes are greatly varied between samples of the same

phenotype.

Tightness of regulation for a selected network is best understood

as the allowed variation in gene expression levels observed across

the population. This offers an advantage over studying up- or

down-regulation only because it indicates the level of control

across samples in a population. In this work we use the DIRAC

approach to identify networks that are tightly regulated in a

number of human cancers and neurological disorders. Since

networks under tight control in a particular phenotype may be

necessary to maintain a specific cellular function, tightly regulated

networks that change across phenotypes may provide insight into

processes such as disease progression.

Additionally, DIRAC can be applied at the sample level to

identify conservation differences between phenotypes for a

specified network. At this level the DIRAC method can identify

variably expressed networks that reveal statistically robust

differences between disease states, leading to highly accurate

classification of expression profiles from various diseases. When

used to separate expression profiles, the DIRAC method is

noteworthy because it (i) is independent of microarray data

normalization; (ii) results in a simple yet efficient classifier for

phenotype distinction; and (iii) appears to be comparable in

accuracy to state-of-the-art classification methods. Learning the

regulation of gene rankings within different states allows us to

discover molecular signatures composed of related genes that

distinguish phenotypes, identify networks most involved in disease

transitions, and assist identification of potential therapeutic targets.

Importantly, while we focus on gene expression in the present

study, the method can be generalized to any ordinal dataset, and

thus can be applied to such biological data types as proteomics,

gene copy number, chromosomal position, and so forth.

Results/Discussion

Overview of DIRAC Methods
The DIRAC approach was used to evaluate regulation of gene

ordering within networks in different diseases. For each micro-

array sample in each phenotype studied, we characterized the

ordering of network genes (i.e., network ranking) in terms of

comparisons between the expression values of pairs of genes.

Based on the comparison statistics, we defined a rank template for

each network and phenotype representing the expected (i.e., most

common) pairwise ordering of gene expression for that network in

that phenotype. We employed a simple measure—a rank matching

score (R)—to determine how well the network ranking in each

individual sample (i.e., expression profile) matched the ordering

defined in the rank template. Averaging R over all samples within

a phenotype yields a network-specific rank conservation index (mR)

which represents how well, on average, all samples in the same

phenotype match the corresponding rank template. Alternatively,

comparing two rank matching scores for the same sample leads to

a highly-discriminating rank difference score (D) that allows one to

determine the most variably expressed networks between two

phenotypes. The calculation of these quantities is illustrated in

Figure 1.

Several prototypical scenarios arise from these measures. In one

scenario (Figure 2, left), conservation indices are used to

measure the consistency with which network rankings are

maintained in a population, and are used to identify tightly

regulated networks in each phenotype. One situation, where all

samples have similar network rankings, yields a large rank

conservation index and indicates the network is tightly regulated.

A second situation, where the ordering of network genes is highly

varied, yields a small rank conservation index and indicates the

network is loosely regulated. In a second prototypical scenario, the

DIRAC method detects changes in ranking (i.e., shuffling of gene

expression values) between phenotypes for a selected network

(Figure 2, right). The top networks selected by DIRAC based on

the difference score can be used to classify gene expression profiles

by phenotype.

We first applied DIRAC to investigate network rankings using

gene expression profiles obtained from patients with different

stages of prostate disease. The gene expression data, originally

reported by Yu et al. [24] and publically available in the NCBI

Gene Expression Omnibus (GDS2545), contains 108 human

prostate samples: 18 samples of normal prostate tissue (NP) from

organ donors, 65 primary prostate tumor (PT) samples, and 25

metastatic prostate tumor (MT) samples. The findings for normal

prostate and prostate cancer samples presented below represent

the main features of the DIRAC method, and can be similarly

obtained for any disease expression data.

In addition to the more detailed prostate cancer analysis, we

examined a number of other disease phenotypes including cancer

subtypes and neurological disorders, and identified both tightly

regulated and variably expressed networks in each. For each

dataset, we grouped expression levels of genes into 248 human

signaling networks, defined according to the BioCarta gene sets

collection in the Molecular Signatures Database (MSigDB) [5]. In

order to ensure that the networks examined were as complete as

possible, we used gene synonym information from NCBI to

replace unmatched names in each dataset with those belonging to

networks in the BioCarta collection. This step led to an average

increase of 5% in the fraction of network genes (1296 total across

248 networks) for which a corresponding expression value was

found (Table S1).

Population-Level DIRAC
The population-level analysis is centered on the rank conser-

vation index (mR)-defined for each network and each phenotype.

This index represents the degree of conservation in the rankings of

the expression levels of the network genes, averaged over samples

of the phenotype.

Differential Rank Conservation (DIRAC)
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Figure 1. Overview of Differential Rank Conservation (DIRAC) methods.
doi:10.1371/journal.pcbi.1000792.g001

Differential Rank Conservation (DIRAC)
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Tightly regulated networks in normal prostate and

cancerous prostate. For a given phenotype, the extent of

gene ranking conservation within networks will vary across

networks. The ten most tightly regulated networks in normal

prostate (NP), primary prostate tumors (PT), and metastatic

prostate tumors (MT), as measured by rank conservation indices,

are shown in Table 1. Large rank conservation index values

indicate similar gene orderings among all samples of each

phenotype in these networks, and hence tight regulation. This

suggests that the combinatorial gene interactions in each network

are quite similar among different patients.

Identifying networks that are tightly regulated in some

phenotypes and loosely regulated in others suggests that the level

of control across samples in a population may change dramati-

cally, reflecting the nature of the disease process. While identifying

changes in tightness of regulation of networks can provide insight

into molecular differences between phenotypes, some networks

may be tightly regulated in all phenotypes examined. For example,

we found that the G-protein signaling (GS) network is the most

tightly regulated network in normal prostate (NP), as well as in

primary (PT) and metastatic prostate tumors (MT). The GS

network comprises major signaling proteins downstream of G-

protein coupled receptors, including both the catalytic (PRKACA)

and regulatory (PRKAR1A) subunits of the cAMP-dependent

protein kinase C (PKC). PKC family members phosphorylate a

wide variety of protein targets and are known to be involved in

diverse cellular signaling networks, such as those associated with

cell adhesion, cell transformation, cell cycle checkpoint, and cell

volume control. In 18 NP samples, the pairwise orderings among

the six GS network genes matched the corresponding normal

prostate rank template identically for all 15 pairs in the network

(mR = 1.000). Similarly, network rankings in PT samples and MT

samples matched the respective templates for 98.9% (mR = 0.989)

and 99.5% (mR = 0.995) of all pairwise orderings on average. We

also found that a single network ranking was shared by the

majority of NP samples (100%), PT samples (83%), and MT

samples (92%); in particular, therefore, the GS network rank

template was identical in all three phenotypes. Furthermore, the

remaining samples in PT and in MT displayed only a single

mismatch in pairwise orderings compared to the template.

There are several possible explanations for observing tight

regulation of certain network rankings in a phenotype. In the

simplest case, the genes in a network may be expressed at greatly

disparate magnitudes, making a change in their relative expression

rankings less likely. We can see that this is most likely true for the

GS and FOSB networks, both of which displayed the highest rank

conservation for all three prostate phenotypes. The average gene-

to-gene expression variance across all samples for these networks

fell between 1.14–1.58, roughly three times the average gene-to-

gene variance for all 248 networks (,0.41). As such, a change in

the relative ordering among genes in these networks would require

a more dramatic change in the expression of individual genes.

Networks like GS and FOSB are therefore analogous to

‘‘housekeeping’’ genes, as the ranking of genes in each is expected

to remain the same in most samples.

Alternatively, small variation in ordering—nearly the same

ranking in all samples of the same phenotype—could indicate that

a network is critical to maintaining some specific cellular function.

This is more likely in cases with less gene-to-gene expression

variance within a network; if pairwise orderings can be easily

altered by small changes in expression but remain consistent, some

force such as selective pressure might drive the cell to minimize

fluctuation in the expression of network genes. We found that the

SET network is tightly regulated in NP samples, but displays much

smaller gene-to-gene variance than networks like GS and FOSB.

The SET network—also known as the granzyme mediated

apoptosis pathway—comprises a total of 11 genes (illustrated in

Figure 3), and is an important cytotoxic T cells mechanism for

fighting tumors and virus-infected cells [25]. While the SET

network displays greater variation in ranking among NP samples

than GS or FOSB (mR = 0. 945), 16 out of 18 samples show only

five or fewer mismatches compared to the 55 pairs in the rank

template. We hypothesize that expression of genes within the SET

network is highly consistent in NP samples to maintain proper

function of cellular defense mechanisms.

Tightly regulated networks in disease phenotypes might also

lead to useful hypotheses about cell behavior. The RAN network,

similar to SET, is tightly regulated across MT samples, and shows

relatively low gene-to-gene variation within the network. The

RAN network contains five genes: regulator of chromosome

Figure 2. Prototypical scenarios observed for networks in DIRAC.
doi:10.1371/journal.pcbi.1000792.g002

Differential Rank Conservation (DIRAC)
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condensation (CHC1), Ras-related nuclear protein (RAN), RAN

binding proteins 1 and 2 (RANBP1 and RANBP2), and RAN

GTPase activating protein 1 (RANGAP1). In MT samples, on

average, the pairwise orderings among the five RAN network

genes matched the corresponding MT rank template for 96.0% of

all pairs in the network (mR = 0.960). This network is involved in

the export of mRNA transcripts from the nucleus to the cytosol for

subsequent translation. Although it is unclear what advantage tight

regulation of the RAN network may confer upon metastatic

prostate tumors, there is clearly little variation in network ranking.

Importantly, the mutation rates in cancer cells are increased 200-

400 fold—providing ample opportunity for changes to be fixed by

natural selection or random fixation (if the change is not selectively

advantageous or disadvantageous).

We can learn more by examining the tightness of regulation for

the same network in different phenotypes. The SET network in

PT samples has a rank conservation index equal to 0.909, which is

significantly lower than in NP samples (P-value,0.05); similarly,

mR for SET in MT samples is equal to 0.891. As seen in Figure 3,

the decreased network rank conservation in PT and MT is due to

a greater number of samples with rankings different from the

respective templates (i.e., more samples with greater numbers of

mismatches). The increased variation in network ranking seen in

the two stages of prostate cancer might indicate that the biological

Table 1. Most tightly regulated networks in normal prostate and primary and metastatic prostate tumors, as indicated by rank
conservation index values.

Tightly regulated networks in NP

Network name Num. genes Num. gene pairsa Avg. variance in NP mR in NP

GS 6 15 1.328 1.000

FOSB 4 6 1.141 0.981

AKAP13 7 21 0.796 0.955

AGPCR 11 55 0.811 0.955

RNA 8 28 0.453 0.948

CACAM 12 66 0.551 0.947

NDKDYNAMIN 17 136 0.619 0.946

ETC 8 28 0.350 0.946

SET 11 55 0.537 0.945

SKP2E2F 10 45 0.339 0.943

Tightly regulated networks in PT

Network name Num. genes Num. gene pairs Avg. variance in PT mR in PT

GS 6 15 1.270 0.989

FOSB 4 6 1.525 0.979

AKAP13 7 21 0.880 0.960

ARGININEC 6 15 0.548 0.960

PLK3 8 28 0.672 0.951

CDC42RAC 15 105 0.547 0.946

RNA 8 28 0.489 0.946

CREM 7 21 0.563 0.944

BOTULIN 4 6 0.850 0.944

AGPCR 11 55 0.771 0.943

Tightly regulated networks in MT

Network name Num. genes Num. gene pairs Avg. variance in MT mR in MT

GS 6 15 1.322 0.995

FOSB 4 6 1.575 0.980

CREM 7 21 0.659 0.966

S1P 6 15 0.465 0.963

RAN 5 10 0.371 0.960

SLRP 4 6 1.227 0.960

BOTULIN 4 6 0.722 0.953

AKAP13 7 21 0.787 0.947

SARS 10 45 0.819 0.939

RAB 10 45 0.441 0.937

aThe number of gene pairs is equal to Gm(Gm–1)/2, where Gm is the number of genes in the network.
doi:10.1371/journal.pcbi.1000792.t001
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function associated with SET genes (i.e., granzyme mediated

apoptosis) plays a lesser role in behavior of these cells, and is

therefore under looser control. It is also possible that in primary

and metastatic prostate tumors—obviously more malignant

phenotypes compared to normal prostate—the SET network

becomes deregulated and that this deregulation contributes to its

malignancy. Alternatively, an increase in mutation rates with

malignancy might have resulted in more random fixations.

These rank conservation indices estimate population statistics

based on limited sample sizes (on the order of 20–100, as seen in

Figure 3. Example of a tightly regulated network in normal prostate. A simplified diagram of the SET network, comprising 11 signaling
proteins involved in granzyme mediated apoptosis, is shown in the center. The NP rank template for the network is highlighted yellow, and each
unique ranking observed in NP samples is shown to the right with mismatches highlighted red. The histograms at the bottom demonstrate the
increased variation in ranking in PT and MT, indicated by greater number of mismatches from the respective rank templates.
doi:10.1371/journal.pcbi.1000792.g003

Differential Rank Conservation (DIRAC)
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Table 2), and hence some variation is expected even if the true

indices were the same. For instance, the difference in the rank

conservation index for the SET network between NP and PT or

between NP and MT could be a small-sample effect and would

need to be validated with either a larger study or by a suitable

permutation test (see Section II below). However, even these

small-sample estimates generate specific hypotheses, such as an

increase in disorder in the more malignant phenotype, which can

then be meaningfully explored by examining a variety of datasets

and phenotypes—discussed in the following sections.

Deregulation of network ranking in disease. As described

for the SET network above, certain networks may be tightly

regulated in one phenotype, but not in another. The SET network

appears to be relatively tightly regulated in normal prostate, but

more loosely regulated in both primary and metastatic prostate

tumors. Cases such as this represent the deregulation of a network

in one phenotype relative to another. We used the difference in

rank conservation index values between phenotypes as the basis

for identifying the most deregulated networks. For example, in

comparing NP samples to MT samples, we first calculated the rank

conservation index for all networks in both phenotypes. Next, we

identified the networks with the greatest absolute difference in

index values between NP and PT (i.e., highly conserved in one

class but not in the other). Based on sample permutation tests, we

found that 67 out of 248 networks had a significant difference in

index values (P-value,0.05; see Materials and Methods). The

network with the largest conservation difference—the

FIBRINOLYSIS network—was more tightly regulated in NP

(mR = 0.891) than in MT (mR = 0.736) (Table 3). The

FIBRINOLYSIS network comprises 12 genes and breaks down

fibrin clots formed during coagulation. It has previously been

reported that patients with metastatic prostate cancer occasionally

exhibit enhanced fibrinolytic activities with symptoms of bleeding,

epistaxis, or other forms of hemorrhage [33]. Deregulation of the

FIBRINOLYSIS in MT samples might therefore be directly linked

to malignant features of the disease. However, without further

information it is impossible to discern whether loose regulation of

this network is a causative mechanism in MT, or occurs as a

downstream effect of some other perturbation in tumor

progression.

Upon inspecting the remaining differentially regulated networks

between NP and MT, we found that in fact, 57 out of 67

significantly deregulated networks identified showed tighter

regulation in NP than in MT (Figure 4J). The strong majority

of networks more tightly regulated in the NP (P-val-

ue = 5.1461028 from a binomial distribution; see Table 4) lends

evidence to the theory that deregulation of network ranking is in

some way related to increased malignancy. As such, the DIRAC

Table 2. Human disease gene expression datasets studied with DIRAC.

Dataset Ref Samples Tissue type Disease/source (subtypes)a Short nameb Subtype samples

A [19] 68 gastrointestinal sarcoma gastrointestinal stromal tumor GIST 37

Leiomyosarcoma LMS 31

B [26] 43 ovarian tumors carcinoma-like ovarian tumor CL ovarian tumor 20

adenoma-like ovarian tumor AL ovarian tumor 23

C [27] 101 skin fibroblasts Marfan syndrome subjects MFS fibroblast 60

control subjects non-MFS fibroblast 41

D [28] 44 head and neck skin cells head and neck squamous cell carcinoma HNSCC 22

normal head and neck skin cells normal head/neck 22

E [29] 60 primary breast
cancer tumor

patients non-response
(cancer recurred) to treatment

(nr) breast cancer 28

patients responsive
(disease-free) to treatment

(r) breast cancer 32

F [30] 61 dorsolateral prefontal
cortex and orbitofrontal
cortex

Bipolar disorder patients bipolar cortex 30

control patients non-bipolar cortex 31

G [31] 72 blood and bone marrow acute myeloid leukemia AML 1 25

acute lymphocytic leukemia ALL 1 47

H [32] 48 blood and bone marrow acute myeloid leukemia AML 2 24

acute lymphocytic leukemia ALL 2 24

I [24] 83 normal and tumorgenic
prostate

primary prostate tumors (p) prostate cancer 65

normal prostate tissue normal prostate 18

J [24] 43 normal and metastatic
prostate

metastatic prostate tumors (m) prostate cancer 25

normal prostate tissue normal prostate 18

K [24] 90 prostate tumor metastatic prostate tumors (m) prostate cancer 25

primary prostate tumors (p) prostate cancer 65

aFor each set of expression profiles, the two subtypes are listed in order from most to least malignant (e.g., tumor type with worst prognosis or cancer versus control).
bShort names are used to reference specific phenotypes in subsequent figures.
doi:10.1371/journal.pcbi.1000792.t002
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approach may be useful both in the stratification of disease and/or

in assessment of the progression of disease. To explore this

hypothesis further, we examined a number of gene expression

datasets available for public download from the NCBI Gene

Expression Omnibus (Table 2). These datasets included expres-

sion profiles from multiple cancers such as breast, ovarian, and

blood (leukemia), as well as diseases of the brain/nervous system,

skin, and intestinal tract (note: the leukemia datasets G and H were

excluded from this particular comparison, as we found no clear

evidence for which subtype—AML or ALL—is more malignant).

We repeated the procedure described for NP and MT for each

binary phenotype comparison from the expression data. In all but

one case out of nine, the less malignant phenotype had a greater

number of high conserved (tightly regulated) networks (Figure 4).

That is, a network appears much more likely to become

deregulated in worse cases of disease. Importantly, the dataset

for the one exception—comparing Marfan syndrome and normal

fibroblasts—contained expression values for only ,4,000 genes

(compared to 20,000 or more in most of the other datasets). Due to

the small number of genes, many of the networks contained

significant gaps, which may have produced less robust results. Still,

the overall trend seen in Figure 4 suggests that in malignant

phenotypes, networks are often more loosely regulated, with

greater variation in expression ranking of participating genes from

Table 3. Most differentially regulated networks between three stages of prostate disease.

Differentially regulated networks (PT vs. NP)

Network name Num. genes Num. gene pairsa mR in PT mR in NP Abs. difference in mR P-value

TCRA 12 66 0.859 0.928 0.069 5.85E-04

TCRMOLECULE 5 10 0.871 0.939 0.068 6.69E-04

EIF2 7 21 0.854 0.915 0.061 1.33E-03

TERC 6 15 0.877 0.933 0.056 2.29E-03

NEUTROPHIL 8 28 0.848 0.901 0.053 3.33E-03

GLYCOLYSIS 8 28 0.879 0.929 0.050 4.57E-03

ACE2 11 55 0.835 0.885 0.050 4.72E-03

FIBRINOLYSIS 12 66 0.847 0.891 0.044 9.17E-03

INTRINSIC 22 231 0.852 0.896 0.044 9.45E-03

CLASSIC 10 45 0.886 0.930 0.044 9.74E-03

Differentially regulated networks (MT vs. NP)

Network name Num. genes Num. gene pairs ı̀R in MT ı̀R in NP Abs. difference in ı̀R P-value

FIBRINOLYSIS 12 66 0.736 0.891 0.156 26.66E-16

EXTRINSIC 12 66 0.716 0.870 0.155 26.66E-16

INTRINSIC 22 231 0.761 0.896 0.135 2.02E-05

CLASSIC 10 45 0.829 0.930 0.100 2.90E-04

TERC 6 15 0.843 0.933 0.091 6.21E-04

ION 5 10 0.892 0.806 0.086 8.35E-04

COMP 14 91 0.832 0.914 0.082 1.20E-03

NEUTROPHIL 8 28 0.819 0.901 0.082 1.21E-03

ARF 15 105 0.829 0.911 0.081 1.32E-03

PEPI 5 10 0.808 0.889 0.081 1.34E-03

Differentially regulated networks (MT vs. PT)

Network name Num. genes Num. gene pairs mR in MT mR in PT Abs. difference in mR P-value

EXTRINSIC 12 66 0.716 0.856 0.140 26.66E-16

FIBRINOLYSIS 12 66 0.736 0.847 0.111 8.06E-06

INTRINSIC 22 231 0.761 0.852 0.091 4.03E-05

ION 5 10 0.892 0.803 0.089 6.05E-05

PEPI 5 10 0.808 0.895 0.087 6.85E-05

ARGININEC 6 15 0.880 0.960 0.080 1.65E-04

LEPTIN 8 28 0.807 0.727 0.080 1.73E-04

NOTCH 4 6 0.853 0.931 0.077 2.42E-04

PLC 8 28 0.800 0.859 0.059 1.74E-03

BETAOXIDATION 6 15 0.864 0.922 0.058 1.86E-03

aThe number of gene pairs is equal to Gm(Gm–1)/2, where Gm is the number of genes in the network.
doi:10.1371/journal.pcbi.1000792.t003
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sample to sample. The global pattern of increased disorder with

malignancy highlights the utility of studying gene expression

ordering within networks, and also reveals a striking phenomenon

that could drive future investigation and may lead to new

understandings of gene expression in disease.

Global regulation of networks across phenotypes. Aver-

aging rank conservation indices over all the networks provides a

measure of global regulation of networks in different phenotypes.

For example, networks in normal prostate are more highly

conserved on average (0.903) than networks in metastatic prostate

cancer (0.884). This difference suggests that the more malignant

cancer subtype (MT) may have greater overall variation in

network rankings among different samples. We used the gene

expression datasets described above to compare global regulation

Figure 4. Deregulation of networks in disease. For each dataset, networks were selected according to the greatest absolute difference in rank
conservation between the two phenotypes. Using this subset of networks, the rank conservation index values in the less malignant phenotype (y-
axis) were plotted against indices in the more malignant phenotype (x-axis). Higher rank conservation in the less or more malignant phenotypes is
indicated by points above or below the diagonal line, respectively. Panel labels (A–K) correspond to datasets listed in Table 2.
doi:10.1371/journal.pcbi.1000792.g004

Table 4. Statistical significance of network deregulation in malignant phenotypes.

Dataset # tighter in less malignant # tighter in more malignant Outcome Binomial P-value

A 26 0 1 0.00

B 122 1 1 0.00

C 13 18 0 0.76

D 23 6 1 0.00

E 13 1 1 6.10E-05

F 9 7 1 0.23

I 24 6 1 1.62E-04

J 57 10 1 3.41E-10

K 39 13 1 6.38E-05

Total 326 62 8 0.00

Binomial P-value for outcomes: 0.002

doi:10.1371/journal.pcbi.1000792.t004
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of network rankings among a number of phenotypes. For each

phenotype, we calculated rank conservation indices for all

networks and used the average conservation as a rough measure

of how tightly or loosely regulated networks tend to be in each case.

We used the average index value to order phenotypes from

highest to lowest global conservation. Phenotypes with the highest

average conservation primarily have tightly regulated networks

across samples in the population. For example, most networks in

non-bipolar cortex and bipolar cortex were found to have

conservation index values greater than 0.95 (seen as bright colors

on the heatmap in Figure 5) for average values of 0.9561 and

0.9556, respectively. In contrast, many networks in the two breast

cancer phenotypes (r—responsive to treatment; nr—non-respon-

sive to treatment) have rank conservation indexes less than 0.80

(dark colors on the Figure 5 heatmap). In this case, the low global

conservation—average index values of 0.835 and 0.826 in (r)

breast cancer and (nr) breast cancer, respectively—suggests that

network rankings in these disease phenotypes have looser

regulation and greater variation. Based on a one-way ANOVA,

the estimated overall P-value for the ordering of phenotypes in

Figure 5 is zero.

Interestingly, the trend of lower conservation in more malignant

phenotypes described in the previous section seems to persist even

from a coarser, global perspective. For example, networks in the

less malignant adenoma-like ovarian tumors are more highly

conserved on average (0.947) than in more malignant carcinoma-

like ovarian tumors (0.913). The same was seen when examining

all three prostate phenotypes, where normal prostate is more

tightly regulated overall than primary (p) prostate cancer, which

itself is more tightly regulated than metastatic (m) prostate cancer.

Even for the most highly conserved phenotypes (non-bipolar and

bipolar cortex) and lowest conserved phenotypes (breast cancers),

Figure 5. Diverse rank conservation of networks across phenotypes. Colors on the heatmap represent rank conservation indices for each
network in 19 different phenotypes, where brightest indicates very tight regulation of network ranking in a phenotype and darkest indicates loose
regulation of networks, with greater shuffling of gene rankings.
doi:10.1371/journal.pcbi.1000792.g005
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networks are more tightly regulated on average in the less

malignant phenotype of each pair. We also observed interesting

differences observed based on tissue-type, where expression

ranking of networks in brain and ovarian tissue displayed higher

conservation on average than prostate tissue, which is in turn is

more highly conserved than in blood and in breast tissue. Thus, at

least two global trends must be considered in evaluating network

deregulation: (i) the severity of the disease, and (ii) the tissue of

origin.

Sample-Level DIRAC
In order to identify variably expressed networks between two

selected phenotypes, we designed a rank difference score (D),

calculated for each sample based on rank matching scores. For a

particular network, this measure indicates the similarity between

the ordering of network genes in a sample to the template of one

class versus the template of the other. The difference score ranges

from -1 to 1, with positive values suggesting the first phenotype,

and negative values suggesting the second, culminating in simple

rules for classifying an expression profile. Our purpose in

introducing the rank difference score was two-fold: (i) to identify

variably expressed networks between two selected phenotypes; and

(ii) to validate the DIRAC approach to network identification, and

the emphasis on combinatorial interactions, by demonstrating the

discriminative power of the networks identified.

Variably expressed networks in normal prosate and

cancerous prostate. As shown in Figure 6, the positive

versus negative trend holds for most samples in MT and NP across

all networks. To determine the most variably expressed networks

between MT and NP, we (i) defined rank templates for each

phenotype; (ii) calculated rank matching scores and evaluated the

rank difference score for each sample; and (iii) chose the networks

with the largest estimated classification rate. Specifically, the

classification rate for a network is defined as the average of

sensitivity and specificity for predicting sample classes in the

training data (i.e., apparent accuracy).

To evaluate whether variably expressed networks represented

meaningful differences between MT and NP gene expression

profiles, we used permutation-based testing to assess the statistical

significance of estimated network classification rates (see Mate-
rials and Methods). A total of 176 networks significantly

discriminated between expression profiles of MT and NP (P-

value,0.05), the top ten of which appear in Table 5. Among

these differentially expressed networks, we estimated that only

6.7% (between 11 and 12 of the 176 total) are likely to have been

found by chance rather than based on true differences between the

phenotypes, as determined by the FDR.

The principal features governing the rank difference score, and

also an example of its application to molecular classification, are

illustrated in Figure 7 for the MAPK network, which we

identified as one of the most differentially expressed networks

between normal prostate and metastatic prostate tumors. Here,

R(xn) denotes the rank matching score for a profile xn, and

superscripts indicate the network and phenotype of the rank

template (e.g., R(MAPK,MT)(xn) represents the rank matching score

for a sample when compared to the ordering defined in the MT

template). The rank difference score is the difference in matching

score values for a particular sample: R(MAPK,MT)(xn)–

R(MAPK,NP)(xn). This measure captures low variance of network

ranking within phenotypes, but disparate rankings between

phenotypes. The rank difference values calculated for the MAPK

network for all samples are shown in Figure 7, along with the

corresponding phenotype predictions (i.e., MT where positive, NP

if negative). Interestingly, MAPK signaling has been previously

reported to be involved in the cancerous transformation of

prostate cells [34,35].

DIRAC-based classification of disease phenotypes. The

top networks selected by DIRAC based on the difference score

(i.e., the single best network for separating each different pair of

phenotypes) were used to classify gene expression profiles in cross-

validation. Specifically, we used leave-one-out cross-validation

(LOOCV) to estimate how accurately the top networks selected

could predict the phenotype of future samples (Figure 8).

Importantly, all processes including defining rank templates,

calculating rank difference scores, and selecting the best network

were done within cross-validation, using only the training samples

(i.e., no information from test samples was used to train classifiers).

For comparison, we selected the top Gm differentially expressed

genes—where Gm is equal to the number of genes in the top

network selected by DIRAC—and used the top-scoring pair (TSP)

algorithm [22,36] and support vector machines (SVM) [37,38] to

classify samples in each of the datasets. We found that our method

performed well in a number of the datasets, with estimated

accuracies between 92–96% in gastrointestinal sarcoma, ovarian

cancer, leukemia, and prostate cancer—including comparisons

between normal prostate and cancer as well as different stages of

prostate cancer (Figure 8). In cases with poor accuracies, such as

responsiveness of breast cancer to therapy, bipolar disorder, and

Marfan syndrome, we observed that other methods also failed to

accurately classify samples, suggesting that these phenotypes are

inherently difficult to separate based on the available expression

data.

Overall, we found that classification, when restricted to only the

genes in the top network (as determined by DIRAC), is nearly as

accurate as using the overall Gm most differentially expressed genes

(in TSP or SVM). Our foremost goal was not to propose a new

classifier, but to aid in biological discovery and hypothesis

generation; the classification accuracy simply affirms the robust-

Figure 6. Differential rank conservation across all networks for
a set of two prostate phenotypes. Positive rank difference scores
predict a metastatic sample and negative difference scores predict a
sample as normal.
doi:10.1371/journal.pcbi.1000792.g006
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ness of the network rank regulation measure. Specifically, the

classification experiment validates DIRAC by demonstrating the

importance of combinatorial interactions: the potential loss of

discriminating power in individual genes is countered by

discriminating interactions.

Implications for Systems Medicine
Systems medicine approaches assume that disease arises from

disease-perturbed biological networks in the relevant organ or

organs. These disease-perturbed networks alter the envelopes of

information that they express—and these changes encode the

pathophysiology of the disease. Moreover, the altered patterns of

information can elucidate new strategies for diagnosis or therapy.

Future drugs will likely be designed to re-engineer disease-

perturbed networks to behave in a more normal fashion, or at

least to abrogate their most deleterious consequences. This will

require a new drug target identification approach, and re-

engineering disease-perturbed networks appropriately will almost

always require multiple drugs. Likewise, the perturbed nodal

points in disease-perturbed networks can be expressed as proteins

in the blood—where the disease-altered levels of expression may

reflect the disease process. These disease-altered blood proteins

will create unique blood fingerprints specific for each disease

process, and thus provide powerful diagnostics. These advances

Table 5. Most variably expressed networks between different stages of prostate cancer.

Variably expressed networks (PT vs. NP)

Network name Num. genes Num. gene pairsa Template differenceb Apparent accuracy P-value

KERATINOCYTE 46 1035 0.070 0.981 ,1.0E-07

TOLL 31 465 0.073 0.945 1.21E-05

MAPK 83 3403 0.064 0.941 2.02E-05

MET 35 595 0.103 0.941 2.02E-05

FCER1 36 630 0.059 0.931 6.85E-05

INTEGRIN 34 561 0.094 0.923 1.21E-04

AT1R 34 561 0.096 0.922 1.25E-04

ERK 29 406 0.037 0.921 1.29E-04

CARDIACEGF 17 136 0.118 0.920 1.33E-04

IL1R 28 378 0.071 0.915 1.81E-04

Variably expressed networks (MT vs. NP)

Network name Num. genes Num. gene pairs Template difference Apparent accuracy P-value

MAPK 83 3403 0.111 1.000 ,1.0E-07

DEATH 29 406 0.128 1.000 ,1.0E-07

IL2RB 35 595 0.096 1.000 ,1.0E-07

HIVNEF 53 1378 0.148 1.000 ,1.0E-07

MET 35 595 0.165 1.000 ,1.0E-07

NO1 27 351 0.125 1.000 ,1.0E-07

NFAT 47 1081 0.164 1.000 ,1.0E-07

PPARA 50 1225 0.100 1.000 ,1.0E-07

ACTINY 19 171 0.123 1.000 ,1.0E-07

FCER1 36 630 0.111 0.990 ,1.0E-07

Variably expressed networks (MT vs. PT)

Network name Num. genes Num. gene pairs Template difference Apparent accuracy P-value

FCER1 36 630 0.119 0.985 ,1.0E-07

TCR 44 946 0.103 0.969 ,1.0E-07

BCR 33 528 0.133 0.969 ,1.0E-07

HIVNEF 53 1378 0.119 0.969 ,1.0E-07

MET 35 595 0.126 0.969 ,1.0E-07

PDGF 27 351 0.128 0.957 ,1.0E-07

BIOPEPTIDES 37 666 0.107 0.957 ,1.0E-07

MAPK 83 3403 0.100 0.954 ,1.0E-07

IL2RB 35 595 0.087 0.954 ,1.0E-07

AT1R 34 561 0.111 0.954 ,1.0E-07

aThe number of gene pairs is equal to Gm(Gm–1)/2, where Gm is the number of genes in the network.
bThe template difference represents the Hamming distance between two binary rank template vectors.
doi:10.1371/journal.pcbi.1000792.t005
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rely upon the proper identification of disease-perturbed networks.

To date, most of the evaluation of networks has employed lists of

transcripts that are perturbed from the levels of their counterparts

in normal organs. This listing, as with genome-wide association

(GWAS) studies, misses the key fact that disease-perturbed

networks must be assessed in the context of the combinatorial

interactions of their nodal components.

Our method is the first approach that begins to account for the

combinatorial behavior of interacting genes, mRNAs and/or

proteins. Using DIRAC-based calculations allows us to begin to

assess the key disease-perturbed networks that may aid in the

approach to diagnosis and therapy. We also stress that these

methods will almost certainly prove powerful in the stratification of

disease types. The example of gastrointestinal stromal tumors

(GIST) and leiomyosarcomas (LMS), histologically indistinguish-

able, but clearly classifiable by a primitive version of DIRAC, is

striking. We believe this will be a powerful approach in, for

example, distinguishing various types of neurodegenerative

diseases, as well as the stratification of complex diseases such as

Alzheimer’s. Notably exciting, some of the key transcripts used in

this classification process actually encoded proteins secreted into

the blood. Findings of this nature could lead to the use of altered

blood levels of proteins for diagnosis without the need to sample

disease tissues. Emerging technologies will make these measure-

ments possible at the single cell level, exposing other exciting

possibilities for diagnosis using the strategies outline above. We

predict the application of DIRAC as a powerful clinical tool in the

advancing proactive, rather than reactive, new medicine—the so-

called P4 medicine (predictive, personalized, preventive and

participatory)—where blood and single-cell diagnostics will be

the foundation of the P4-medicine revolution.

Conclusions
In this study we demonstrate a novel method to identify highly

discriminative biological networks based on differing patterns of

gene expression ranking within networks. These results provide a

coarse, but meaningful, glimpse into patterns of network

regulation for different phenotypes based on combinatorial

relationships between the involved genes. For example, when

comparing two disease states, it appears to be very common

(although not universal) for network rankings to be more varied—

or less tightly regulated—in the more pathological state. This

increased disorder associated with malignancy might be expected,

as mutations and other altered behavior of biomolecules lead to

breakdown of typical functioning in biological networks; rank

conservation index values calculated in DIRAC represent a

quantitative means to study and further verify this notion.

Importantly, this method not only identifies perturbed networks,

but does so in such a way that it can classify samples. Thus,

predictive accuracy becomes a strong measure for the validity of

Figure 7. Differential rank conservation of the MAPK network in metastatic prostate cancer and normal prostate. (A) Histograms of
rank matching scores. MT template matching scores (R(MAPK,MT)) are higher on average in MT samples than NP matching scores (R(MAPK,NP)). In NP
samples, R(MAPK,NP) scores are higher on average than R(MAPK,MT) scores. (B) Rank matching scores for the MAPK network. Comparing the two rank
matching scores in each sample, MT samples are more similar to the MT template than to the NP template in all cases; NP samples are ranked more
similarly to the NP template more than the MT template in all cases. (C) Rank difference score values for the MAPK networks. Samples are classified as
MT if the rank difference score is greater than zero and as NP if the difference is less than zero.
doi:10.1371/journal.pcbi.1000792.g007
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the perturbed network as a reproducible hallmark of the disease

phenotype. Such high predictive accuracy in classification adds

much stronger evidence that biologically meaningful network

differences are found than only a low P-value or FDR, which

simply measure how likely the result derives from chance.

Measures of global regulation can also give useful information for

designing research to identify expression-based classifiers of

disease. For instance, it would be more fruitful to search for

clear molecular signatures with tightly regulated phenotypes. In

cases with mostly loosely regulated networks, the greater variation

from sample-to-sample would pose a more difficult challenge for

identifying reliable classifiers. Studying rank regulation of

biologically relevant networks thus offers a promising tool for

measuring network behavior within and across different popula-

tions. Looking forward, the results obtained through this

approach should provide increased insight into phenotypic

processes of importance in biology and medicine.

Materials and Methods

The methods and analyses presented here were performed

entirely in Matlab. Source code files are available for download at

http://www.igb.uiuc.edu/labs/price/downloads.

Microarray Data
Given the list {g1, …, gGm} of Gm genes within a network m on a

microarray, we let X = (X1, …, XGm) denote the corresponding

expression profile, where Xi is the expression level of gene gi. Our

data then consists of a Gm x N matrix; the nth column represents the

expression profile xn of the nth sample, n = 1, …, N. In addition,

each sample is labeled by a phenotype YM{A, B, …, K}. The

labeled training set is F = {(x1, y1), …, (xN, yN)}. Expression

profiles X and phenotype labels Y are regarded as random

variables, and the elements of F represent independent and

identically distributed samples from some underlying probability

distribution of (X, Y).

Our analysis is based entirely on the ranks within each

expression profile. With Gm genes, there are Gm! possible orderings

for the expression values. The networks we consider typically have

tens or hundreds of genes; consequently, working directly with

individual permutations is not feasible. For example, any estimated

distribution over permutations using training data would be highly

singular. Instead, we base the analysis entirely on pairwise

comparisons.

Rank Template Matching for Networks
Knowing the ordering of the gene expressions within each

network expression profile is equivalent to knowing all of the

pairwise orderings, i.e., whether Xi,Xj or Xi.Xj for each distinct

pair of genes 1#i, j#Gm within the network m. Evidently, there are

Gm(Gm–1)/2 such pairs. For example, if there are Gm = 4 genes,

then there are six distinct ordered pairs: {(1, 2), (1, 3), (1, 4), (2, 3),

(2, 4), (3; 4)}. In order to define a template representing the

expected ranking of network genes within a phenotype, we

consider the probabilities Pr(Xi,Xj |Y = k) for each pair of genes

gi,gj and for each phenotype k. We estimate these probabilities

from the training set by computing the fraction of samples in each

phenotype for which gene gi is expressed less than gene gj. The

rank template for a fixed network m and phenotype k is the binary

vector T(m,k) of length Gm(Gm–1)/2 where the i,jth component is 1 if

Pr(Xi,Xj |Y = k).0.5 and 0 if Pr(Xi,Xj |Y = k)#0.5. The

calculation of a rank template is illustrated in Figure 1.

Given an expression profile xn for the network m, there is then a

natural measure for how well the sample matches the template

T(m,k). The rank matching score of sample n is denoted by R(m,k)(xn)

and is defined to be the fraction of the Gm(Gm–1)/2 pairs for which

the observed ordering within xn matches the template—the

orderings expected for phenotype k. See Figure 1 for an

illustration of a rank matching score.

Rank Conservation Indices
Averaging the rank matching score over all the samples in a

phenotype k yields a rank conservation index denoted by

mR
(m,k) = E(R(m,k)|Y = k). This index is estimated by averaging the

scores R(m,k)(x) over all the samples (x, y) in the training set for

which y = k. Whereas the rank matching score is a sample-based

statistic, i.e., it is defined for each expression profile, the rank

conservation index is a population statistic. The rank conservation

index can be seen as a measure of the stability in rankings among

the network genes in the phenotype. Two extreme cases

correspond to (i) pure random shuffling of the expression values

in the phenotype from sample to sample, in which case

mR
(m,k)<0.5; and (ii) all samples displaying exactly the same

ordering, in which case mR
(m,k)<1. In general, there are many gene

pairs gi and gj which are expressed on different scales, and hence

xi,xj across nearly all samples and phenotypes. As a result, one

generally finds mR
(m,k)&0.5. This index is similar to entropy in the

sense that values of mR
(m,k)%1 indicate a highly disorganized state

Figure 8. Classification with DIRAC compared to other
methods.
doi:10.1371/journal.pcbi.1000792.g008
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in which there is a great deal of variation among the rankings in

phenotype k from sample to sample and values of mR
(m,k)<1

indicate a highly ordered state in which samples have very similar,

and hence predictable, orderings among the genes.

Rank Difference Scores
Consider two phenotypes Y = A, B, and a fixed network m. If

network m is tightly regulated in one phenotype, the samples from

that phenotype, say Y = A, will have high R(m,A) values on average.

But if mR
(m,k) is large for both k = A and k = B, and if the two rank

templates T(m,A) and T(m,B) are significantly different, then the

samples from phenotype Y = A will generally have low values for

the statistic R(m,B) as well as high values for the statistic R(m,A), and

vice-versa for the samples from phenotype Y = B. We capture this

phenomenon, namely low variance of network ranking within a

phenotype, but high variance between phenotypes, with a single

statistic calculated for each sample: the difference

D(m)(xn) = R(m,A)(xn)–R(m,B)(xn). Clearly, –1#D(m)(xn)#1 with positive

(respectively, negative) values providing evidence that the

phenotype of sample n is Y = A (resp., Y = B). As a result, the

difference score provides a classifier for phenotype identification

based on the degree of regulation of the genes in network m. A new

sample n is predicted to belong to phenotype Y = A if D(m)(xn).0

and to phenotype Y = B if D(m)(xn)#0. The classification rate for

network m is then: g(m) = Pr(D(m)(X).0|Y = A)*Pr(Y = A)+Pr(D(m)

(X)#0|Y = B)*Pr(Y = B). The calculation of a rank difference score

was shown in Figure 1.

For example, if Y = A denotes prostate cancer and Y = B denotes

normal prostate, and if we assume that the two phenotypes are a

priori equally likely, then g(m) is simply the average of sensitivity

and specificity relative to identifying cancer. In order to determine

the most variably expressed networks between two given

phenotypes, we calculate rank templates for each phenotype,

evaluate the differential score for each sample in the training set

and choose the networks with the largest estimated classification

rate.

One previously reported method, k-TSP, classifies expression

profiles based on k pairs of genes with the most significant

expression reversals among all assayed genes [22]. The classifier

based on the rank difference score is also based on k pairs of genes,

with k equal to the distance between the two rank templates. To

see this, notice that upon computing the difference D(m)(xn) for

pathway m and phenotypes A and B, the gene pairs (i,j) for which

T(m,A)(i,j) = T(m,B)(i,j) cancel out. The DIRAC-based classifier

therefore reduces to voting among the gene pairs whose

probabilities straddle 0.5—i.e., satisfy Pr(Xi,Xj |Y = A),0.5,

Pr(Xi,Xj |Y = B) or vice versa. However, these k pairs of genes are

those in the ‘‘top-scoring network’’ as determined by DIRAC

rather than the most discriminating k pairs overall (as would be

identified by k-TSP).

Significance Testing
Procedures for estimating statistical significance are described

below for metastatic prostate tumors (MT) and normal prostate

(NP). Identical procedures were used for all binary phenotype

datasets studied.

Deregulated networks based on the difference in rank

conservation indices. Under the null hypothesis that no

systematic difference in gene expression profiles exists between

MT and NP, (i) the original phenotype labels were randomly re-

assigned to samples, and rank conservation indices were calculated

for all networks in each phenotype; (ii) the absolute difference in

rank conservation index values between the two phenotypes was

calculated for each network (i.e., h(m) = |mR
(m,MT)–mR

(m,NP)| for the

mth network); (iii) the first two steps were repeated for 1,000

permutations to generate a null distribution of rank conservation

difference values; and (iv) the significance level for h(m)

representing deregulation of a network between MT and NP

was measured as the probability of observing differences in rank

conservation greater than or equal to h(m) in the null distribution.

Classification rate for networks based on the rank

difference score. Under the null hypothesis that no

systematic difference in gene expression profiles exists between

MT and NP, (i) the original phenotype labels were randomly re-

assigned to samples, and rank difference scores were calculated for

each sample in all networks; (ii) sample classes in the permuted

dataset were predicted as MT or NP based on whether the

difference score was positive or negative, respectively, and scores

were assigned to each network as measured by the estimated

classification accuracy (i.e., g(m) for the mth network); (iii) the first

two steps were repeated for 10,000 permutations to generate a null

distribution of network classification rates; and (iv) the significance

level for the g(m) in predicting MT and NP profiles was measured

as the probability of observing classification rates greater than or

equal to g(m) in the null distribution. To address the issue of

multiple-hypothesis testing, we also estimated the false discovery

rate (FDR) for each significance level, representing the fraction of

our selected features which we would expect to be false positives.

Evaluating Classification Performance
We used leave-one-out cross validation to estimate the

(generalization) error rate of each classification method studied.

Importantly, for each classification method tested, all processes

were done using only the training samples without including any

information from the test sample. Within each iteration of the

cross validation loop, expression profiles in the original training

data F = {(x1, y1), …, (xN, yN)} are divided into two groups: a

training set (Ftrain) and a test set (Ftest). The classifier is trained on

the N–1 samples of Ftrain and then used to predict the phenotype of

the remaining ‘‘left out’’ sample in Ftest. The overall cross

validation classification rate after N total train-test divisions and

predictions is calculated as the average of sensitivity and specificity.

Details for training and testing with each type of classifier are

described below.

DIRAC. Rank templates, rank matching scores, and rank

difference scores are calculated uniquely for each new instance of

the training set Ftrain. The single best network is chosen based on

the classification rate for samples of Ftrain, and the rank templates

for this network are then used to assign two rank matching scores

to the remaining sample comprising Ftest. If the difference in

matching scores is positive, the sample is predicted to be of

phenotype A, otherwise it is classified as phenotype B.

TSP. The top-scoring pair (TSP) algorithm is described in

detail elsewhere [22]. Here, we first filtered the total number of

transcripts in Ftrain, keeping only the top Gm most differentially

expressed genes (DEGs), where Gm is equal to the number of genes

in the best network selected by DIRAC. The top features (i.e.,

DEGs) were selected based on the Wilcoxon ranksum test.

Searching among all possible pairwise combinations of genes in

the reduced dataset, we identified a single best pair (Xi and Xj) for

which the difference |Pr(Xi,Xj | A)–Pr(Xi,Xj | B)| is maximized

(or alternatively, |Pr(Xi.Xj | A)–Pr(Xi.Xj | B). The phenotype of

Ftest is then predicted by comparing the expression levels for this

gene pair.

SVM. Prior to training a support vector machine (SVM)

classifier on the samples of Ftrain, we also filtered down to the top

Gm DEGs within each cross validation loop, where Gm is equal to

the number of genes in the best network selected by DIRAC. The

Differential Rank Conservation (DIRAC)
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SVM was then trained on the expression values of these Gm genes

using a Gaussian kernel, and then used to predict the phenotype of

Ftest.

Supporting Information

Table S1 Increasing network completeness with NCBI gene

name information.

Found at: doi:10.1371/journal.pcbi.1000792.s001 (0.01 MB PDF)
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