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Abstract

The population dynamics theory of B cells in a typical germinal center could play an important role in revealing how affinity
maturation is achieved. However, the existing models encountered some conflicts with experiments. To resolve these
conflicts, we present a coarse-grained model to calculate the B cell population development in affinity maturation, which
allows a comprehensive analysis of its parameter space to look for optimal values of mutation rate, selection strength, and
initial antibody-antigen binding level that maximize the affinity improvement. With these optimized parameters, the model
is compatible with the experimental observations such as the ,100-fold affinity improvements, the number of mutations,
the hypermutation rate, and the ‘‘all or none’’ phenomenon. Moreover, we study the reasons behind the optimal
parameters. The optimal mutation rate, in agreement with the hypermutation rate in vivo, results from a tradeoff between
accumulating enough beneficial mutations and avoiding too many deleterious or lethal mutations. The optimal selection
strength evolves as a balance between the need for affinity improvement and the requirement to pass the population
bottleneck. These findings point to the conclusion that germinal centers have been optimized by evolution to generate
strong affinity antibodies effectively and rapidly. In addition, we study the enhancement of affinity improvement due to B
cell migration between germinal centers. These results could enhance our understanding of the functions of germinal
centers.
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Introduction

As one of the adaptive immune responses [1,2,3,4], Affinity

Maturation (AM) is the procedure in germinal centers (GC) to

develop Immunoglobulins (Ig), i.e., antibodies, with increased

affinities to a new antigen. Understanding the basic functional and

physical principles of GC kinetics is not only important in medical

science, but also contributes to the fundamental understanding of

molecular evolution [5]. Mathematical models by Perelson and

coworkers [6,7] made an important effort to describe the B cell

population in a typical GC as a result of dynamic interactions

between mutation and selection. This effort, complementary to the

studies using Ig sequence data (e.g. [8]), is very important in

revealing the functions of germinal centers. However, there are

still two puzzles in the models. First, the experimentally observed

somatic hypermutation [9] rate was viewed as [6] so high that even

B cells expressing antibodies with improved affinities are easily

spoiled by the majority of deleterious mutations. To resolve the

conflict, it is proposed [6,10] that the mutation could be switched

off periodically. Second, even if the mutation rate is tuned

periodically, the calculated affinity improvement (up to 15-fold) is

still not comparable with the observed improvements (,100-fold

[11,12,13,14]). Deem and coworkers [15] used a version of

random energy model to describe the alternative rounds of

mutations and selection, assuming 100-fold affinity improvement.

While this is helpful in sketching the AM procedure, it is

interesting to explore the values of selection strength and antigen

concentration that lead to the sufficient affinity improvement

consistent with experiments. Third, a further analysis indicated

that the models did not reproduce the ‘‘all or none’’ phenomenon

[8], i.e., the fraction of B cells with strong affinity Ig is more likely

to be high or low, but less likely to be intermediate.

Since most of the parameters in the models are estimated from

experiments with considerable uncertainties, it is possible to

reconcile the discrepancies by revising the parameter values.

However, the number of parameters in Perelson’s models is not

small, and it is unclear how to find the best parameter values. We

notice that the affinity dependent selection results from antigen

binding kinetics, salvation, and recirculation of B cells. If we

replace these steps by a phenomenological linear function of

affinity to represent the selection, the calculations will be

significantly simplified, and it will be possible to explore the

parameter space and look for the optimal design. We hypothesize

that AM has been optimized in evolution, and expect the B cell

population dynamics with these optimized parameters to repro-

duce realistic AM.

Methods

The model
Each GC is believed to start from a few precursor B cells [16].

These precursor B cells first replicate at the perimeter of follicles
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[17], and the number of B cells in a GC reaches thousands when

mutations and affinity dependent selections are turned on

[7,18,19,20,21]. Our model is constructed as follows:

First, the model describes the stage with mutation and selection,

where the total number of germline (initial) B cells in the hundreds of

GC in a spleen is ,106. B cells replicate at 3,4divisions/day

[22,23,24]. To be specific we use 4divisions/day in our calculations,

corresponding to exponential birth rate r = 4ln2 = 2.8/day. Upon

every division about one of the two daughter cells are mutated [9], so

we find the total mutation rate mtotal&2:8=day from

exp ({mtotal0:25)&1{1=2, although in the calculation below we

will explore different values of mtotal to search for the optimal design.

It is estimated [25,26] that about 50% mutations are silent, 30% are

lethal, and the rest 20% are the affinity-affecting mutations. The

lethal mutation rate 0:3mtotal is an effective death rate. After taking

care of the lethal mutations and neglecting silent mutations, we

concentrate on the affinity-affecting mutations. Affinity can be

described by the Ig-antigen binding free energy X. Define DX as the

change of X upon a point mutation. The distribution W (DX ) of

affinity change DX upon such single point mutations (Figure 1) is

estimated from the protein interaction (PINT) database [27] (see Text

S1 for details). Note that only 4.9% of affinity-affecting mutations

(equivalent to 1% of all mutations) improve the affinity, i.e. DX,0.

We assume W (DX ) is independent of the affinity X before the

mutation. In support of this assumption, we found no significant

correlation between DX and X in the data of PINT database (see

Figure S1). Although it might become hard to further improve affinity

when it is already very high, our model only requires this assumption

to be valid in a range 2–4 kcal/mol from the germline affinity.

Second, selection is considered on the basis of the recent two-

photon spectroscopic studies which indicate B cells undergo

multiple rounds of mutation and selection [28] through migration

within GC [3,4], consistent with the recycling hypothesis [6,7]. As

the function of GC is to improve the Ig-antigen affinity, B cells

compete for antigens and salvation from apoptosis, while other

resources such as space is still not rate limiting during AM. The

probability for a B cell to survive in each round depends on the

probability to bind an antigen in the round, which in turn depends

on the affinity of the B cell’s Igs to the antigens. Besides binding

free energy X, affinity can be characterized by the association

constant Ka~ exp ({X=kT) (in units of 1/M). According to a

standard Langmuir adsorption isotherm the probability to bind an

antigen in a round of selection is Ka
:CA=(Ka

:CAz1) where CA is

the antigen concentration on the follicular dendritic cells of GCs.

If we describe the affinity by the binding free energy

X~kT ln (1=Ka), the probability for B cells to survive at each

round is exp½{(X{X0)=kT � for weak affinity, XwX0, where

X0~kT ln (CA); and saturates at 1 for strong affinity, XvX0,

reflecting the observation of an affinity threshold [29]. Define t as

the typical time scale for each recycling round. Selection scales the

population size as exp½{(t=t)(X{X0)=kT � after time t for weak

affinity B cells, so death/apoptosis rate is (X{X0)=(kTt).
Finally, including the replications, lethal mutations, and

selections discussed above, the exponential growth rate of the B

cell population B(X) is

B(X )~
r{0:3mtotal{b(X{X0) XwX0 (1a)

r{0:3mtotal XvX0 (1b)

�
ð1Þ

where the linear term with selection strength b~1=(kTt) reflects

the rate of apoptosis of B cells discussed at the end of the preceding

paragraph. Defining X� and Ka
� as the ‘‘neutral’’ affinity,

B(X�)~0, we find X�~X0z(r{0:3mtotal)=b from Eq. (1a).

Population decrease is expected for weak affinity XwX�, and X�
is controlled by X0 or CA, which is in turn determined by antigen

density, reflecting an antigen dosage effect on AM.

Deterministic differential equation and its analytic
solution

Now we are ready to write the mean-field differential equation

for the population of B cells presenting Ig with affinity X at time t:

dN(X ,t)

dt
~B(X )N(X ,t)

zm

ð
W (X{X 0)N(X 0,t)dX 0{mN(X ,t)

ð2Þ

where m:0:2mtotal is rate of the affinity-affecting mutations. (A

similar equation was considered, in a different context and for

fixed population size by Tsimring et. al. [30]) As mentioned above,

replications, lethal mutations and selections are included in B(X),

Author Summary

The antibodies in our immune system could efficiently
improve their abilities in recognizing new antigens. This is
done with the help of proliferation, mutation and selection
of B cells which carry antibodies, but we have difficulties in
developing a quantitative description of this adaptation
process which is consistent with the various aspects of
experimental observations. Based on the knowledge from
experiments, here we present a theoretical model to
calculate the numbers of B cells with different antigen
recognizing abilities all the time, and look for the best
possible design that improves the antigen recognizing
ability most efficiently. We find that the best possible
design is consistent with the experimental observations,
pointing to the conclusion that the immune system has
been optimized in evolution. We then study the trade-offs
leading to the optimization of the design. The results will
not only improve our understanding of the functions in
immune system, but also reveal the design principles
behind the details. In addition, the study enhances our
understanding of the population dynamics in evolution.

Figure 1. Histogram of affinity improvement upon single
mutations derived from the PINT database. The silent or lethal
mutation is not included in the figure. Here the bin size is h = 0.5 kcal/
mol (equivalent to 2.3-fold change in Ka), and the unit of W is
(kcal=mol){1 . Only 4.9% of the affinity affecting mutations could
improve affinity.
doi:10.1371/journal.pcbi.1000800.g001
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and the affinity-affecting mutations are characterized by W (DX )
in Figure 1, where DX~X{X 0 is the affinity change.

We can solve the mean field equation (2) when Eq. (1) can be

simplified as Eq. (1a), i.e. the effective growth rate (i.e. replication

rate minus death rate) depends linearly on the binding free energy

in the whole range. Then we rewrite growth rate B(X )~b0{bX

where b0:r{0:3mtotalzbX0. We introduce a Fourier transform

of the population:

N t,vð Þ~ 1

2p

ð
N(X ,t)e{ivX dX ð3Þ

Then in terms of the Fourier transform population, Eq. (2) looks

simple:

LN(v,t)

Lt
~b0N(v,t){ib

LN(v,t)

Lv
zm½2pW (v){1�N(v,t) ð4Þ

where

W (v)~
1

2p

ð
e{iv:DX W (DX )dDX

Now denoting

Q~ ln N v,tð Þ ð5Þ

we get

LQ

Lt
zib

LQ

Lv
~b0zm½2pW (v){1� ð6Þ

We seek solution of this equation in the form:

Q~R(v{ibt)zS(v) ð7Þ

and get for S:

ib
LS

Lv
~b0zm(W (v){1) ð8Þ

or

S~i
b0{m

{b
v{i

2pm

b

ðv
{?

W (v0)dv0zC ð9Þ

where C is constant to be determined.

The function R and the constant C are determined from the

initial condition at t = 0, i.e., the germline distribution of affinities.

The general results applicable for different initial conditions will be

addressed shortly after; for the moment we adopt a most common

initial condition, Gaussian distribution

N(X ,t~0)~
N0ffiffiffiffiffiffiffiffiffiffiffi
2pS2
p exp {

(X{Xav)2

2S2

" #
ð10Þ

of affinity, or in Fourier space:

N(v,0)~
N0

2p
exp {

1

2
S2v2{ivXav

� �

Now the function R and constant C can be easily determined from

the relation:

N v,0ð Þ~eQ v,0ð Þ

which immediately gives us C~ ln (N0=2p) and final result for R

(and Q):

R(v)~{
1

2
S2v2{ivXavzi

b0{m

b
vzi

2pm

b

ðv
{?

W (v0)dv0

Plugging these results to Eq. (7), we obtain the solution

Q(v,t)~{
1

2
S2v2{iv½Xav{S2bt�zt(b0{m{bXav)

z
1

2
b2S2t2zi

2pm

b

ðvzibt

v

W (v0)dv0z ln
N0

2p

and accordingly

N(v,t)~
N0

2p
exp {

1

2
S2v2{iv(Xav{S2bt)zt(b0{m{bXav)

�

z
1

2
b2S2t2zi

2pm

b

ðvzibt

v

W (v0)dv0

3
5 ð11Þ

Noticing

2p

ðvzibt

v

W (v0)dv0~

ðvzibt

v

dv0
ð

dDXW (DX )e{iv0DX

~

ð
dDXW (DX )

ðvzibt

v

dv0e{iv0DX

~
1

{i

ð
dDX

W (DX )

DX
e{ivDX (e{btDX {1),

we can define a Fourier transform pair f (DX ,t)~
2pm

b

W (DX )

DX

(e{btDX {1) and F (v,t)~ exp
m

{b

ð
dDX

W (DX )

DX
e{ivDX

�

(e{btDX {1)�, and another Fourier transform pair

g(X ,t)~
N0ffiffiffiffiffiffiffiffiffiffiffi
2pS2
p exp½(b0{m{bXav)t

z
1

2
S2b2t2{

(X{XavzS2bt)2

2S2

#

and G(v,t)~
N0

2p
exp {

1

2
S2v2{iv(Xav{S2bt)zt(b0{m{

�

bXav)z
1

2
b2S2t2�, then Eq. (11) becomes

N(v,t)~G(v,t) exp F (v,t)½ �

~G(v,t) 1zF (v,t)z
1

2!
F2(v,t)z

1

3!
F3(v,t)z � � �

� � ð12Þ
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With help of the Fourier convolution theorem

1

2p

ð
dXe{iv:DX

ð
f (X{X 0)g(X 0)dX 0

� �
~2p:F(v)G(v),

we obtain the final exact solution for the selection-diffusion

equation (2)

N(X ,t)~g(X ,t)z
1

2p

ð
g(X 0)f (X{X 0)dX 0

z
1

2!

1

(2p)2

ð ð
g(X 0)f (X 00{X 0)f (X{X 00)dX 0dX 00z:::

~g(X ,t)z
1

2p

ð
g(X{DX )f (DX )dDX

z
1

2!

1

(2p)2

ðð
g(X{DX1{DX2)f (DX1)f (DX2)dDX1dDX2z � � �

~ ~NN(X ,t)e{mtz
X?
j~1

1

j!

m

{b

� �j
ð

dDX1
W (DX1)

DX1

(e{btDX1{1) � � �

ð
dDXj

W (DXj)

DXj

(e{btDXj {1) ~NN(X{DX1{ � � �{DXj ,t)e
{mt

ð13Þ

where ~NN(X ,t)~g(X ,t)emt~N(X ,t~0) exp½(b0{bX )t� is the

population profile in the limit of m = 0. Due to the linearity of

Eq. (2), Eq. (13) applies generally to any initial condition. The total

population is

N(t)~

ð
N(X ,t)dX~

ð
N(X ,t)e{i:0:X dX~2p:N(v~0,t)

~N0 exp (b0{bXav)tz
1

2
S2b2t2

� �

: exp {mt{
m

b

ð
(ebt:DX {1)

DX
W (DX )dDX

� �

~ ~NN(t) exp {mt{
m

b

ð
(ebt:DX {1)

DX
W (DX )dDX

� �
ð14Þ

The effects of mutations are in the exponent containing m, and this

exponent applies universally to initial conditions other than Eq.

(10). At long enough time beneficial mutations DXv0 contribute a

growing term
m

{b

ð?
0

ebtDX

DX
W (DX )dDX because e{btDX&1;

while the deleterious mutations DXw0 mainly contribute to the

population reduction term {mt because e{btDX%1.

Intuitive derivation
An intuitive derivation of (14) helps us understand its physical

meaning. For convenience we use discrete values of DXi~{ih in

Figure 1, and write the total mutation rate as a sum of individual

mutation rates, m~
P

i

mi where mi is the rate of mutation that

change affinity by DXi~{ih. Then Eq. (14) becomes:

N(t)~ ~NN(t)P
i

exp½{mitz
mi

bih
(ebiht{1)�: ð15Þ

Note that beneficial mutations (i.0) contribute {mitz
mi

bih
(ebiht{1) �

t??�? mi

bih
ebiht to ln N(t). Therefore in the long time

limit the beneficial mutations with leads to a super-exponential

population growth N(t)* exp½exp (t)�, in comparison to the

exponential population growth without mutation. As the high

affinity edge moves toward stronger affinity, the subpopulation at

the edge grows faster, and the speed of edge movement becomes

faster.

The effects of different mutations in Eq. (15) can be factored

out, because a) the rate mi for a mutation of DXi~{ih to emerge

is independent of the affinity distribution N(X ,t), and b) the

contribution of a series of mutations fDXig occurring at ftig to the

subpopulation size at a later time t is P
i

exp½{bDXi(t{ti)�, a

product of individual mutation factors. Therefore, to understand

Eq. (14), we can focus on effect of only one mutation type with

affinity change DXi~{ih and individual mutation rate mi.

First, in the limit of bR0 in Eq. (1), the benefit of mutations is

turned off, and the average number of mutations B cells

experience in the interval t is mit, and the probability to

experience j mutations is a standard Poisson distribution

Pj(t)~ exp ({mit)
(mit)

j

j!
. It is straight forward to verify

N(t)~ ~NN(t)
X

j

Pj(t)~ ~NN(t) exp ({mit)
X?
j~0

1

j!
(mit)

j~ ~NN(t): ð16Þ

Second, for the realistic situation with nonzero b, replication rates

of B cells are changed by mutations, therefore every mit in (mit)
j is

replaced by

mit

Ð t

0
mi exp½bih(t{t0)�dt0Ð t

0
midt0

~
mi

bih
½exp (biht){1�, ð17Þ

where t9 labels the moment that the mutation occurs. Therefore

N(t)~ ~NN(t)
X

j

P0j(t)~
~NN(t) exp ({mit)

X?
j~0

1

j!

mi

bih
(ebiht{1)

h ij

~ ~NN(t) exp
mi

bih
(ebiht{1){mit

h i ð18Þ

This matches Eq. (15) and more generally Eq. (14). From Eq. (18),

the subpopulation of B-cells which undergo j mutations is

Nj(t)~ ~NN(t)P0j(t)~
~NN(t) exp ({mit)

1

j!

mi

bih
(ebiht{1)

h ij

, ð19Þ

with affinity jih stronger than the subpopulation without

mutations. If the affinity of the initial population are all the

same Xin, then Nj(t) is the subpopulation with affinity Xinzjih.

For i.0, the peak of subpopulation, i.e., largest subpopulation, is

at

jpeak~
m

bih
(ebiht{1) �

t??�? m

bih
ebiht, ð20Þ

i.e., the peak moves exponentially fast in the long time limit.

From Eq. (19) a subpopulation with j mutations grows for two

reasons, (a) fed from subpopulations with j-1 mutations and (b)

self-replication. At short enough time, bht%1, the subpopulation

grows dNj(t)=dt&Nj{1(t)mi mainly for the former reason; and for

large enough time, bht&1, the subpopulation growth

dNj(t)=dt&Nj(t)jbh is mainly contributed by the latter reason.

Therefore, the artifact of self-replication is insignificant when

time step is much shorter than the characteristic time duration

1/bh.

(13)

Selection in Germinal Centers
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Numerical calculation for finite population
An artifact in the above derivation is that it allows arbitrarily

small N(X ,t), and a small subpopulation N(X ,t)%1 within a bin

of strong affinity X can self-replicate rapidly. However, the B cell

numbers in GCs are non-negative integers, therefore the expected

number of B cells within a bin with N(X ,t)%1 should be zero, and

cannot become the seed of a rapid growth. So the above

derivations actually describe the population dynamics in the limit

of infinitely large population size. It does not take into account the

fact [31] that the B cell population size in a GC is no more than

104.

To correct this artifact and calculate the B cell population

dynamics numerically for various finite initial population sizes

including the discreteness effect [7,30], we do not allow small

subpopulation N(X ,t)v1 in an affinity bin to self-replicate in our

numerical calculation. Instead, it only represents an accumulative

probability for the subpopulation in the bin to emerge. Our

calculation is done using discrete time steps. From Eq. (15), the

subpopulation which go through fjig mutations DX~{ih
between time t and tzDt is

Nj1j2���ji ���(X ,tzDt)~N 0(X{
X

i

jiih,t)eB(X )te{mDt

P
i

mi

bih
(ebihDt{1)

h iji

ji!
,

ð21Þ

where B(X) is given by Eq. (1), and N 0(X ,t) is the population

distribution excluding the bins with less than one B cells. The

population distribution after a time step is

N(X ,tzDt)~N(X ,t){N 0(X ,t)

z
X

j1~0,1,���

X
j2~0,1,���

� � �
X

ji~0,1,���
� � �Nj1j2���ji ���(X ,tzDt) ð22Þ

The time step Dt is set to 0.01/bh, much smaller the characteristic

time duration 1/bh,such that the growth of subpopulations with

relatively strong affinities is dominated by mutation influx rather

than self replication. We include multiple mutations in one time

step. This calculation is rapid to perform even for large population

sizes, and allows us to explore the parameter space.

The population dynamics here differs from the case of constant

population size [30,32,33,34,35] Indeed, the ‘‘neutral’’ affinity X�,
which corresponds to zero population growth rate B(X�)~0, does

not change over time. This makes it straightforward to find

solution Eq. (13–14). Random drift beyond mean field calculations

is important in the case of constant population size [32,33,34,35],

especially if population growth rate is small, s%1, at the high

affinity edge, because birth rate and death rate are very close.

However, the growth rate in units of proliferation rate in our

model B(X )=r, which is similar to s, differs by about 1/8 between

two nearest affinity bins for a typical value b = 0.7/day/(kcal/mol),

so s at high affinity edge typically is not close to zero. Hence the

effect of random drift is not overly significant in our model,

although a future treatment including stochastic calculation will

give more precise results.

Results

We calculate the total population size of B cells N(t) for various

initial population sizes numerically (dotted lines in Figure 2). The

total number of B cells first decreases because the initial affinity is

weaker than the neutral affinity Ka
�. The average affinity is

improved continuously (see Figure S2) rather than abruptly, in

agreement with experiments [28]. Once the average affinity

reaches Ka
� the population begins to increase. The picture of

decrease and increase of the B cell population was observed

experimentally [36] and theoretically [7], although the experi-

mental data on GC temporal development [36] is too limited to

verify the model. The lowest total population corresponds to the

neutral affinity Ka
�; and we call it the population bottleneck,

because it is the most challenging moment for the population to

survive. The analytical result Eq. (14) (solid line) can describe the

population size at the decreasing stage. A smaller initial population

leads to a slower growth after the bottleneck (yellow). For a small

enough initial population (red), the B cell population is extinct

when approaching the bottleneck, and cannot recover thereafter.

Therefore, the initial population size should be large enough to

ensure some B cells can survive through the population bottleneck.

Similarly, for a given initial population size, a weaker initial

binding leads to a deeper bottleneck, and takes a longer time to

recover. If the initial binding is too weak, the bottleneck will be too

deep, and the population will go extinct.

The initial population is set to 106 B cells in realistic calculations

to include the existence of hundreds of GCs in a spleen [37] and

the peak number of thousands of B cells per GC [38]. Different

GCs in a spleen might not be perfectly synchronized [39]. If the B

cell production rate in a spleen is limited by supply of resources,

we conjecture the time that GCs start mutation and selection

might vary between day 3 and day 8 or later, so that the

population peaks of GCs is smeared. This agrees with the

observation [40] that the total population at any moment does not

exceed 2:5|105 B cells. The population bottleneck within a GC

might also be smeared by the continued immigration of B cells

from nonfollicular sites [20,41], making the bottleneck less

pronounced or harder to observe directly. If all the B cells in a

GC die away, the antigens are not exhausted, and it is proposed

that more B cells immigrate to the GC [39], probably from GCs

which have passed the bottleneck and have many B cells, although

the current experiments cannot determine whether there is

migration between GCs [39]. The calculations below are first

performed with 106 initial B cells, which is valid in the limit of fast

migration between GCs in a spleen. In this case, the few GCs

Figure 2. Total population as a function of time for various
initial population sizes, starting from germline (initial) Ig-
antigen binding level Xin~~~~~X�zzzz1kcal=mol or Kain=Ka�~~~~~0:18,
with b~~~~~0:7=day(kcal=mol) and mtotal~~~~~2:8=day. Solid line: exact
analytical result for infinite population size, Eq. (14). Dotted lines:
numerical results for initial population sizes N0~107 (green), 105

(yellow), and 102 (red) respectively. The population in red goes extinct
at the bottleneck.
doi:10.1371/journal.pcbi.1000800.g002
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which by chance pass the bottleneck earlier than others may make

significant contributions to the affinity improvement of the whole

spleen. Then we study the case in the opposite limit, i.e. the affinity

improvement of a typical GC with 3000 initial B cells, assuming

no B cell migration between GCs. By comparing these two cases

we will quantify the contribution of migration to affinity

improvement.

We explore the parameter space to look for the optimum design

of GCs that maximizes the affinity improvement (Figure 3) in the

limit of fast B cell migration between GCs (106 initial B cells). AM

terminates probably due to exhaustion of available antigens

[42,43] or emigration of B cells [42,44]; and the termination could

be described to occur after a certain time scale, or when the B cell

population size is big enough–probably comparable to its original

size. So if the population size recovers the initial value in less than

14 days, we assume that the total affinity stops to change in the

calculation of Figure 3a. The affinity improvement is indicated by

the total affinity A, i.e., the sum of Ka for all B cells, such that the

situation with very few cells at day 14 should not be regarded as

efficient improvement. The improvement of affinity in Figure 3a is

calculated for various initial binding levels and mutation rates. The

highest affinity improvement is 450-fold. This optimal improve-

ment occurs at mutation rate mtotal&2:8=day (corresponding to

the observed fraction of 50% daughter cells mutated), for the

binding level between germline (initial) antibodies and antigens

Xin~X�z1kcal=mol or Ka(0)=Ka
�~ exp ({1kcal=mol=kT)~

0:18, and selection strength b~0:7=day(kcal=mol) (see Figure S3

and S4). This result agrees with several experimental observations.

First, the affinity improvement agrees with the observation of

,100-fold [11,12,13,14] improvement. Second, the theoretically

optimal value to provide maximal affinity improvement agrees

with the observed in vivo somatic hypermutation rate [9]. Third,

the improvement of affinity corresponds to ln(450)kT = 3.6kcal/

mol of free energy improvement. Combining with the typical

affinity improvement Y&0.4kcal/mol of an affinity improving

mutation, we can estimate that a final B cell contains 3.6/0.4 = 9

mutations in their V regions of Ig genes, in agreement with the

observed ,9 mutations per Ig gene [9,45,46,47,48]. From the

definition b~1=(kTt), the optimal selection strength b = 0.7/day/

(kcal/mol) corresponds to an optimal time of a recycling round

t~1=(kTb)&2:4day, compatible with the earlier model [7].

Figure 3b helps to reveal the design principles of GCs, where the

affinity improvement is calculated when the B cell population size

recovers the initial value after going through the bottleneck, no

matter how long it takes. In general, the affinity improvement is

not effective for too strong initial bindings, which results in shallow

or no bottlenecks and rapid population recoveries, hastily

terminating the AM before accumulating adequate improvements.

As the initial binding becomes weaker, the population bottleneck is

deeper, and the affinity improvement is more effective, but takes a

longer time. The improvement shown in Figure 3b could even

exceed 1000-fold for a weak initial binding Xin~X�z
1:5kcal=mol, although such improvements take much longer

than 14 days and would be interrupted in the calculation with

fixed AM time as shown in Figure 3a. If the initial binding

becomes even weaker, the population bottleneck is so deep that the

whole population goes extinct and no longer recovers (grey scales

in Figure 3b obtained numerically). Therefore, for a given

mutation rate, the most effective affinity improvement occurs

when initial binding level is near the critical value (red in

Figure 3b), where the population can barely survive through the

population bottleneck, i.e. only a few GCs can survive. A

somewhat stronger initial binding improves affinities less effec-

tively, but it takes a shorter time for the AM to finish, and faster

AM is advantageous. Taking all these into consideration, in the

optimal design of GCs, the most commonly appeared initial

bindings should be adjusted to be somewhat stronger than the

critical value, so that affinities are improved effectively, timely, and

safely. This picture agrees with the observed dependence of B cell

fate on initial antibody-antigen binding level or antigen density

[49–50], where too strong initial bindings (beyond Ka* in our

model) do not lead to GC formation, moderate initial bindings

(e.g. Xin~X�z0:5kcal=mol in our model) result in GC response

which finishes quickly, while weaker initial affinities (e.g.

Xin~X�z1kcal=mol in our model) result in tempered GCs. To

achieve the optimal design, the Ka� values might have been

adjusted in evolution by tuning the antigen density or modulating

the diversity of the germline pool achieved through somatic

recombination. When mutation rate is so high that 80% or more

daughter cells are mutated, the lethal mutations preclude

sustainable replications of B cells, i.e., the population growth rate

in Eq. (1) becomes negative for any affinity. This lethal

mutagenesis region is shown in black in Figure 3b.

B cell migration between GCs could be beneficial to the AM, as

indicated by the calculated affinity improvement of a typical GC

Figure 3. The improvement of affinity for the whole spleen
including many GCs in the limit of rapid B cell migration
between GCs. The improvement of A (sum of Ka over all B cells) is
shown in color code, where A(0) is the initial value. AM is assumed to
terminate (a) in 14 days or when B cell population reaches the initial
size, whichever comes first or (b) when the population recovers the
initial size (106B cells) after going through the bottleneck, no matter
how long it takes. (a): The optimal improvement of A occurs when
about 50% daughter cells are mutated at divisions. (b): The grey scale
shows the probability for the whole population to survive through the
bottleneck. The black region at high mutation rate indicates lethal
mutagenesis where there are too many lethal mutations for B cell
population to increase.
doi:10.1371/journal.pcbi.1000800.g003
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with 3000 initial B cells in the limit of no migration (Figure 4). A

stronger initial binding Xin~X�z0:5kcal=mol is needed to

ensure a typical GC to survive through the bottleneck; and the

optimal affinity improvement becomes 70-fold for the GC, still

consistent with the experimental value (of the order ,100-fold

[11,12,13,14]). This is achieved in 16 days, only slightly longer

than two weeks, therefore separate diagrams like in Figure 3a and

b is not necessary. The maximal improvement in this case is ,6–7

times lower than the result in the limit of fast migration, where a

factor of ,3 comes from the change in initial binding level, and a

factor of ,2 comes from the difference between the average of all

GCs and the ‘‘typical’’ or median individual GC. In other words,

fast B cell migration between GCs could enhance the affinity

improvement by a factor of about 6–7 in our model.

Our model is consistent with the ‘‘all or none [8]’’ phenomenon

observed in experiments [20,51,52], i.e., the fraction of strong

affinity cells in a GC is most likely either very high or very low,

where the strong affinity B cells are characterized by a certain key

mutation [51,52] or a unique piece of Ig gene sequence [20].

Presumably the GCs dominated by strong affinity mutants have

gone through the population bottleneck, and this phenomenon is

the most pronounced in the case without B cell migration between

GCs. Indeed, it is possible for different individual GCs to fall into

two categories according to whether they have passed the

population bottleneck, and the choice of category for a GC

depends on both the initial binding level and stochastic effect.

Moreover, if many GCs in a spleen start from the same initial

condition but each has a random starting time, then the fractions

of strong affinity B cells in the GCs at a given moment is expected

to be distributed as in Figure 5, where affinities beyond Ka* are

defined as strong. Figure 5 is obtained as follows. During the

development of a typical GC (Figure 2 and S2), we can track the

fraction F(t) of strong affinity B cells in the GC all the time.

Observing the whole ensemble of GCs at a given moment is

equivalent to observing a single GC at many arbitrary moments.

Therefore, we transform F(t) into t(F), and the distribution is

P(F),dt(F)/dF up to a normalization factor. As we see in Figure 5,

the probabilities to observe high or low fraction values are

significantly larger than that of intermediate fraction values.

Therefore, our model is consistent with the ‘‘all or none’’

phenomenon. If B cell diffusions between GCs exist, this

phenomenon is somewhat smeared.

Discussion

Since the calculated AM procedure at the optimal set of

parameters is consistent with the various aspects of experimental

observations, it is likely that evolution has chosen the optimal

design. Moreover, exploration of the parameter space, illustrated

in Figure 3, 4, S3 and S4, helps us sketch some general design

principles of the GCs. First, for the affinity to be improved most

effectively, the B cell number should first decrease to reach a

population bottleneck and then increase. A weaker initial binding

leads to a higher affinity improvement, but a too weak initial

binding makes it impossible for the B cell population to go through

the bottleneck and recover. Second, the seemingly high mutation

rate is actually set to optimize the success rate of AM. On one

hand, the optimal mutation rate, in agreement with somatic

hypermutation in vivo, is quite high because the improvement of

affinity comes only from mutations. On the other hand, if the

mutation rate gets even higher, the large number of lethal

mutations will spoil the cell replications. Third, we expect that the

selection strength b is the optimal value b = 0.7/day/(kcal/mol),

which sets an important guide to future simulations of GCs.

Indeed, a large enough b ensures adequate preference for stronger

affinity B cells in selection; but if b is too large, the initial weak

binding B cells vanish quickly before enough beneficial mutations

can accumulate.

We obtained mutation effects W (DX ) from the PINT database

which presents the data on interactions between all kinds of

proteins [27] because we do not have adequate real data of affinity

change upon mutations of Ig. The existing analysis of Ig sequence

data in the immune response of PhOx and NP [8] is consistent

with the distribution obtained from the PINT database. Indeed,

3.2% (for PhOx) or 1.0% (for NP) of the affinity affecting

mutations could improve affinity strongly (10-fold), while in our

model 4.9% improves affinity and 1.4% improves affinity strongly

(5-fold).

The random energy NK model of Deem and coworkers [15]

included rugged landscapes without special assumptions on the Ig

mutagenesis. On the other hand, using an approximate distribution

Figure 4. The improvement of affinity for an isolated GC, i.e., in
the limit of no B cell migration between GCs. The improvement of
A (sum of Ka) is shown in the same color code as in Figure 3a, assuming
AM is terminated when the population recovers the initial size (3000 B
cells). The optimal improvement of affinity occurs when about 60%
daughter cells are mutated at divisions, and takes 16 days. The grey
scale shows the probability for a GC to survive through the bottleneck.
doi:10.1371/journal.pcbi.1000800.g004

Figure 5. The distribution of F, fraction of strong affinity B
cells, for many GCs which follow similar development patterns
but each starts from a random time, is consistent with the ‘‘all
or none’’ phenomenon. Every GC has initial binding level
Xin~X�z0:5kcal=mol, 50% mutated daughter cells, and selection
strength b~0:7=day(kcal=mol). The calculation is terminated when the
population in the GC recovers the initial size (3000 B cells), and F
reaches 85% at the termination moment.
doi:10.1371/journal.pcbi.1000800.g005
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of affinity improvements upon point mutations, we explored the

values of selection strength, initial binding level and mutation rate

that maximize the affinity improvement. Similarly to our work, the

Oprea-Perelson (OP) model [7] explores the parameter values to

optimize AM. What are the major differences between the OP

model and our model? First, the affinity improvement we achieve is

higher than in the OP model, which resolves the discrepancy

between theory and experiment. If we examine the OP model in our

framework, the reason that the OP model did not achieve higher

improvements might be that it used a smaller selection strength b

than the optimal value. Indeed, the choice to enter a recycle in the

OP model is stochastic, so the chance for weak affinity B cells to

survive is enhanced by choosing not to enter a cycle and therefore

avoiding selection. A larger selection strength b brings a high risk of

AM failure, but provides a higher affinity improvement, and this

can be achieved if all B cells experience similar number of recycles

rounds. The low optimal value of mutation rate in the earlier model

might result from the small selection strength. Second, the major

simplification we make is to use Eq. (1) to replace the binding

kinetics between Ig and antigens, salvation, recycling, the distinction

between different B cell phenotypes such as centroblasts and

centrocytes, and the separation of dark and light zones, which

were considered in details in earlier theoretical studies

[7,8,42,43,44,53,54]. We assume that competition for antigen and

T-cell help effectively results in the dependence of death rate of B

cells on their affinity to an antigen, and we provided an argument

that such dependence should be linear in binding free energy of Ig-

antigen interaction. We expect that this simplification captures the

key factor determining the AM. Such a coarse-grained description

reduces the parameter space greatly, making it possible to search the

whole parameter space for optimal design of GC. With this basic

picture, we can build more detailed simulations to reproduce the

complete procedures of AM.

Supporting Information

Figure S1 The scatter plot of affinity X and the change of

affinity DX from PINT database, which does not show significant

correlation.

Found at: doi:10.1371/journal.pcbi.1000800.s001 (0.05 MB TIF)

Figure S2 Affinity distribution in the population N(X,t) at t = 3

(solid), 6 (dashed), 9 (dotted), and 12 (dash-dotted) days, starting

from germline affinity Xin = X*+1kcal/mol or Kain/Ka* = 0.18, with

initial population N0 = 106, selection strength b = 0.7/day(kcal/mol)

and effective mutation rate mtotal = 2.8/day. The average affinity

improves with time; while population size shrinks then grows.

Found at: doi:10.1371/journal.pcbi.1000800.s002 (0.06 MB TIF)

Figure S3 Optimization of b and m. The color indicates the

improvement of total affinity. Here different initial affinities are

tried for each mutation rate and b, and the one which gives largest

affinity improvement is chosen. b = 1.2/day/(kcal/mol) is the

global optimal selection strength. A minor local peak at b = 1.2/

day/(kcal/mol) might be an artifact due to discrete (rather than

continuous) choices of initial affinity values.

Found at: doi:10.1371/journal.pcbi.1000800.s003 (0.21 MB TIF)

Figure S4 The improvement of total affinity as a function of

selection strength and initial affinity. Here mutation rate is chosen

as the optimum value, i.e. m = 0.55/day/gene or 50% mutated

daughter cells.

Found at: doi:10.1371/journal.pcbi.1000800.s004 (0.16 MB TIF)

Text S1 This file contains supporting text.

Found at: doi:10.1371/journal.pcbi.1000800.s005 (0.07 MB

DOC)

Acknowledgments

We are grateful to S. Wylie for helpful discussions, and A. Perelson for

drawing our attention to the improvement of affinity.

Author Contributions

Conceived and designed the experiments: EIS. Performed the experiments:

JZ EIS. Analyzed the data: JZ EIS. Wrote the paper: JZ EIS.

References

1. MacLennan IC (1994) Germinal centers. Annu Rev Immunol 12: 117–139.

2. Rajewsky K (1996) Clonal selection and learning in the antibody system. Nature

381: 751–758.

3. Allen CD, Okada T, Cyster JG (2007) Germinal-center organization and cellular

dynamics. Immunity 27: 190–202.

4. Schwickert TA, Lindquist RL, Shakhar G, Livshits G, Skokos D, et al. (2007) In

vivo imaging of germinal centres reveals a dynamic open structure. Nature 446:

83–87.

5. Neuberger MS (2002) Novartis Medal Lecture. Antibodies: a paradigm for the

evolution of molecular recognition. Biochem Soc Trans 30: 341–350.

6. Kepler TB, Perelson AS (1993) Somatic hypermutation in B cells: an optimal

control treatment. J Theor Biol 164: 37–64.

7. Oprea M, Perelson AS (1997) Somatic mutation leads to efficient affinity

maturation when centrocytes recycle back to centroblasts. J Immunol 158:

5155–5162.

8. Kleinstein SH, Singh JP (2001) Toward quantitative simulation of germinal

center dynamics: biological and modeling insights from experimental validation.

J Theor Biol 211: 253–275.

9. Berek C, Milstein C (1987) Mutation drift and repertoire shift in the maturation

of the immune response. Immunol Rev 96: 23–41.

10. Kepler TB, Perelson AS (1995) Modeling and optimization of populations

subject to time-dependent mutation. Proc Natl Acad Sci U S A 92: 8219–8223.

11. Torigoe H, Nakayama T, Imazato M, Shimada I, Arata Y, et al. (1995) The

affinity maturation of anti-4-hydroxy-3-nitrophenylacetyl mouse monoclonal

antibody. A calorimetric study of the antigen-antibody interaction. J Biol Chem

270: 22218–22222.

12. Sharon J (1990) Structural correlates of high antibody affinity: three engineered

amino acid substitutions can increase the affinity of an anti-p-azophenylarsonate

antibody 200-fold. Proc Natl Acad Sci U S A 87: 4814–4817.

13. Ulrich HD, Mundorff E, Santarsiero BD, Driggers EM, Stevens RC, et al.

(1997) The interplay between binding energy and catalysis in the evolution of a

catalytic antibody. Nature 389: 271–275.

14. Yang PL, Schultz PG (1999) Mutational analysis of the affinity maturation of

antibody 48G7. J Mol Biol 294: 1191–1201.

15. Deem MW, Lee HY (2003) Sequence space localization in the immune system

response to vaccination and disease. Phys Rev Lett 91: 068101.

16. Kroese FG, Wubbena AS, Seijen HG, Nieuwenhuis P (1987) Germinal centers

develop oligoclonally. Eur J Immunol 17: 1069–1072.

17. Coffey F, Alabyev B, Manser T (2009) Initial clonal expansion of germinal

center B cells takes place at the perimeter of follicles. Immunity 30: 599–609.

18. McHeyzer-Williams MG, McLean MJ, Lalor PA, Nossal GJ (1993) Antigen-

driven B cell differentiation in vivo. J Exp Med 178: 295–307.

19. Han S, Zheng B, Dal Porto J, Kelsoe G (1995) In situ studies of the primary

immune response to (4-hydroxy-3-nitrophenyl)acetyl. IV. Affinity-dependent,

antigen-driven B cell apoptosis in germinal centers as a mechanism for

maintaining self-tolerance. J Exp Med 182: 1635–1644.

20. Jacob J, Przylepa J, Miller C, Kelsoe G (1993) In situ studies of the primary

immune response to (4-hydroxy-3-nitrophenyl)acetyl. III. The kinetics of V

region mutation and selection in germinal center B cells. J Exp Med 178:

1293–1307.

21. Pascual V, Liu YJ, Magalski A, de Bouteiller O, Banchereau J, et al. (1994)

Analysis of somatic mutation in five B cell subsets of human tonsil. J Exp Med

180: 329–339.

22. Allen CD, Okada T, Tang HL, Cyster JG (2007) Imaging of germinal center

selection events during affinity maturation. Science 315: 528–531.

23. Hanna MG, Jr. (1964) An Autoradiographic Study of the Germinal Center in

Spleen White Pulp During Early Intervals of the Immune Response. Lab Invest

13: 95–104.

Selection in Germinal Centers

PLoS Computational Biology | www.ploscompbiol.org 8 June 2010 | Volume 6 | Issue 6 | e1000800



24. Zhang J, MacLennan IC, Liu YJ, Lane PJ (1988) Is rapid proliferation in B

centroblasts linked to somatic mutation in memory B cell clones? Immunol Lett
18: 297–299.

25. Shannon M, Mehr R (1999) Reconciling repertoire shift with affinity

maturation: the role of deleterious mutations. J Immunol 162: 3950–3956.
26. Shlomchik MJ, Watts P, Weigert MG, Litwin S (1998) Clone: a Monte-Carlo

computer simulation of B cell clonal expansion, somatic mutation, and antigen-
driven selection. Curr Top Microbiol Immunol 229: 173–197.

27. Kumar MD, Gromiha MM (2006) PINT: Protein-protein Interactions

Thermodynamic Database. Nucleic Acids Res 34: D195–198.
28. Kocks C, Rajewsky K (1988) Stepwise intraclonal maturation of antibody affinity

through somatic hypermutation. Proc Natl Acad Sci U S A 85: 8206–8210.
29. Batista FD, Neuberger MS (1998) Affinity dependence of the B cell response to

antigen: a threshold, a ceiling, and the importance of off-rate. Immunity 8:
751–759.

30. Tsimring LS, Levine H, Kessler DA (1996) RNA virus evolution via a fitness-

space model. Phys Rev Lett 76: 4440–4443.
31. Kuppers R, Zhao M, Hansmann ML, Rajewsky K (1993) Tracing B cell

development in human germinal centres by molecular analysis of single cells
picked from histological sections. Embo J 12: 4955–4967.

32. Desai MM, Fisher DS (2007) Beneficial mutation selection balance and the effect

of linkage on positive selection. Genetics 176: 1759–1798.
33. Rouzine IM, Brunet E, Wilke CO (2008) The traveling-wave approach to

asexual evolution: Muller’s ratchet and speed of adaptation. Theor Popul Biol
73: 24–46.

34. Brunet E, Rouzine IM, Wilke CO (2008) The stochastic edge in adaptive
evolution. Genetics 179: 603–620.

35. Rouzine IM, Wakeley J, Coffin JM (2003) The solitary wave of asexual

evolution. Proc Natl Acad Sci U S A 100: 587–592.
36. Liu YJ, Zhang J, Lane PJ, Chan EY, MacLennan IC (1991) Sites of specific B

cell activation in primary and secondary responses to T cell-dependent and T
cell-independent antigens. Eur J Immunol 21: 2951–2962.

37. Jacob J, Kassir R, Kelsoe G (1991) In situ studies of the primary immune

response to (4-hydroxy-3-nitrophenyl)acetyl. I. The architecture and dynamics of
responding cell populations. J Exp Med 173: 1165–1175.

38. Smith KG, Light A, Nossal GJ, Tarlinton DM (1997) The extent of affinity
maturation differs between the memory and antibody-forming cell compart-

ments in the primary immune response. Embo J 16: 2996–3006.
39. Or-Guil M, Wittenbrink N, Weiser AA, Schuchhardt J (2007) Recirculation of

germinal center B cells: a multilevel selection strategy for antibody maturation.

Immunol Rev 216: 130–141.

40. Shahaf G, Barak M, Zuckerman NS, Swerdlin N, Gorfine M, et al. (2008)

Antigen-driven selection in germinal centers as reflected by the shape

characteristics of immunoglobulin gene lineage trees: a large-scale simulation

study. J Theor Biol 255: 210–222.

41. Jacob J, Kelsoe G (1992) In situ studies of the primary immune response to (4-

hydroxy-3-nitrophenyl)acetyl. II. A common clonal origin for periarteriolar

lymphoid sheath-associated foci and germinal centers. J Exp Med 176: 679–687.

42. Iber D, Maini PK (2002) A mathematical model for germinal centre kinetics and

affinity maturation. J Theor Biol 219: 153–175.

43. Kesmir C, De Boer RJ (1999) A mathematical model on germinal center kinetics

and termination. J Immunol 163: 2463–2469.

44. Meyer-Hermann M, Deutsch A, Or-Guil M (2001) Recycling probability and

dynamical properties of germinal center reactions. J Theor Biol 210: 265–285.

45. Wedemayer GJ, Patten PA, Wang LH, Schultz PG, Stevens RC (1997)

Structural insights into the evolution of an antibody combining site. Science 276:

1665–1669.

46. Berek C, Berger A, Apel M (1991) Maturation of the immune response in

germinal centers. Cell 67: 1121–1129.

47. Sharon J, Gefter ML, Wysocki LJ, Margolies MN (1989) Recurrent somatic

mutations in mouse antibodies to p-azophenylarsonate increase affinity for

hapten. J Immunol 142: 596–601.

48. Siekevitz M, Kocks C, Rajewsky K, Dildrop R (1987) Analysis of somatic

mutation and class switching in naive and memory B cells generating adoptive

primary and secondary responses. Cell 48: 757–770.

49. O’Connor BP, Vogel LA, Zhang W, Loo W, Shnider D, et al. (2006) Imprinting

the fate of antigen-reactive B cells through the affinity of the B cell receptor.

J Immunol 177: 7723–7732.

50. Paus D, Phan TG, Chan TD, Gardam S, Basten A, et al. (2006) Antigen

recognition strength regulates the choice between extrafollicular plasma cell and

germinal center B cell differentiation. J Exp Med 203: 1081–1091.

51. Ziegner M, Steinhauser G, Berek C (1994) Development of antibody diversity in

single germinal centers: selective expansion of high-affinity variants.

Eur J Immunol 24: 2393–2400.

52. Radmacher MD, Kelsoe G, Kepler TB (1998) Predicted and inferred waiting

times for key mutations in the germinal centre reaction: evidence for stochasticity

in selection. Immunol Cell Biol 76: 373–381.

53. Meyer-Hermann ME, Maini PK, Iber D (2006) An analysis of B cell selection

mechanisms in germinal centers. Math Med Biol 23: 255–277.

54. Celada F, Seiden PE (1996) Affinity maturation and hypermutation in a

simulation of the humoral immune response. Eur J Immunol 26: 1350–1358.

Selection in Germinal Centers

PLoS Computational Biology | www.ploscompbiol.org 9 June 2010 | Volume 6 | Issue 6 | e1000800


