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Abstract

A statistical thermodynamics approach is proposed to determine structurally and functionally important residues in native
proteins that are involved in energy exchange with a ligand and other residues along an interaction pathway. The structure-
function relationships, ligand binding and allosteric activities of ten structures of HLA Class I proteins of the immune system
are studied by the Gaussian Network Model. Five of these models are associated with inflammatory rheumatic disease and
the remaining five are properly functioning. In the Gaussian Network Model, the protein structures are modeled as an elastic
network where the inter-residue interactions are harmonic. Important residues and the interaction pathways in the proteins
are identified by focusing on the largest eigenvalue of the residue interaction matrix. Predicted important residues match
those known from previous experimental and clinical work. Graph perturbation is used to determine the response of the
important residues along the interaction pathway. Differences in response patterns of the two sets of proteins are identified
and their relations to disease are discussed.
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Introduction

Transfer of information between two points in a protein is a

fundamental problem relating to function [1,2]. Fluctuations of

residues in the native protein are the essential determinants of

information transfer. The three dimensional native conformation or

the topology of a protein determines the fluctuations of its residues.

Relationships between topology and fluctuations offer important

clues for the function of the protein. Structure-function relations can

conveniently be understood by treating the protein as a graph of

interacting residues [1]. Significant progress has been made in this

direction over the past decade. Residue fluctuations, correlations,

locations of conserved and important residues, stability of the native

state, information transfer, energy fluctuations, and recently the

protein-protein and protein-ligand binding have been studied by

recourse to the graph-like state of the native topology [3–14]. The

residue interaction graph contains important information in this

respect that allows the determination of important interactions in a

protein. The criticality of important interactions in a complex

system is often the determining factor of stability of graphs [1,15].

The lack of rearrangements in over determinate and highly

constrained graphs result in decreased stability and robustness

[15]. Our work here is centered on the determination of the subset

of important interactions in proteins and the relationships between

this set and function. We apply our analysis to a set of ten HLA class

I proteins, HLA-B27, which are relevant examples of the

relationship between critical interactions, robustness, and function.

The specific purpose of the present paper is to present a

statistical thermodynamics model that gives a consistent explana-

tion of structure-fluctuation-function relations in terms of the

graph-like features of native proteins. We use the widely adopted

Gaussian Network Model (GNM) based on a harmonic potential

of residue-residue interactions, and propose a model for

determining structurally and functionally important residues in

relation to ligand-protein interactions as well as the path that the

protein uses in transferring information form one point to the

other. Our treatment is essentially an extension of the three recent

papers [9–11] which we briefly summarize in the method section

below in order to reduce cross-referencing. In the cited papers we

showed, using statistical thermodynamics arguments, that the

mode corresponding to the largest eigenvalue of the connectivity

graph obtained from the contact map indicates the structurally

and functionally important residues and that these residues are the

ones for which energy and residue fluctuations are strongly

correlated. We show that a few residues belong to the set of

energetically active residues that are at the surface of the protein

and are most efficient in energy exchange with the surroundings.

We call these the ‘energy gates’. We also show that the residues

that connect any such two surface residues along an interaction

path are the ‘hub residues’ over which information is transmitted.

From statistical mechanical arguments, a surface residue that is

efficient in energy exchange with the surroundings is expected to

be active in binding of a ligand, as the ligand-binding problem is

an energy exchange problem. We also show that changes in the

PLoS Computational Biology | www.ploscompbiol.org 1 July 2010 | Volume 6 | Issue 7 | e1000845



binding/interaction capacity of an energy gate or a hub residue

changes the binding/interaction capacity of the other energy gate

or hub residues. This has significant consequences relating to

allostery and cooperative binding. The harmonic approximation

that we adopt here is a coarse graining approach. However, many

of the features obtained by this coarse graining are also indicated

by more accurate treatments of protein behavior [16–19]. The

GNM approach allows for a faster and easier visualization of

structure-function relations.

We study the structure-function, ligand binding and allosteric

activities of ten models of HLA-B27 Class I proteins of the immune

system. Five of these models, which belong to the HLA-B*2705

allele of the HLA-B27 protein, are known to be strongly associated

with a tendency to develop a chronic inflammatory rheumatic

disease, known as ankylosing spondylitis, by causing yet unknown

functional abnormalities. The remaining five are chosen from the

HLA-B*2709 allele of the same protein. These are the correspond-

ing properly functioning ones with almost no susceptibility for

ankylosing spondylitis [20–31]. Each pair of the protein structures,

one from the HLA-B*2705 and the other from the HLA-B*2709

allele, contains the same peptide in their antigen binding groove to

present to immune cells, and therefore serves as an excellent

benchmark to test the predictions of the GNM. The only difference

between the B*2705 and B*2709 alleles is that residue 116 in the

former is always an ASP, whereas it is HIS in the latter. This single

residue difference between the two alleles causes structural

differences in the two types, and therefore in their contact maps.

We show that these differences in the contact map of the two types

lead to significant and consistent changes in the fluctuation profile,

making the members of the HLA-B*2705 allele respond too strongly

to perturbation. Based on these changes, we propose a mechanism

that is responsible in the functional differences of the two types.

Methods

The model and formulation of the problem
The system consists of the protein and its environment. The

latter may contain ligands that are capable of binding to the

protein. The protein and the environment form a closed system

with fixed energy and amount of molecules. The protein

exchanges energy with the environment.

Since the total energy of the protein and the surroundings is

constant, we have

UprotzUsurr~Constant ð1Þ

DUprot~{DUsurr ð2Þ

where, Uprot and Usurr are the energies of the protein and the

surroundings, respectively.

In the statistical thermodynamics treatment of proteins that we

propose here, the thermodynamic variables for the protein are

S = Entropy, U = energy, V = Volume of protein, R = Position of

the residues. In the remainder of the paper, the thermodynamic

variables are used for the protein only, without the subscript prot.

The thermodynamic variables are averages. The instantaneous

values of the energy, volume and residue positions are shown

by ÛU , V̂V , R̂R, respectively. The fluctuations, DU~ÛU{U ,

DV~V̂V{V , DR~R̂R{R result from the deviations of the

instantaneous extensive variables from their thermodynamic

averages.

In the GNM model, the emphasis has been on the fluctuations

DR, visualized as resulting from coupled harmonic motions of the

residues from their mean positions [4]. The present treatment is

based on the extension of the mechanistic description of the GNM

to include the role of energy fluctuations, DU , as well.

As in previous treatments, we adopt a coarse-grained model and

represent each residue in terms of its alpha carbon. Thus, for a

protein of n residues, R is defined as

R~column R1, R2,:::,Rnf g ð3Þ

Here, Ri represents the Cartesian coordinates of the ith residue

alpha carbon. R̂R and DR are similarly defined.

The probability f ÛU, V̂V, R̂R
� �

of the instantaneous values, ÛU , V̂V ,

and R̂R, of the energy, volume and residue positions, is determined

from the interrelation of the thermodynamic functions given in the

Text S1. Therein, this probability function is used to derive the

correlations between the fluctuations of residue positions and

energy, as well as the cross correlations between the fluctuations of

the energy and residue positions. The statistical thermodynamics

interpretation of the GNM was given in full detail by Yogurtcu

et al., [11], which was successfully applied to the prediction of

binding sites in receptor-ligand complexes [10], of specific sites for

binding [9]. In the present paper, we use the statistical

thermodynamics approach to predict the important residues along

an interaction pathway.

The starting point of the model is the equation relating

fluctuations to thermodynamic averages. The derivation of this

equation is given in the Text S1. We reproduce the resulting

expression here to reduce cross-referencing

DRiDRj
T ~kT

LRi

LF j

� �
T , P, F i=j

ð4Þ

Here, DRi represents the position vector of the alpha carbon of the

ith residue and the superscript T indicates the transpose. k is the

Boltzmann constant, T is the temperature. F j is the force on the

jth alpha carbon. The subscripts of the parenthesis of the right

Author Summary

We propose a statistical thermodynamics model for
determining structurally and functionally important resi-
dues in ligand-protein interactions. Our method identifies
the path that the protein uses in transferring information
from one point to the other. We show that a few
energetically active residues are most efficient in energy
exchange with the surroundings acting as ‘energy gates’.
The remaining important residues that we identify are
situated along the interaction path. These are the hub
residues. Strong correlations exist between energy gates
and hub residues along the interaction path, thus relating
to allostery and cooperative binding. We studied the
structure-function, ligand binding and allosteric activities
of ten models of HLA Class I proteins of the immune
system. Five of these models belong to the HLA-B*2705
allele and are strongly associated with a chronic inflam-
matory rheumatic disease. The remaining five from the
HLA-B*2709 allele of the same protein are the correspond-
ing properly functioning ones. We show that differences in
the contact maps of the two types lead to significant and
consistent changes in the fluctuation profile, making the
HLA-B*2705 alleles respond too strongly to perturbation.

Important Residues and Interaction Pathways
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hand side indicate that the temperature, pressure and the force on

each residue except the ith is kept constant. Angular brackets

indicate an average over all possible values of the argument. The

right hand side is a thermodynamic quantity that expresses the

change in the position of residues by the application of a force.

The left hand side, on the other hand denotes an average of

fluctuations. Thus, this equation relates fluctuations to average

quantities. If fluctuations are associated with function, as is done in

several previous studies [3,6,32,33].

The right hand side of Eq. 4 requires the knowledge of a force-

displacement relation. The simplest of such relations is that for the

linear spring

F~CR ð5Þ

where, C is the spring constant matrix. Multiplying both sides of

Eq. 5 with the inverse of C and performing the differentiation

shown in Eq. 4 leads to

DRiDRj
T ~kT C{1

� �
ij

ð6Þ

In the GNM model, the C matrix is obtained by inserting a

constant c to the ij’th position if residues i and j are in contact and

zero otherwise. Two residues are assumed to be in contact if they

are separated by less than 7 Å. This value of the cutoff is

approximately equal to the radius of the first coordination shell

for residues in a protein. Each diagonal element of C is the

negative sum of its row. In this way the protein is visualized as a

graph, and the off-diagonal terms of C is the connectivity graph

of the protein. Although the ij’th elements of the C matrix is set to

zero when residues i and j are separated by more than 7Å, the

ij’th element of the inverse matrix C21 is not zero. This implies

correlations between residues that are not in contact. The

correlation between the fluctuations of the ith and jth residues is

determined by the full graph structure, since the ij’th element of

the inverse of C contains contributions from all nodes of the

graph, i.e., from all other residues, and not just from those in the

close neighborhood of the ith and jth residues. As will be

discussed in detail below, the essential features of the correlations

may be understood largely by considering the largest eigenvalue

of C.

Energy fluctuations of the protein are assumed to result from

fluctuations of inter-residue interactions. The correlation

DUDRiDRj
T of the energy fluctuations of the protein with

fluctuations of residue positions is derived as (See Text S1)

DUDRiDRj
T ~kT DRiDRj

T ð7Þ

The left hand side gives the correlations of energy fluctuations with

the fluctuations of residues. The right hand side consists of

correlations among residue fluctuations only. Writing the difference

DRij

� �2
~ DRi{DRj

� �2

~ DRið Þ2 {2 DRi
:DRi z DRj

� �2

and using the right hand side of Eq. 7 with the appropriate choice of

the indices, we can write

DU DRij

� �2
~kT DRij

� �2 ð9Þ

For the case of harmonic fluctuations, i.e., GNM, this relation is

derived in the Text S1.

If DRij

� �2
is assumed to represent the mean-square fluctuation

in the ‘spring length’ connecting residues i and j, the left hand side

of Eq. 4 DU DRij

� �2
becomes proportional to the fraction of the

incoming energy from the surroundings absorbed by the spring.

The right hand side of Eq. 9 is positive. The terms in the angular

brackets on the left hand side may be positive or negative

depending on the sign of DU. But, for the average to be positive,

there must be a constraint on the elements of the left hand side:

Positive fluctuations of the energy, which indicates energy transfer

into the protein from its surroundings, should couple to large

values of DRij

� �2
and negative fluctuations should couple to small

values. Stated in another way, energy that is absorbed from the

surroundings are stored in pairwise interactions between residues i

and j according to Eq. 8.

In the application of the model to the HLA proteins, we define

the variable Di as the sum of the ith row of the correlation matrix

Di~
X

j

DRij

� �2
~

1

kT

X
j

DU DRij

� �2 ð10Þ

A finite value of Di indicates that residue i belongs to the subset of

energetically active residues that are either energy gates or lie

along an interaction pathway. It also is a measure of the energy

absorbed from the surroundings as may be seen from the second

equality in Eq 10.

According to graph theory, important features of the graph,

such as graph perturbation that relates to allostery for example,

may be obtained by considering the largest eigenvalue and

eigenvector of the graph [34]. The choice of the largest eigenvalue

mode is specifically relevant, because (i) it corresponds to localized

effects where only a few residues are excited [3] and (ii) the largest

eigenvalue is the most sensitive to perturbation of the graph [34].

In the case that the residues identified by the highest mode are

adjacent in space, then they interact and form a path that is active

in long distance communication. Our calculations for a large

number of ligand-protein systems show that the largest eigenvalue

and the corresponding mode of the C matrix is in general sufficient

to point to the known functionally relevant residues. Within the

present approximation, we adopt the maximum eigenvalue

interpretation.

A residue at the surface with a large value of Di is an ‘energy

gate’ through which the protein executes its energy interactions

with the surroundings. If the residue with high Di is not at the

surface but inside the protein, then it is a ‘hub residue’ that has

important function along the interaction pathway connecting to an

energy gate. Although there is no proof, hubs are generally located

between two energy gates in allosteric processes [35,36]. Examples

shown below are in support of this statement. For a residue i at the

surface, Di is a measure of whether residue i will interact with the

ligand. For the hub residues, Di is a measure of the importance of

that residue within the network of information exchange.

The quantity Di introduced above indicates the extent of

correlation of the given residue i with the rest of the protein. Any

change in the connectivity state of residue i will affect the behavior

of the rest of the protein through the subset of energetically active

residues. One way to apply this change would be to bind a ligand

to i, and to the residues within the cutoff distance of i. This

corresponds to perturbing the entries in the ith row and column of

the C matrix. The relation of this to allosteric manipulation is

obvious. In this section we discuss the changes Di Dj

� �
in the

interaction energies of residues j when the parameters of residue i

are modified. Binding to a point i on the protein may increase or

decrease the residue interaction energy of other points.

ð8Þ

Important Residues and Interaction Pathways
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The calculations and the analysis are carried out with respect to

the heavy chain A, taking the structure from the complex structure

of chains A, B (beta-2-microglobulin) and C (peptide bound on the

antigen binding groove of chain A) in the alleles HLA-B*2705 and

HLA-B*2709 alleles.

Results

Application to HLA proteins
Ten HLA-B27 protein structures are analyzed here. Five of the

structures belong to the HLA-B*2705 allele and the remaining five

belong to the HLA-B*2709 allele, where the residue 116 is ASP in

the former and HIS in the latter. Each pair has the same peptide

sequence bound. The PDB codes of the proteins and their alleles

are presented in the first and third columns of Table 1.

In Figure 1A, the ribbon diagram of the heavy chain of

1OF2.PDB of the HLA-B*2709 allele is shown. The nine residue

peptide is shown in indigo. It sits in the groove between the two

helices shown in red. In the same figure, we show the positions of

the energetically active and functionally important residues 6, 7,

27, 101 and 164 for 1OF2 in yellow, suggested by the GNM

calculations. Figure 1B is an enlarged version of Figure 1A where

each residue is shown with a different color and the rest of the

protein is not shown. Figure 1B clearly shows the important

residues that form an interaction pathway, with GLU161 at one

end and TYR27 on the other end of this path. The prediction of

these residues, and the detailed discussion of their role in the

functioning and malfunctioning of the HLA-B*2709 and HLA-

B*2705 will be given below.

In all of the calculations presented in this paper, we concentrate

only on the largest eigenvalue which suffices for presenting a

proof-of-principle discussion. A more detailed discussion may need

to involve eigenvalues other than the largest, which might be

plausible for additional functionally and structurally residues.

Determination of the energy gates and hub residues of
the HLA class I molecules

We use Eq. 7 (see Methods) to obtain the energetically active

residues using the high frequency mode. In Figure 2, we show the

Di plots of the two proteins 1OF2 and 1OGT, where the subscript

i indicates the residue index. The plots are obtained as follows:

First, the C matrix is constructed with a cutoff distance of 7 Å and

the correlations are calculated using Eq. 3. The components of the

correlation matrix corresponding to the largest eigenvalues of the

C matrix are determined by reconstructing the correlation matrix

keeping the largest eigenvalue only, and the columns of the

resulting matrix are added according to Eq. 10 in order to obtain

the Di values presented in the figures.

Figure 2 displays that residue CYS101plays the most significant

role in the interactions of the protein and has the strongest

correlations with other residues such as ARG6, TYR27, LEU160

and CYS164 in both 1OF2 and 1OGT. This is also observed in

the other HLA-B*2709 and HLA-B*2709 alleles. The residues

with high Di values that are observed in the ten proteins are shown

in Table 1. The other feature observed that is in common for all of

the ten proteins is that the Di value for the 101st residue is always

larger for the HLA-B*2709 alleles than for HLA-B*2705. Since

these residues are calculated from the largest eigenvalue of the C
matrix, we call them the important residues and show with the

examples below that these play role in the stability and function of

the protein.

From the definition given by Eq. 10, Di is the sum of the

distance fluctuations of the intermolecular bonds which the ith

residue makes with others. Equation 4 shows that Di reflects the

energetic interactions of residue i with other residues. In this sense,

CYS101 acts as the central hub, which controls the system. There

are two different types of terms on the right hand side of Eq. 8, the

self terms DRið Þ2, DRj

� �2
and the cross term DRi

:DRj . In order

for DRij

� �2
to be large, both DRið Þ2 and DRj

� �2
should be large,

and DRi
:DRj should be negative, i.e., residues i and j should make

anti-correlated motions. Only in this case Di can be large and

energy can be transferred from one to the other via the spring that

connects them.

Figure 2 shows that there are essentially four groups of residues

that are of significance: (i) residue 6, (ii) residue 27, (iii) residues

101–116, and (iv) residues 160–164. In the remaining sections, we

elaborate on the characteristic features of these four groups of

residues that are also observed in the other HLA-B*2709 and

HLA-B*2709 alleles (Table 1).

Perturbation of the residues on the interaction pathway
In this section, we study the differences of the response of the

residues for a perturbation along the interaction pathway between

the two families. These differences arise from the presence of the

negatively charged ASP116 in HLA-B*2705 and positively

charged HIS116 in HLA-B*2709 that induce energetic changes

along the interaction pathway, resulting in functional differences.

The differences will be outlined in the following sections. In this

section, we present the results of our calculations based on Eq. 10.

In the interest of observing the response of a protein to an

external stimulus, we induce changes in the interaction strength of

each important residue and observe the response of the remaining

residues. This is done by increasing the interacting strength of

contacts of the ith residue by 1%. This amounts to multiplying the

off diagonal elements of the ith row and column of the C matrix by

1.01, and recording the difference Di Dj

� �
in the values of Dj

obtained after and before this perturbation for each residue j. In this

notation D is the change in Dj , and the subscript i indicates that the

perturbation is applied on the ith residue. A perturbation of 1% was

chosen to ensure that the system was in the linear response region.

Table 1. Energetically active residues of HLA B*2709 and B*2705 proteins suggested by GNM.

Protein (B*2709) Residue Protein (B*2705) Residue

1OF2 101, 160, 6, 103, 164, 109, 5, 113, 27, 161,164, 168 1OGT 101, 6, 160, 103, 164, 27, 5, 113, 164, 168

1UXW 101, 160, 6, 103, 164, 109, 113, 5, 27, 161 1UXS 101, 103, 160, 6, 164, 27, 100, 5, 113, 124

1W0W 101, 6, 160, 164, 103, 165, 5, 109, 113, 27 1W0V 101, 6, 160, 103, 164, 165, 27, 5, 113, 168

1K5N 101, 160, 103, 6, 164, 168, 161, 5, 170, 113, 27 1JGE 101, 6, 160, 164, 103, 165, 5, 109, 113, 27

3BP7 101, 6, 160, 103, 164, 165, 27, 5, 113, 168 3BP4 101, 103, 160, 6, 164, 27, 5, 100, 113, 25

The residues are ordered according to their Di values.
doi:10.1371/journal.pcbi.1000845.t001

Important Residues and Interaction Pathways
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Trial choice of values above 10% resulted in nonlinear response. In

the linear response regime, changing the perturbation from 1% to

2%, for example, doubled the output. Figures 3A–F, given for the

case of 1OF2-1OGT, show that the B*2705’s respond to

perturbations strongly compared to B*2709’s. The other B*2705’s

and B*2709’s, also show the same difference. This difference has its

roots in the differences of residue-residue interaction energies. The

residue ASP116 in B*2705’s results in strong interactions with its

surrounding residues, making the protein respond strongly to

perturbations. An examination of Figure 3 shows that positive

perturbation of ARG6 induces a decrease in the response of

CYS101 which is stronger for all of the B*2705 alleles than for

B*2709. It is worth noting that the residue that is directly involved in

the binding of the ligand is TYR7. However, its perturbation does

not result in any noticeable perturbation in the rest of the protein,

suggesting that it does not directly lie on the interaction pathway.

However, perturbation of its neighbors MET5 and ARG6 induces

strong changes in the behavior of the protein. This is because in the

native structure, the environment of TYR7 is less compact than that

of ARG6. In this respect, ARG6 plays a special role in the pathway

we identified. For example, mutating ARG6 into ALA6 in 1OGT

(see the following section describing energy calculations) caused four

times more energy increase then mutating TYR7 into ALA7. Based

on this evidence we hypothesize that the direct interaction of the

ligand with TYR7 induces a perturbation of ARG6 which affects

the protein structure significantly.

In order to see the differences in response of the two alleles, we

subtracted the D6 Dj

� �
values of B*2709 from those of B*2705 for

ARG6 for each allele pair, and presented the results in Figure 4.

The figures show that although ARG6 is perturbed positively by

the same amount for both alleles, i.e., the related elements of the C
matrix are perturbed by 1% in both cases, the response of

B*2705’s is stronger at ARG6 and the CYS101 response to this

perturbation is always negative, and stronger again in all B*2705’s.

Energy calculations show that the interactions of ARG6 with its

environment is 9 kcal/mole stronger in B*2705 than in B*2709,

which means that ARG6 is more rigidly embedded in its

surroundings in B*2705. This is the result of the differences of

residue 116 that affect the two alleles in different ways and the

effects are seen on residues ARG6 and CYS101.

The only difference between the sequence of B*2705’s and

B*2709’s is in the residue 116. This residue is located at the

bottom of the B-pocket where the peptide binds. This single

mutation is thought to cause differences in the stiffness of the

Figure 1. Solid ribbon diagram of the heavy chain (A) of HLA-B*2709 (1OF2.PDB). The ligand peptide is shown in indigo. The functionally
important residues 6, 7, 27, 101 and 164 are indicated in yellow. Enlarged version showing only the important residues predicted (B).
doi:10.1371/journal.pcbi.1000845.g001

Figure 2. Important residues of (A) 1OF2 (B*2709) and (B) 1OGT (B*2705) predicted by GNM. The ordinate values are obtained from Eq. 10.
doi:10.1371/journal.pcbi.1000845.g002

Important Residues and Interaction Pathways

PLoS Computational Biology | www.ploscompbiol.org 5 July 2010 | Volume 6 | Issue 7 | e1000845



structure around 116 that result in the differences observed and

reported above for the two alleles [21]. In order to understand the

energetic differences of the two alleles, we calculated the

interaction energy of residue 116 with its surroundings in the

two alleles.

Results of comparative energy calculations
The knowledge of the interaction energies of specific residues in

the system may be helpful for understanding and comparing the

behavior of the two alleles under study. Here, we present

approximate calculations of interaction energies obtained by static

minimization of the energies, briefly described in Text S1. The

energy minimization calculations are only for comparison of the

B*1705 and B*2709, where we either compare two different

systems, or compare two different situations on the same system.

Thus, the relative values rather than the absolute values of the

energies reported here are of interest here to have an estimate on

the differences between the B*1705 and B*2709.

In our calculations, we first minimized the energy of the system.

To calculate the interaction of a given residue with the rest of the

protein at its minimum energy conformation, the residue is chosen

in the matrix of the remaining residues that are kept in their native

states. The interaction energy of the chosen residue is then

minimized around the given conformation. In this calculation,

only the residue of interest is left flexible and the conformations of

the remaining protein residues are kept fixed at their native values.

As the energies are sensitively dependent on the value of the

dielectric constant chosen, different values of the dielectric

constant are used to see the effect on the calculated energies. In

the absence of explicit water, the value range of 1–4 is usually

considered in the calculations of biological systems.

We minimized the energy of 1OGT.PDB and 1OF2.PDB and

calculated the energy of residue 116 in each structure as described

in the preceding paragraph. We then removed the rest of the

protein and minimized the energy of the isolated residue 116. The

energy calculated in this way is the intra-residue energy for 116

and contains bond, bond angle, electrostatic, hydrogen bonded

and nonbonded energies of the atoms that all belong to 116 only.

The difference between the energy in the presence and absence of

the surroundings gives an idea on how strongly the residue

interacts with its neighbors in the protein. For the dielectric

constant equal to unity, the energy of residue 116 is 156 kcal/mol

lower in 1OGT (B*2705) because of the charge differences of the

two residues, where HIS is positively charged with a pK of 6.5

Figure 3. Comparison of the responses of 1OF2 (B*2709) and 1OGT (B*2705), where the perturbation is applied to residues (A)
ARG6 of 1OF2, (B) ARG6 of 1OGT, (C) CYS101 of 1OF2, (D) CYS101 of 1OGT, (E) LEU160 of 1OF2, (F) LEU160 of 1OGT.
doi:10.1371/journal.pcbi.1000845.g003
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while ASP is negatively charged with a pK of 3.1, which is the

‘random coil’ or ‘model compound’ small peptide pKa value. In

1OGT, the carbonyl group of the negatively charged ASP116 is

within 2.9 Å of the positively charged amino end of LYS70, and

within 5.5 Å of the positively charged HIS114, whereas in 1OF2

(B*2709), the positively charged HIS116 is 6 Å to the nearest

negatively charged ASP122. In 1OGT, the two residues of the

peptide binding site, ARG6 and ASN97 have lower energies in

1OGT compared to 1OF2. This means, these two residues are

embedded strongly in their environments in 1OGT, and

perturbing their states results in strong responses in the protein.

The unrealistically high energy values reported here are upper

bounds that are obtained by taking the dielectric constant as unity.

We calculated the binding energies by varying the dielectric

constant over a wide range. The results are presented in Figure 5.

The difference between the two proteins vanishes when the

dielectric constant is around 20. The realistic values of e used for

biological systems vary in the range 1–4. Even with a value of

= 4, the energy difference is as high as 30 kcal/mole.

In Table 2, we present the differences in these energies for

1OGT (B*2705) and 1OF2 (B*2709) for residue 116 and for a few

other residues with the values calculated for = 1. These values are

the upper bounds. We see that GLU163 in 1OGT is bound to its

neighborhood less strongly than the one in 1OF2 by an energy

difference of 61.0 kcal/mole. This difference comes from the

presence of the negatively charged LYS3 of the peptide in close

vicinity of GLU163 in 1OF2. In the energy minimized structure,

the oxygen of the carbonyl group of GLU163 is 2.3 Å from the

hydrogen of the amino group of LYS3 of the peptide, whereas this

distance is 5.6 Å in 1OGT. This interaction indicates the

specificity of binding of the peptide to 1OF2, which is lacking in

1OGT.

In Table 3, differences in the interaction energy of the peptides

of the two alleles and the energy of the residue GLU163 are

presented. The approximations involved in these calculations are

explained in the Text S1. In the second column, we compare the

binding energy of the full peptide to the proteins. The values are

the differences of the binding energies to alleles B*2705 and

B*2709. Among the different residues, GLU163 exhibits a peculiar

difference in that its energy is much lower in B*2709’s. For this

reason we calculated the difference in the energy of GLU163 for

the two alleles and presented the results in the third column of

Figure 4. Differences in response against perturbation of ARG6 for the five pairs of HLA-B27 proteins; 1OGT-1OF2 (A), 1JGE-1K5N
(B), 1UXS-1UXW (C), 1W0V-1W0W (D), 3BP4-3BP7 (E).
doi:10.1371/journal.pcbi.1000845.g004
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Table 3. Although the overall binding energy of the peptide to

B*2705 is more favorable in all cases, the energy of GLU163 is

more favorably in B*2709.

It is worth noting that the computations by using the largest

eigenvalue approach indicated LEU160 and CYS164 as the

important residues and GLU163 does not appear as an important

residue. A similar trend is observed for several other systems not

reported here, where the maximum eigenvalue approach points to

a close neighbor of an important residue as in the present study.

The difference arises mostly from the presence of electrostatic

interactions in the neighborhood of the important residue.

Predictions by the maximum eigenvalue method do not directly

consider the electrostatic interactions. However, their presence

affects the topology that is reflected in the maximum eigenvalue

method.

In the energy calculations described above, in order to see why

ARG6 appeared in the interaction path, we mutated ARG6 into

ALA6 in 1OGT, which resulted in fourfold increase in the energy

of the system (See Text S1). Same calculations are performed by

mutating TYR7 into ALA7.

These values, though approximate and relative, it consistently

points to some important features of the system. Nevertheless, it is

worth stating here that the appropriate and rigorous computa-

tional practice in computational biology is to perform an extensive

molecular dynamics simulation of the protein and the ligand in

aqueous medium and extract the required energies as thermody-

namic averages, which may include the evaluation of the free

energy as well. Our present energy minimization approach is only

for exploratory purposes.

Discussion

We identified the interaction paths of the B*2705 and B*2709

alleles. This path contains the residues TYR27 at one end and

CYS164 at the other. Along the path lies CYS101 as the most

interactive residue, which we termed as the hub residue. The

important residues along this path are shown in Figure 6 for

1OF2, of the B*2709 allele. Differences on this path for the

B*2705 alleles are summarized in Figures 7A–D for 1OGT. The

roles of the residues shown in Figures 6 and 7 relating to the

structural and functional features of this path are discussed in this

section.

(1) Substitution of ASP116 for HIS116 in the B*2705 allele

results in stronger bonds both between the peptide and the protein

and between the residues of the protein in the neighborhood of

116. In Figure 6 for B*2709, HIS116 exhibits no interactions with

other residues along the path. For B*2705, on the other hand,

ASP116 shown for 1OGT in Figure 7A makes three hydrogen

bonds with ARG5 of the peptide and one hydrogen bond with

ASN97.

In other members of B*2705 and B*2709, interactions other

than the ones shown in Figures 6 and 7 are also present. In

molecular dynamics simulations by Starikov et al. [21], for

example, a salt bridge between LEU9 of the peptide and ASP116

in B*2705 was observed to limit the relative motions of these two

residues. This causes changes along the interaction path and

makes the system B*2705 becomes more fragile against nontrivial

rearrangements, in parallel with recent findings on graphs [1].

Apart from differences in the important residues on the pathway

predicted by various works the major common finding relates to

the effects of replacing HIS116 in B*2709 with ASP116 on

B*2705.

(2) Our calculations show that ARG6 exhibits strong response to

external perturbation in B*2705’s compared to those in B*2709.

This implies that ARG6 is more rigidly embedded in its

surroundings in B*2705. In Figure 6, ARG6 of 1OF2 is observed

to make a single hydrogen bond directly with TYR99. In B*2705,

however, ARG6 makes more bonds to its neighbors. In Figure 7B

for 1OGT, for example, ARG6 and its neighbor MET6 are

hydrogen bonded to CYS101, which in turn is covalently bonded

to CYS164. Similarly, in Figure 7C, ARG6 and its neighbor

TYR7 are hydrogen bonded to TYR27. In Figure 7D, ARG6 is

observed to be an element of a cycle that is a loop of hydrogen

bonded elements. This loop contains the residues in clockwise

order: ARG6, MET5, CYS101, CYS164, GLU163, bridged by

ARG1, ARG2, LYS3 of the peptide, followed by TYR99, TYR 7,

terminating with ARG6. All of the residues along this loop are

identified by the GNM and the maximum eigenvalue method.

Perturbation of B*2705 and B*2709 at ARG6 results in a strong

change in the correlations of CYS101 with its neighbors. The

response of CYS101 is stronger in B*2705. Comparative energy

calculations reported above, show that the interactions of ARG6

with its environment is stronger in B*2705 than in B*2709.

(3) Although ASN97 is not identified as a path member by the

maximum eigenvalue method, this residue is shown in Figure 6 to

make a hydrogen bond with TYR99. Although the latter does not

show up as a path member, it makes a short loop of hydrogen

bonding with ASN97 which is expected to reinforce the binding

pocket. In Figure 7A, ASN97 is observed to make a hydrogen

bond with HIS9 and with ARG5 of the peptide, thereby

accentuating the tight binding of the peptide in the B*2705 allele.

The pocket region that contains HIS9 is referred to as the B-

pocket. According to comparative energy calculations reported

above, ASN97 shows energetic differences for the two alleles,

Figure 5. The interaction energy difference of residue 116 in
1OGT and 1OF2 calculated for different values of the dielectric
constant .
doi:10.1371/journal.pcbi.1000845.g005

Table 2. Energy differences between a few residues of the
two alleles.

Residue Energy difference 1OGT–1OF2 (kcal/mol) = 1

ARG6 218

ASN97 218

ASP/HIS116 2156

GLU163 61

doi:10.1371/journal.pcbi.1000845.t002
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being more strongly bound to its environment in B*2705 than in

B*2709.

(4) There is a major difference between the binding modes of

the peptides to B*2705 and B*2709. In B*2709, ARG1 and ARG2

of the peptide bind strongly to the B pocket and the rest of the

peptide remains relatively flexible contributing to the entropic

advantage. The residues of the peptide in the C terminal are

subject to nonpolar interactions. These interactions allow for only

a few residue types, thus restricting the number of different

peptides to only a few. B*2705 on the other hand, is capable of

forming bonds with a multitude of residues because of the presence

of ASP116. Hence, several different peptides may bind to B*2705.

Therefore binding is not specific to a few peptides. Furthermore,

the stronger bonding in the B*2705’s presented in Table 3 results

in an enhanced entropy penalty.

More specifically, for the B*2709 allele shown in Figure 6,

ARG1 of the peptide is hydrogen bonded to GLU163, and

ARG2 of the peptide is hydrogen bonded to GLU45 and

GLU63. For the B*2705 allele, more extensive hydrogen bonding

is observed between the peptide and the protein: In Figure 7A,

ARG5 of the peptide binds to ASN97 and ASP116; in Figure 7B,

ARG1 of the peptide binds to GLU163; in Figure 7C, ARG2 of

the peptide binds to THR24; in Figure 7D, ARG2 of the peptide

is bonded to TYR7 and LYS3 of the peptide is bonded to

TYR99. Peptide flexibility is observed only for the HLA-B*2709

[37]. This suggests an entropic control of peptide recognition.

The constraints on the strongly bound peptides in B*2705

constitutes an entropy disadvantage, or an entropy penalty. This

hypothesis is supported by thermodynamic data [37]. Figures 7A–

D show that the peptide is capable of forming several hydrogen

bonds with various residues of the protein. Among these, the

interaction with ASP116 and ARG5 of the strong peptide binding

capability of the B*2705 binding groove that we observed raises

the possibility that B*2705 allele may be capable of binding

various different peptides. On the contrary, B*2709 exhibits a

limited peptide binding capacity. There is indeed significant

amount of experimental work aimed at understanding the

differences in binding capacities of the two alleles. B*2709 shows

a high specific preference for ligands with nonpolar C-terminal

residues. The reason for this is the lack of ASP116. B*2705

accepts other residues at this position [38–39]. This is one reason

of the ligand specificity of the B*2709’s.

(5) In Figure 6, GLU163 is hydrogen bonded to ARG1 of the

peptide. Its neighbor CYS164, is also shown in Figure 6. The

corresponding conformation for the HLA-B*2705 allele is

presented in Figure 7B. In both cases, the crystal structures show

that CYS164 is covalently bonded to CYS101. Thus, in both

alleles, the gate residue GLU163 can transfer the effects of the

peptide to the rest of the protein through the bridge over the

CYS164-CYS101 pair. We found that CYS101 is the residue that

is strongly correlated with several other residues of the protein. In

this sense, we call it the hub residue that controls the function of

the protein. The present analysis shows that perturbation at the

peptide binding site affects the behavior of CYS101. As shown in

Figure 4, this response is stronger in B*2705 when compared with

B*2709. A decrease of correlations of CYS101 is expected to result

in an important change in the behavior of the protein. Warburton

et al. mutated the residue CYS101 in another HLA Class I protein

by replacing the CYS with SER, denoted by C101S mutation

[40]. Due to the loss of the disulfide bond between CYS101 and

CYS164 located between the alpha-helix and beta-sheet portions

of the alpha2 domain of the A protein (heavy chain), the proteins

lost stability and function.

(6) The stronger response of CYS101 to perturbations is a

consequence of the strong inter-residue interactions around the

binding region. The presence of ASP116 in B*2705 leads to strong

inter-residue interaction. On the contrary, the presence of HIS116

in B*2709 makes the protein more flexible due to weaker

interactions in the F pocket [21]. This socket is the region that

contains the residues 114 and 116 and accommodates the carboxy

terminus of the bound peptide.

(7) In Figure 6, the CO group of ASN97 is seen to make a

hydrogen bond with the backbone NH of TYR99. The

importance of this hydrogen bond for the stability of the protein

has been shown by Blanco-Gelaz et al. [22] In that work, ASN97

was mutated to ASP97 which prevented the protein from gaining a

stable conformation.

(8) As a general rule, if a residue is strongly coupled to its

environment, then it leads to stronger response when its

environment is perturbed, for example, when the residue is

replaced with another amino acid of different size. It is therefore

expected that when a protein exhibits strong inter-residue

interaction energies at a given site, then it is less stable against

external perturbations. This parallels the reasoning behind the

stability of graphs [1,8,41].

(9) In Figure 7, we see that TYR27 makes a hydrogen bond with

TYR63 of the beta-2-microglobulin. This is true for both the

Table 3. Differences in the interaction energies of the
peptides to the two alleles.

Binding energy of
peptide (kcal/mol) = 1

Energy of GLU163
(kcal/mol) = 1

DE1OGT-DE1OF2 254 61

DE1UXS-DE1UXW 215 41

DE1W0V-DE1W0W 219 31

DE1JGE-DE1K5N 230 39

DE3BP4-DE3BP7 29 30

doi:10.1371/journal.pcbi.1000845.t003

Figure 6. The important residues along the interaction
pathway between TYR27 and CYS101 for 1OF2. The peptide is
shown in yellow stick representation. The dotted green lines are the
hydrogen bonds. TYR63 shown in indigo belongs to the light chain B.
doi:10.1371/journal.pcbi.1000845.g006
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B*2705 and B*2709 alleles. Interaction of the heavy chain with the

light chain is known to be a necessary determinant of stability, and

any change in this interaction may be one reason for the misfolded

or unfolded protein response [42]. However, although TYR27

appears as a significant residue on the interaction pathway,

perturbation of the structure presented in Figures 4 and 5 does not

induce a strong response in TYR27. The contribution of TYR27

to the unfolded protein response may not therefore be significant.

However, although misfolding is associated with the activity of the

peptide, the possible role of the B pocket of the heavy chain in

unfolding has not been discarded [43]. The B pocket contains

ARG6, TYR7, HIS9, THR24, GLU45, GLU63, and TYR99.

The hub residue CYS101 makes two hydrogen bonds, one with

MET5 and the other with ARG6, and ARG6 in turn makes two

hydrogen bonds with TYR27.

There are two different lines of thought or hypothesis from the

patogenetic perspective in the association of ankylosing spondylitis

disease with HLA-B27 alleles [44–50]:

1. The arthritogenic peptide hypothesis assumes that the disease-

causing specific (arthritogenic) peptides can bind on B*2705

but not on B*2709 and cause problems through recognition of

HLA+peptide complexes expressed on the cell surface by the

pathogenic CD8+ lymphocytes with their specific receptors.

Therefore, this hypothesis suggests that the difference between

B*2705 and B*2709 results from their peptide cargo loaded in

the endoplasmic reticulum and their ability to stimulate

immune cells on the cell surface. The ASP116 of B*2705

allows binding of a larger number of different peptides

including the arthritogenic peptide, whereas only a limited

number of peptides can bind to B*2709 which are not suitable

to stimulate pathogenic autoreactive CD8+ lymphocytes.

2. The unfolded protein response hypothesis: Heavy chain of the

HLA-B27 protein has a tendency to misfold within the

endoplasmic reticulum because of its slow folding properties.

Structural instability of B*2705 may increase its tendency to

develop misfolded or unfolded forms of heavy chains, and

increased accumulation of unfolded or misfolded heavy chains

in the endoplasmic reticulum induces a specific type of

inflammatory response known as unfolded protein response

(UPR).

Our model shows a difference between the structural stability

between B*2705 and B*2709 but also corroborates both

hypothesis together by suggesting a role of binding peptides on

the stability of structure. Due to strong interactions between the

peptide and B*2705, specifically the presence of ARG at positions

2 and 5 in the ligand, this allele of HLA-B27 protein can bind a

multitude of different peptides. Strong binding of these peptides

influences the stability of the protein through interactions

extending from residues ARG6 and TYR7 all the way to

CYS101. The interaction between certain peptides and B*2705

heavy chain may result in the enhanced folding problems and an

inflammatory reaction due to unfolded protein response. B*2709

on the other hand is highly selective for the peptides, having only a

binding residue in the F-pocket, the B-pocket being rather floppy,

leading to stable binding if the peptide is extremely suitable for this

purpose. This selectivity may be an advantage for B*2709 allele by

avoiding the binding of certain peptides which may increase the

likelihood of structural instability.

Figure 7. The important residues along the various interaction regions of 1OGT with respect to the peptide sites (shown in yellow
stick representation): ARG5 (A), ARG1 (B), ARG2(C), ARG1-LYS3 (D). The dotted green lines are the hydrogen bonds.
doi:10.1371/journal.pcbi.1000845.g007
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Text S1 The model and formulation of the problem and the

relative energy calculations.
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