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Abstract

Neuronal activity is mediated through changes in the probability of stochastic transitions between open and closed states
of ion channels. While differences in morphology define neuronal cell types and may underlie neurological disorders, very
little is known about influences of stochastic ion channel gating in neurons with complex morphology. We introduce and
validate new computational tools that enable efficient generation and simulation of models containing stochastic ion
channels distributed across dendritic and axonal membranes. Comparison of five morphologically distinct neuronal cell
types reveals that when all simulated neurons contain identical densities of stochastic ion channels, the amplitude of
stochastic membrane potential fluctuations differs between cell types and depends on sub-cellular location. For typical
neurons, the amplitude of membrane potential fluctuations depends on channel kinetics as well as open probability. Using
a detailed model of a hippocampal CA1 pyramidal neuron, we show that when intrinsic ion channels gate stochastically, the
probability of initiation of dendritic or somatic spikes by dendritic synaptic input varies continuously between zero and one,
whereas when ion channels gate deterministically, the probability is either zero or one. At physiological firing rates,
stochastic gating of dendritic ion channels almost completely accounts for probabilistic somatic and dendritic spikes
generated by the fully stochastic model. These results suggest that the consequences of stochastic ion channel gating differ
globally between neuronal cell-types and locally between neuronal compartments. Whereas dendritic neurons are often
assumed to behave deterministically, our simulations suggest that a direct consequence of stochastic gating of intrinsic ion
channels is that spike output may instead be a probabilistic function of patterns of synaptic input to dendrites.
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Introduction

The appropriate level of physical detail required to understand

how complex processes such as cognition and behavior emerge

from more simple biological structures is unclear [1,2]. For

example, while it is possible to account for certain aspects of

nervous system function using models that represent each neuron

as a simple integrate and fire device, it is increasingly clear that this

approach does not capture the full range of computations that

many real neurons carry out [3,4]. Dendritic and axonal

morphology are defining features of neuronal cell types and have

important influences on the computations that a neuron performs

[5]. Differences in morphology determine how neurons respond to

synaptic input and are sufficient to produce distinct patterns of

spontaneous activity [6] and degrees of action potential back-

propagation from the soma into the dendrites [7]. Cable theory

and compartmental modeling provide a foundation for predicting

the propagation of electrical signals in the dendrites and axons of

neurons [8,9]. However, while the assumption that transitions

between open and closed states of ion channels can be treated as a

deterministic process may be sufficient for some purposes, recent

evidence suggests that stochastic transitions between the states of

individual ion channels could influence computations carried out

by neurons [10–17]. Stochastic opening and closing of ion

channels causes ‘noisy’ fluctuations in the current or voltage

recorded from a neuron [18–20]. While cable theory suggests that

fluctuations of this kind might be particularly important in fine

structures such as axons and dendrites [21], we nevertheless know

very little about how neuronal morphology and stochastic gating

of ion channels interact to determine how neurons respond to

synaptic input. Given the difficulty of reducing detailed morpho-

logical models to simple analytical forms that could also

incorporate stochastic gating of individual ion channels [22],

experimentally constrained numerical simulations will be impor-

tant to enable these issues to be explored systematically.

Investigation of stochastic ion channel gating using numerical

simulations has been limited by trades-offs between simulation

accuracy and computation time [22]. A simple approach is to add
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noise sources to deterministic models. However, as ion channels

have multiple functional states with transitions that often depend

on the membrane voltage [11,15,22,23], this may not accurately

account for the noise introduced by ion channel currents. A more

accurate alternative is to explicitly model transitions between

different functional states for each ion channel on a neuron’s

membrane. However, for neurons with complex axonal or

dendritic architectures there are two substantial obstacles to this

approach. First, typical central neurons express large numbers of

ion channels and simulations must be repeated many times to

obtain statistically valid descriptions [24]. This is a formidable

computational task and even relatively straightforward simulations

of the consequences of stochastic channel gating can require

substantial computing time (see e.g. [12,13]). Second, each

neuronal ion channel occupies a specific location on the extra-

cellular membrane, whereas most neuronal models represent the

distribution of ion channels as the density of a deterministic

conductance across an area of membrane. Although this

formalism has been successful for simulating many aspects of

neuronal activity, it is of less use for models that explore the

consequences of the localization of individual ion channels, for

example to evaluate the macroscopic effects of short range

interactions between ion channels and other signaling molecules

[25], or the consequences of spatially heterogeneous distributions

of ion channels within relatively small sub-cellular structures such

as dendritic spines and axon terminals [26,27].

To address the functional consequences of stochastic ion

channel gating in neurons with extensive dendritic or axonal

arborizations we developed a parallel stochastic ion channel

simulator (PSICS), which enables efficient simulation of the

electrical activity of neurons with complex morphologies and

arbitrary localization of stochastic ion channels on the extracel-

lular membrane, while also addressing limitations of previous

approaches. We have also developed an interactive tool (ICING)

for visualization and development of models of neurons containing

uniquely located ion channels. Here, we illustrate the use of PSICS

and ICING, outline the computational strategies used and provide

benchmark data for evaluation. We then identify previously

unappreciated differences between the effects of stochastic ion

channel gating on somatic and dendritic membrane potential

activity in several different morphological classes of neuron. We

show that the consequences of stochastic gating depend on

dendritic morphology and suggest novel functional roles for the

kinetics of ion channel gating. Using a previously well-validated

realistic model of a CA1 pyramidal neuron we demonstrate that

stochastic ion channel gating influences spike output in response to

dendritic synaptic input. We show that stochastic gating of axonal

or dendritic ion channels substantially modifies synaptically driven

dendritic and axonal spike output, with stochastic gating of

voltage-dependent sodium and potassium channels having the

greatest impact and hyperpolarization-activated channels the least.

By demonstrating that neuronal responses to dendritic synaptic

input can be intrinsically probabilistic, these results offer a new

and general perspective on synaptic integration by central

neurons. Full documentation for PSICS/ICING as well as the

software, source code and examples are available from the project

website (http://www.psics.org).

Results

Model specification and visualization
To investigate the functional consequences of stochastic ion

channel gating for neurons with complex dendritic or axonal

morphologies, we first developed new software tools that enable

accurate, fast simulation (PSICS) and visualization (ICING) of

neuronal models that contain stochastically gating ion channels.

The organization and development of the new software tools are

described in Text S1, Figure S1 and in more detail on the project

website (http://www.psics.org). Here, we briefly outline novel

features of model specification and visualization, before describing

key benchmark data and simulation experiments that evaluate the

functional impact of stochastic ion channel gating in different

neuronal cell types. The new software uses a simple XML file

structure that enables components of a model either to be

constructed manually, to be configured using a graphical interface

(Figure 1A), or in the case of ion channels and morphologies to be

imported from other programs and databases that allow saving of

models in the NeuroML format. For example the morphology

of the model CA1 pyramidal neuron shown in Figure 1 was

downloaded as a NEURON simulation from the modelDB

website (http://senselab.med.yale.edu/modeldb) and exported

from NEURON as a .xml file. Similar methods can be used to

import models developed with Neuroconstruct (http://www.

neuroconstruct.org/) [28].

To specify the membrane conductance we adopted a new

approach in which the location of each individual ion channel is

first uniquely determined (Figure 1). This approach is comple-

mentary to that of the program MCell [29], which simulates

movement and reactions of molecules within and around cells. In

contrast, other neuronal modeling software approximates ion

channel location as an average conductance density across a

region of membrane. Before simulations are run in PSICS the

neuron is discretized into sections that are then treated as

isopotential compartments. As neurons are rarely at steady-state

and have conductance that varies with membrane voltage, we

implemented a discretization procedure that balances the

capacitive charging rates for adjacent compartments (see Meth-

ods). The granularity of the discretization process is set by the user

and determines the number of channels in a particular

compartment. After discretization the PSICS simulation engine

will by default compute the activity of the population of channels

Author Summary

The activity of neurons in the brain is mediated through
changes in the probability of random transitions between
open and closed states of ion channels. Since differences
in morphology define distinct types of neuron and may
underlie neurological disorders, it is important to under-
stand how morphology influences the functional conse-
quences of these random transitions. However, the
complexities of neuronal morphology, together with the
large number of ion channels expressed by a single
neuron, have made this issue difficult to explore system-
atically. We introduce and validate new computational
tools that enable efficient generation and simulation of
models containing ion channels distributed across com-
plex neuronal morphologies. Using these tools we
demonstrate that the impact of random ion channel
opening depends on neuronal morphology and ion
channel kinetics. We show that in a realistic model of a
neuron important for navigation and memory random
gating of ion channels substantially modifies responses to
synaptic input. Our results suggest a new and general
perspective, whereby output from a neuron is a probabi-
listic rather than a fixed function of synaptic input to its
dendrites. These results and new tools will contribute to
the understanding of how intrinsic properties of neurons
influence computations carried out within the brain.

Stochastic Ion Channels and Neuronal Morphology
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in an isopotential compartment, rather than the activity of each

individual ion channel. Modifying the granularity of the dis-

cretization process changes the number of channels per compart-

ment, but not the actual distribution or location of channels in the

model.

Since the presently available tools for visualization and

development of neuronal models are aimed primarily at

deterministic simulations, we developed a graphical tool (ICING)

to allow display and manipulation of neuronal models with

complex three-dimensional architectures and many discrete

membrane ion channels (Figure 1). ICING reads neuron mor-

phologies specified either in NeuroML or as .swc files generated by

the Neurolucida reconstruction program and used by the

NeuroMorpho.org database (http://neuromorpho.org/). This

enables components of a PSICS model to be visualized and

edited. For example, to: 1) specify the size of compartments to use

for the simulation, 2) select ion channels to be included in the

model neuron, 3) select sections of the model for insertion of a

particular ion channel class, 4) set rules that dictate the distribution

of ion channels in their designated sections. The model neuron

and its associated ion channels can be displayed in a variety of

formats, for example to emphasize labeled sub-regions of the

model (Figure 1A), to illustrate the compartmental boundaries in a

model (Figure 1B), or to provide a detailed 3-dimensional

exploration of the neuron morphology and ion channel distribu-

tion (Figure 1C–D).

Simulation of stochastic ion channels
We represent ion channels using Markov models, in which each

ion channel may be in one of a number of discrete states with the

probability of transition to any other state determined indepen-

dently of the channel’s previous history [24,30,31]. To efficiently

simulate stochastic transitions between states of a channel we

developed a modified version of the tau leap method (see Methods)

[32,33]. The algorithm we use is equivalent to sampling an exact

realization of the number of channels in a particular state at the

end of each time step. In principle this results in shorter simulation

times than algorithms that track the exact times of transitions

between states [34,35], or methods that permit a maximum of one

transition per ion channel during each step [11,23]. To further

reduce the simulation time the algorithm considers only channels

with a non-negligible probability of making a transition during a

particular step (see Methods). At any particular sample time point

and membrane potential, the tau leap algorithm should not

produce any systematic error in the mean or variance of the

current. However, the modified tau leap algorithm will not

explicitly represent transitions that take place between time-points.

We show below how this algorithm is particularly advantageous

for current-clamp simulations in which high frequency current

fluctuations are filtered by the neuronal membrane. We will also

address how the choice of simulation parameters determines the

accuracy and computation time.

To first evaluate the modified tau leap algorithm for stochastic

simulations we consider a simple three-state Na+ channel model

recorded with an ideal voltage-clamp (Figure 2 and Figure S2). At

a fixed membrane potential the simulated current through

deterministic Na+ channels is constant, whereas the equivalent

stochastic simulation reveals large fluctuations in the Na+ channel

current (Figure 2A). With sufficiently long periods of simulated

channel activity, the mean amplitude of the stochastic current

converges to the amplitude of the deterministic current (Figure 2B)

and the estimated variance of the stochastic current converges to

the value predicted from the number of channels and their single

channel current amplitude (Figure 2C). In deterministic simula-

tions positive voltage steps from a negative holding potential elicit

smoothly varying inward currents that activate rapidly, inactivate

and are followed by a resurgent component after repolarization to

the negative holding potential (Figure S2). In corresponding

stochastic simulations the current response contains step-like

fluctuations and differs from trial to trial, with the average

waveform over many trials converging on the equivalent

deterministic waveform (Figure 2D). To determine whether the

expected number of single channels and their single channel

conductance could be retrieved from the simulated macroscopic

Figure 1. Specification and visualization of ion channel location. In PSICS individual ion channels have unique locations that can be viewed
along with the compartmentalization chosen for a particular simulation using additional software called ICING. (A) Screen shot of ICING. (B) Detailed
view of the compartmentalization of part of the model neuron in (A). (C) Low magnification 3 dimensional detail of dendritic branches from (B). (D)
High magnification 3 dimensional detail of dendritic branches in (C) illustrating the location of individual ion channels.
doi:10.1371/journal.pcbi.1000886.g001

Stochastic Ion Channels and Neuronal Morphology
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currents, we carried out variance-mean analysis [36,37]. Both

parameters could be estimated from either the activating

(Figure 2E) or the inactivating phase of the current (Figure 2F).

Estimates of the number of single channels (Figure 2G) and their

single channel conductance (Figure 2H) converged over many

simulations onto their predicted values. These data demonstrate

that our modified tau leap algorithm accurately simulates

stochastic voltage-gated ion channel activity. This is further

illustrated by the convergence towards zero of the error for the

fit of the variance-mean function (Figure 2I). On the order of 104

simulations were required for the fits to reliably converge to within

1% of the actual values, highlighting the importance of obtaining

large numbers of repeated observations for estimating single

channel properties using variance-mean analysis. Estimates

obtained from 104 or fewer simulations varied around the actual

values depending on the number of simulations used (Figure 2G–

I), suggesting an additional use of PSICS to quickly simulate the

range of errors likely for estimates obtained from variance-mean

analysis of macroscopic currents generated by channels with

different gating schemes.

Propagation of current and voltage in compartmental
models containing stochastic ion channels

Before comparing simulations of neurons with different

morphologies, we first established the accuracy of simulation of

current and voltage propagation using standard compartmental

models for which there are analytical descriptions of the equivalent

Figure 2. Accurate stochastic ion channel simulation. (A) Examples of simulated stochastic (black traces) and deterministic (red traces) currents
in a membrane patch containing 50 stochastic Na+ channels with single channel conductance of 20 pS. The membrane potential is clamped at
220 mV. The expanded trace (right) shows the first 5 ms of the compressed trace (left). (B–C) Cumulative estimate of the mean (B) and variance (C) of
stochastic currents measured as in (A) are plotted as a function of time. Examples from 5 separate simulations of duration 100 s are shown. Values
between 100 and 1000 s are from concatenation of separate 100 s simulations. (D) Examples of 10 simulated current responses (black traces, lower
plot), of the membrane patch simulated in (A–C), to a step change in membrane potential from 280 mV to +30 mV (upper plot). The mean (red
trace) and variance (blue trace) are calculated from 1000 stochastic current responses. (E–F) Plot of membrane the membrane current variance as a
function of the mean membrane current for the rapid activation phase (E) and slower inactivation phase (F) of the 1000 simulated current responses
used to obtain the data for (D). The time window for the activation phase is 0–0.3 ms after the onset of the voltage step, whereas the time window
for the deactivation phase is 0.3–10 ms after the onset of the voltage step. The number of single channels (N) and the single channel current (I) are
estimated from the fit to the simulation data. The red parabola is the variance-mean relationship predicted from I and N of the model and the blue
parabola is the fit to the simulation data. (G–H) Estimates for the number of channels (G) and single channel current (H), obtained by variance mean
analysis of the inactivation phase of the current responses analyzed as in (D), plotted as a function of the number of simulated responses used for the
analysis. Each dot corresponds to a set of data used for analysis. The continuous lines show convergence of the estimates as additional simulations
are analyzed up to a maximum of 104 simulated responses. (I) The RMS error, calculated from the difference between the variance mean fit and the
expected variance mean relationship, is plotted as a function of the number of simulated responses. The solid lines indicate progressive convergence
up to a maximum of 104 simulated responses. For all examples the simulation time step was 10 mS.
doi:10.1371/journal.pcbi.1000886.g002
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cable structures [38]. We examined the membrane potential of a

simple cable containing stochastic leak Na+ and K+ channels

(Figure 3A). While fluctuations in the membrane potential are very

small when both leak channels have a very small single channel

conductance (0.01 pS), when either single channel conductance is

increased to physiological values (.1 pS), there is a substantial

increase in the membrane noise (Figure 3B). Although of physi-

ological relevance, this noise makes comparison with analytical

results problematic and therefore for validation of stochastic

simulations we used a single channel conductance of 0.01 pS.

Membrane potential responses to injection of a current step at one

end of the cable, simulated with PSICS using either stochastic or

deterministic ion channels, were effectively identical to the

analytical result (Figure 3C). Moreover, using a model of a

branching dendrite (Figure 3D), stochastic or deterministic ion

channel simulations with PSICS also accurately reproduce the

predicted voltage change in response to current injection

(Figure 3E). Thus, PSICS accurately simulates passive propagation

of signals in compartmental models of cable structures, and when

stochastic ion channels have very small single channel conduc-

tance the electrical behavior of a multi-compartment model is

similar to models containing deterministic ion channels.

We next assessed simulation of excitable neurons. In a model of

a cylinder containing active membrane conductances [38],

simulations with PSICS that used deterministic ion channel

models or stochastic implementations of channels with very small

single channel conductance, produced essentially identical results

to well established deterministic simulation software (Figure 3F).

By contrast, when we increased the single channel conductance to

more physiological values, we found that while the action potential

waveform was similar, the stochastic ion channel gating intro-

duced jitter into the timing of the action potentials, such that

reproducible timing of spike firing was not maintained between

trials (Figure 3F). We also compared simulation of an excitable

model of a CA1 pyramidal cell shown in Figure 1, with published

data obtained with the same model [39]. The initiation and back

propagation of action potentials were reproduced by simulation of

this model with PSICS using either deterministic or stochastic ion

channels (data not shown).

The consequences of stochastic gating depend on
channel kinetics

While open probability and single channel conductance

influence the amplitude of current fluctuations generated by

stochastic ion channel gating, little attention has been given to the

functional impact of channel kinetics or of interactions between

channel properties and the membrane capacitance. The simplified

models we used to evaluate PSICS also allowed us to begin to

investigate these issues. To avoid non-linearities from voltage-

dependent gating, we simulated single-compartment models that

contain only passive leak Na+ and K+ channels. Each channel has

one open and one closed state, with an open probability of 0.7,

and the relative density of the channels was adjusted to produce a

resting membrane potential of 260 mV. We compared a version

of the model in which the forward and reverse rate constants for

entering the open state were 0.07 ms21 and 0.03 ms21 (slow

gating) with a version in which the corresponding rate constants

were 7 ms21 and 3 ms21 (fast gating). The model containing the

slow gating channels produced membrane currents in voltage-

clamp, or membrane potentials in current-clamp, that fluctuated

Figure 3. Simulation of membrane polarization and spike propagation in cable structures containing stochastic ion channels. (A)
Simulated uniform cable with recording and current injection sites. (B) Example membrane potential traces (left) from simulations using leak Na+ and
K+ channels with the indicated single channel conductances. The membrane potential variance is plotted as a function of the single channel
conductance (right). (C) Voltage responses to injection of a current step at one end of the cable. Simulated stochastic (Stoch) and deterministic (Det)
responses are plotted along with the analytical solution (Ref). Insets show the voltage as the current responses approach their steady-state values. In
each case the traces overlap. As a result the Ref and Det traces are obscured by the Stoch trace. (D) Simulated branched cable structure with
recording and current injection sites. (E) Voltage responses to injection of a current step at the base of the tree. Insets show the voltage as the current
responses approach their steady-state values. Labels are as in (C). Ref and Det traces are obscured by the Stoch trace. (F) Action potentials generated
when Hodgkin-Huxley channels are inserted into the cable in A. The top panel compares results of deterministic simulations using NEURON or PSICS,
with stochastic PSICS simulations using a single channel conductance of 0.01 pS. The lower panel shows the output of several stochastic PSICS
simulations using a single channel conductance of 20 pS. Membrane potentials in (E) and (F) are labeled as in (C), except that the blue trace is data
from a simulation using NEURON.
doi:10.1371/journal.pcbi.1000886.g003
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at frequencies below approximately 15 Hz (Figure 4A). By

contrast, channels with faster gating kinetics produced current

fluctuations with similar total power, but smaller amplitude at low

frequencies (,,15 Hz) and larger amplitude at higher frequencies

(.,15 Hz) (Figure 4B). In current-clamp simulations, the

corresponding high-frequency membrane potential fluctuations

were filtered by the membrane capacitance. As a result, the

membrane potential fluctuations span a similar range of

frequencies to the slow gating model, but have substantially

smaller amplitude (Figure 4B). Thus, the functional impact of

stochastic channel gating is determined by gating kinetics in

conjunction with the membrane capacitance, as well as by open

probability and single channel conductance.

To examine how the choice of a suitable simulation time step is

constrained by these properties, we initially used the simple passive

models described above. For the model containing slow leak

channels, simulations with time-steps as large as 1 ms reproduced

the dominant components of the power spectra of current and

voltage fluctuations (Figure 4A). By contrast, for the model

containing fast gating channels, simulation time-steps of 0.01 ms

were required to satisfactorily simulate fluctuation of voltage-

clamped currents, whereas time steps of duration up to 0.1 ms

were sufficient to simulate membrane potential fluctuations in

current-clamp conditions (Figure 4B). Thus, selection of the

simulation time-step requires evaluation of the recording config-

uration, the power spectra of channel activity, the membrane time

constant and the kinetics of the simulated channels.

Efficient simulation of current and voltage propagation
Since simulation of complex neuronal morphologies can take

considerable time, even using optimized computational algo-

rithms, before simulating neuronal morphologies we first investi-

gated strategies to minimize the time required for simulations

without affecting accuracy of the results. We evaluated a stochastic

implementation of the Hodgkin-Huxley Na+ channel model in a

single compartment voltage-clamped at a fixed potential

(Figure 4C–D). With simulation time-steps in the range of 1–

1000 ms, currents simulated using PSICS had mean and variance

that correspond well to the predicted values (Figure 4C). However,

as the duration of the time-step is increased, the power spectra of

the simulated currents reveal aliasing-like effects and failure to

accurately simulate high frequency fluctuations (Figure 4D). Thus,

as we expect from the properties of the tau leap algorithm, longer

time steps will produce currents with the correct variance and

mean amplitude, but will not accurately simulate high frequency

components of current fluctuations.

To determine if improvements in simulation efficiency expected

from use of the modified tau leap algorithm and an optimized

computational core translate into practical reductions in simula-

tion time, we compared the time required for simulations using

PSICS to simulations run in the widely used NEURON simulation

environment [40]. Stochastic ion channel gating can be simulated

in NEURON using the next-transition algorithm which tracks the

exact times at which each channel changes state [34,35]. For

simulations of voltage-clamped currents using short time-steps and

relatively few ion channels, the simulation time with PSICS was

approximately three-fold faster than using NEURON (Figure 4E–

F). This difference increased to a more than 10 fold reduction in

simulation time when PSICS is used for simulations with larger

time steps and more ion channels. We next evaluated performance

using the spiking single cable model also used for the simulations in

Figure 3F. This model contains several types of ion channel

distributed across multiple compartments and has a rapidly

fluctuating membrane potential. The simulation time per unit

biological time was constant for simulations run with NEURON

and was independent of the compartment size. By contrast, the

times for simulations run with PSICS were faster at all time steps.

This difference was .100 fold with relatively large numbers of

channels per compartment and long time-steps (Figure 4G). For

simulation parameters likely to be appropriate for many detailed

neuronal models we estimate that PSICS obtains approximately

an order of magnitude or greater reduction in simulation time.

Together, these data establish that the new tools we have

developed enable accurate and efficient stochastic simulations of

neurons with complex morphologies, with performance that is

superior to other general-purpose software.

Morphology and kinetics interact to determine the
influence of stochastic gating on membrane potential

Does morphology influence the functional consequences of

stochastic ion channel gating? To address this possibility, we first

compared the membrane potential noise resulting from stochastic

ion channel gating in a hypothetical dendritic tree that obeys

Rall’s 2/3 power law, with membrane potential noise resulting

from stochastic ion channel gating in the corresponding equivalent

cable structure [41] (Figure 5). In both structures spontaneous

opening and closing of fast leak K+ and Na+ channels causes noisy

fluctuations in the membrane potential. These fluctuations

increase in amplitude by more than ten fold between the proximal

and the distal ends of the branched dendrite model (Figure 5D–

E)(p,,1e-9), but have relatively small amplitude throughout the

equivalent cylinder (Figure 5A–B)(p = 0.35). Similar differences in

amplitude and location-dependence were present for models that

instead contained the slow gating leak channels, but were

otherwise identical (Figure 5B, E).

Under what conditions do channel kinetics determine the impact of

stochastic ion channel gating? Whereas our earlier simulations

indicated an important role for channel kinetics (Figure 4A–B), in

our initial simulations of the hypothetical dendritic tree and equivalent

cable the kinetics of the leak current did not affect the amplitude of the

membrane potential fluctuations (p = 0.63)(Figure 5G). However, since

the branching tree and the equivalent cable have a membrane time

constant on the order of 0.1 ms, whereas many central neurons have

membrane time constants on the order of 10 ms, we re-evaluated these

models after increasing the membrane capacitance to bring the time

constant into this range (Figure 5C, F). In this case, the amplitude of the

membrane potential fluctuations was also dependent on location in the

branched dendrite (p,,1e-9)(Figure 5F), but not in the equivalent

cable (p = 0.474)(Figure 5C). Moreover, in contrast to the models with

the fast membrane time constant, for models with a more physiological

membrane time constant the kinetics of the leak current profoundly

influenced the amplitude of membrane potential fluctuations

(Figure 5F). In models containing the fast leak channels the amplitude

of membrane potential fluctuations was reduced (p,,1e-9), but in

models containing the slow leak channels their amplitude was similar

(p = 0.54)(cf. Figure 5G,H). Thus, the cellular effects of stochastic ion

channel gating depend on morphology, while the specific effects of

morphology depend on the kinetics of the ion channels found in the

membrane. Since the consequences of stochastic ion channel gating are

sensitive to their specific cellular context, establishing the impact of

stochastic gating in particular central neurons will require simulations

account for details of their morphology.

Functional effects of stochastic gating depend on
neuronal morphology

Do realistic neuronal morphologies influence the functional

impact of stochastic ion channel gating? While the simulations

Stochastic Ion Channels and Neuronal Morphology
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Figure 4. Relationships between channel kinetics, simulation configuration, accuracy and efficiency. (A–B) Examples of membrane
currents (top), membrane potential (middle) and corresponding power spectra from 100 s of simulated activity (bottom), for models containing
passive leak Na+ and K+ channels with slow (A) or fast (B) kinetics. The power spectra are shown for simulations with time steps of 10 ms (solid traces),
100 ms and 1000 ms (light traces). The voltage-clamp simulations are of a single isopotential compartment containing 201 Na+ and 1407 K+ leak
channels. The current-clamp simulations are for a cable of length 1000 mm and radius 1 mm, containing 8050 channels distributed across 237
compartments. (C) The error in the mean and variance of a simulated current, mediated by 50 Na+ channels clamped at 220 mV for 100 s of
simulated time, is plotted as a function of the simulation time step. (D) Power spectra for the currents in (C). Long time steps fail to simulate high
frequency current fluctuations and introduce aliasing effects at low frequencies. (E–F) The computation time per simulation time step, required by
NEURON (closed symbols) or PSICS (open symbols) for simulations as in (C–D), is plotted as a function of the duration of the simulation time step (E),
or as a function of the number of simulated channels when the time step is 20 ms (F). (G) The computation time per simulation time step, required by
NEURON or PSICS for simulations as in Figure 3F, is plotted as a function of the duration of the simulation time-step. Simulation times are for a cable
divided into either 101 compartments (triangles) or 1001 compartments (circles).
doi:10.1371/journal.pcbi.1000886.g004
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described above suggest this may be the case, they also suggest that

the consequences of stochastic gating depend on the specific details

of neuronal morphology and ion channel kinetics. To address this

question directly, we therefore reasoned that if neuronal

morphology is an important determinant of the impact of

stochastic ion channel gating, then simulations using identical

rules to introduce identical stochastic ion channels into neurons

with distinct dendritic morphologies, should predict differences

between neurons (Figure 6). We simulated resting membrane

potential activity in 29 reconstructed neurons downloaded from

neuroMorpho.org [42]. The neuronal models spanned 6 distinct

morphological classes: neocortical layer V pyramidal neurons

(n = 5), cerebellar Purkinje neurons (n = 5), dopaminergic substan-

tia nigra neurons (n = 4), parvalbumin-positive interneurons

(n = 5), hippocampal CA1 pyramidal neurons (n = 5) and hippo-

campal dentate gyrus granule cells (n = 5). Fluctuations in the

membrane potential were apparent in all neurons simulated using

stochastically gating ion channels (Figure 6A). However, the

amplitude of these fluctuations varied significantly both between

neurons of the same morphological class (p,0.01 for all classes),

between neurons of different morphological classes (p,,1e-9

(Figure 6B), and as a function of dendritic location within neurons

(p,,1e-9). For example, pyramidal neurons from the neocortex

demonstrate relatively small amplitude membrane potential

fluctuations (Figure 6). This is consistent with a previous modeling

study of stochastic ion channel activity in a single layer V

pyramidal neuron [43]. By contrast, membrane potential

fluctuations could be substantially larger in hippocampal dentate

gyrus granule cells (Figure 6). Thus, the impact of stochastic gating

of dendritic ion channels on neuronal electrical properties is

determined by neuronal morphology and can vary according to

dendritic location.

As the impact of stochastic gating in the abstract models

described above depended on channel kinetics (Figure 4A–B and

Figure 5), we asked if this is also the case in the models based on

reconstructed neurons. We focused on models of cortical layer V

pyramidal neurons and on models of granule cells from the

dentate gyrus of the hippocampus. When the fast gating leak

channels used for the simulations in Figure 6 were replaced with

an equivalent deterministic conductance, we found almost no

difference in the amplitude of membrane potential fluctuations

recorded from somatic or dendritic locations (DG neurons average

1.11 fold difference, p = 0.02; Layer V neurons, average 1.14 fold

difference, p = 1.5e-6) (Figure 7). Thus, in the configuration used

for simulations in Figure 6, the membrane potential fluctuations

are primarily driven by stochastic gating of voltage-gated ion

channels, but not by the leak channels. By contrast, when we

replaced the fast gating leak channels with otherwise identical slow

gating leak channels, the membrane potential fluctuations were

approximately three-fold larger than fluctuations recorded from

models containing deterministic or fast-gating stochastic leak

channels (DG neurons average 3.13 fold difference, p,,1e-9;

Layer V neurons, average 3.08 fold difference, p,,1e-9)

(Figure 7). Thus, slow gating leak channels can increase the

amplitude of spontaneous membrane potential fluctuations. This

suggests a novel mechanism for modulation of neuronal activity,

whereby modulation of channel gating, without affecting open

probability or single channel conductance, could profoundly

influence fluctuations in a neuron’s somatic or dendritic

membrane potential.

Stochastic gating of dendritic and axonal ion channels
modifies synaptically driven spike output from a detailed
model CA1 pyramidal neuron

The previous simulations establish that in principle stochastic

gating of intrinsic ion channels might be important for neuronal

function, but the impact of stochastic ion channel gating on

neuronal responses to physiological patterns of synaptic input is

not known. We therefore asked if stochastic gating of post-synaptic

ion channels in dendritic neurons influence the transformation of

synaptic input into spike output obtained with realistic neuronal

morphologies and ion channel properties? In the models described

so far, ion channel distributions were chosen to facilitate

comparisons between morphologies. To address more realistic

ion channel distributions we adopt a model of a CA1 pyramidal

neuron that has previously been shown to account well for somatic

and dendritically initiated action potentials [44] (Figure 8A). To

further increase the approximation of the model to a real CA1

pyramidal neuron we introduced HCN channels with distribution

following previous experimental descriptions [45–47]. We then

examined responses of the model to ongoing activation of 1502

synaptic inputs distributed throughout the basal and apical

dendrites, each activated independently according to a Poisson

process with an average frequency of 5.5 Hz. We focus here on

Figure 5. Dendrite morphology determines the influence of
stochastic channel opening on membrane potential. (A–F)
Recordings of resting membrane potential at proximal (grey traces)
and distal (black traces) locations on a multi-compartmental model of a
cylinder of length 320 mm and diameter 16 mm (A–C) or a hypothetical
branched dendrite (D–F). The cylinder in (A–C) is electrically ‘equivalent’
to the dendrite in (D–F), which has a branching organization that
follows Rall’s 3/2 power law. The distal recordings are from location ‘10’
and the proximal recordings are from location ‘0’. In each panel the
membrane potential when the leak channels have fast kinetics (upper
traces) is compared to the membrane potential when the leak channels
have slower kinetics (lower traces). Membrane potential when the
models have a membrane time constant on the order of 0.1 ms (B,E) is
compared to models with a membrane time constant on the order of
10 ms (C,F). The scale bars apply to all traces. (G–H) The standard
deviation of the resting membrane potential of the models in (A–F) is
plotted as a function of recording location. Each point is the average of
data from 5 simulations of 1s of neuronal activity. The same data were
used for statistical analysis (ANOVA). Black and grey symbols
correspond to distal and proximal recording locations as in (A–F) above.
doi:10.1371/journal.pcbi.1000886.g005
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results of simulations in which the neuron was driven by synaptic

input to fire at frequencies of approximately 20 Hz, which is

towards the upper end of firing frequency of active CA1 neuron in

vivo [48]. Similar results are obtained for synaptic input that drives

firing at lower frequencies and when synaptic input is distributed

so that spikes are triggered primarily by depolarization of the distal

apical dendrites (not shown). We consider here only asynchronous

and distributed synaptic input, which is likely to correspond to

activity during the theta state in awake animals [49]. As in

experimental studies [49,50], forward propagating apical dendritic

spikes were only evoked in the model using highly coincident and

spatially localized stimuli, but were not observed in response to the

patterns of input that we investigate here.

Compared to the deterministic model, the stochastic version

generated ‘‘extra’’ spikes at times when the equivalent deter-

ministic neuron was silent and ‘‘dropped’’ spikes at times when

the equivalent deterministic neuron fired action potentials

(Figure 8B). Importantly, the ‘‘extra’’ spikes observed during

simulation of the stochastic model occurred at similar time-

points from trial to trial (Figure 8C and Figure S3). Thus,

stochastic channels allow probabilistic detection of features in the

stimulus waveform that would not produce responses in a

deterministic neuron. Likewise, not all spikes observed in the

deterministic simulation were ‘‘dropped’’ in the stochastic

simulation, but rather ‘‘dropped’’ spikes were more likely at

particular time points (Figure 8C and Figure S3). Comparison of

spike times from repeated trials demonstrated that stochastic ion

channel gating also introduced considerable jitter into the timing

of action potentials. Therefore, whereas deterministic neurons

encode information using a fixed response to particular patterns

of synaptic input, these results suggest that stochastic gating of

intrinsic ion channels enables pyramidal neurons to generate

probabilistic responses. Thus, while for both stochastic and

deterministic neurons certain combinations of synaptic input

evoke spikes with high reliability and other combinations fail to

elicit spikes, in stochastic neurons some patterns of synaptic input

have an intermediate probability of evoking spikes, which is

Figure 6. Consequences of stochastic ion channel gating differ between morphologically distinct neuronal cell types. (A) Examples of
membrane potential (right) and corresponding morphology (left) from a simulated dentate gyrus granule cell (top), dopaminergic nigral cell (middle)
and cortical layer V pyramidal cell (bottom). All models contained identical ion channel distributions. (B) Average membrane potential standard
deviation for model neurons of each morphological type plotted as a function of increasing distance along the dendrite from the soma. The
membrane potential standard deviation at a particular location corresponds to the right most end of the bar indicated by the corresponding color.
The standard deviation increases with distance from the soma.
doi:10.1371/journal.pcbi.1000886.g006

Figure 7. Channel kinetics determine the functional impact of
stochastic gating. (A–B) Simulated membrane potential of a model
layer V pyramidal neuron (A) and a dentate gyrus granule cell (B)
containing either a deterministic leak conductance, fast gating
stochastic leak channels or slow gating stochastic leak channels. (C–
D) Mean variance of membrane potential fluctuations, recorded from
simulated layer V pyramidal neurons (C) and simulated dentate gyrus
granule cells (D), plotted as a function of distance from the cell body.
doi:10.1371/journal.pcbi.1000886.g007
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observed as trial-to-trial variability (Figure 8C). While this

intermediate probability might not be decoded in a single trial

from a single neuron, if each trial is instead considered as the

response of a different neuron within a large population, then the

probabilistic responses could quite easily be decoded from the

population activity (Figure 8C).

To evaluate the mechanism for probabilistic initiation of action

potentials, we recorded membrane potential from the soma and

from proximal parts of each primary dendrite. While some somatic

action potentials were preceded by dendritic depolarizations that

resemble fully propagating dendritic spikes (Figure 8D), most were

preceded by smaller amplitude dendritic depolarizations

(Figure 8E–G). The all-or-nothing nature of these smaller events

suggests that they reflect dendritic action potentials that propagate

passively to the soma (Figure 8E–G and Figure S3). This is

consistent with experimental recordings from basal dendrites of

cortical pyramidal neurons [51]. In the stochastic model ‘‘extra’’

somatic spikes could result from additional actively propagating

dendritic spikes (Figure 8D) or additional smaller all-or-nothing

dendritic depolarizations of sufficient amplitude to elicit somatic

action potentials (Figure 8G), while ‘‘dropped’’ somatic spikes

resulted from failures to initiate all-or-nothing dendritic depolar-

izations (Figure 8E–F). These observations point to the importance

of local dendritic signaling for the functional consequences of

stochastic ion channel gating in pyramidal neurons and suggest

that synaptic initiation and active propagation of dendritic spikes

may be particularly sensitive to stochastic membrane potential

fluctuations.

To evaluate the relative roles of stochastic axonal compared

with stochastic dendritic ion channels we implemented versions of

the model in which one population of ion channels was

deterministic and the other stochastic. Both axonal and dendritic

stochastic channels caused ‘‘dropped’’ and ‘‘extra’’ dendritic spikes

(Figure 9A–B, D). When only axonal channels were stochastic, the

Figure 8. Stochastic ion channels modify synaptically driven spike output from a CA1 pyramidal neuron. (A) Morphology of the
simulated CA1 pyrmidal neurons (described in [44]), illustrating positions of recording electrodes placed on the soma (grey), apical (blue) and basal
(red) dendrites. (B) Examples of membrane potential responses of the deterministic (red trace) and stochastic (black traces) versions of the model to
distributed synaptic input. The summed synaptic current is shown in yellow. Letters and grey bars indicate times of action potentials highlighted in
subsequent panels. (C) Spike rasters (top) for responses of the determinisitc model (red) and for 50 consecutive trials of the stochastic model (black)
to the synaptic input pattern used in (B). Plotted below is the probability of somatic spike firing in 10 ms duration bins for the deterministic (red) and
stochastic (black) versions of the model. (D–G) Examples of determinisitc responses (top row) and representative stochastic respones (lower two
rows), illustrating ‘‘extra’’ somatic action potentials triggered by an ‘‘extra’’ actively propagating dendritic spike (D), ‘‘dropped’’ somatic action
potentials resulting from failed dendritic depolarization (E–F), and an ‘‘extra’’ somatic action potental resulting from additional dendritic depolarizing
potentials.
doi:10.1371/journal.pcbi.1000886.g008
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Figure 9. Differential impact of distinct ion channel types and locations. (A–B) Rasters for first 20 trials of responses of the CA1 pyramidal
neuron simulated as in Figure 8, but with stochastic axonal and deterministic dendritic ion channels (A) or stochastic denritic and deterministic axonal
ion channels (B). (C) as for (A–B), but only channels mediating Ih are stochastic. Shown are rasters (left), examples of membrane potential responses of
the fully deterministic model (red) and first six sweeps recorded from the stochastic model (black), and examples of membrane potential waveforms
corresponding to an ‘‘extra’’ action potential triggered by an additional dendritic depolarization. (D) Number of ‘‘dropped’’ and ‘‘extra’’ axonal spikes
(top) and dendritic spikes (bottom) during 1s of simulated time for each experimental condition tested. Because of their all or nothing nature, large
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number of ‘‘dropped’’ and ‘‘extra’’ somatic spikes (p,1e-6 in both

cases) and dendritic spikes model (p,1e-6 in both cases) were less

than in the fully stochastic model (Figure 9A). In contrast, when

only the dendritic channels gated stochastically, we found that the

number of ‘‘dropped’’ and ‘‘extra’’ somatic spikes was not

significantly different compared to the fully stochastic model

(p = 0.99 and p = 0.85 respectively), while the number of ‘‘extra’’

(p,1e-6), but not the number of ‘‘dropped’’ (p = 0.81) dendritic

spikes differed from the fully stochastic model (Figure 9B). The

number of ‘‘dropped’’ and ‘‘extra’’ spikes was much smaller in the

stochastic axon model, compared with the stochastic dendrite

model (p,1e-6 in all cases). Stochastic gating of axonal channels

also caused very little additional jitter in the timing of action

potentials, whereas stochastically gating dendritic ion channels

could account for almost all of the spike jitter (Figure 9E). These

data suggest that while stochastic gating of axonal channels can

modify spike patterns, stochastic dendritic channels account for

most of the impact of stochastic gating on synaptically driven

spike output. This is consistent with the substantial effects of

stochastic gating on initiation of dendritic spikes (Figure 8D–G and

Figure S3).

Since the model CA1 pyramidal neuron contains several types

of ion channel that differ in their kinetics, voltage-dependence

and single channel conductance [44], we asked if any particular

channel type mediates the consequences of stochastic gating? We

compared versions of the model in which only one type of ion

channel was simulated stochastically and the others were

simulated deterministically. These simulations demonstrated that

stochastic gating of any single type of ion channel is insufficient to

fully account for all of the ‘‘dropped’’ or ‘‘extra’’ spikes observed

in the fully stochastic model (Figure 9D–E). The greatest impact

on spike output came from stochastically gating voltage-

dependent Na+ channels, followed by A-type and delayed rectifier

potassium channels (Figure 9D–E and Figure S4). Thus, the

number of ‘‘dropped’’ somatic and dendritic spikes did not differ

between the model in which only Na+ channels gated

stochastically compared with the fully stochastic model (p = 0.98

and 0.3), whereas there were fewer ‘‘extra’’ somatic and dendritic

spikes (p,1e-4 in both cases). Models in which only one of the

other ion channel types gated stochastically differed significantly

from the fully stochastic model in all measures of ‘‘extra’’ and

‘‘dropped’’ spikes (p,1e-3). Nevertheless, models containing

stochastic gating voltage-dependent K+ channels generated

considerably more than 50% of the number of ‘‘extra’’ and

‘‘dropped’’ spikes observed in the fully stochastic model.

Interestingly, stochastic gating of Ih channels alone had very

little impact on axonal spikes or spike jitter, but nevertheless

increased the number of ‘‘extra’’ dendritic spikes. The relative

lack of effect of Ih can be explained by the small single channel

conductance, while the primary effect on additional dendritic

spikes may reflect slow gating kinetics and dendritic localization

of these channels (Figure 9C). Together, these data suggest that in

a well-validated, realistic model of a CA1 pyramidal neuron

experiencing distributed synaptic input sufficient to drive action

potentials at physiologically relevant rates, stochastic gating of

dendritic ion channels substantially modifies spike output. While

no single ion channel is sufficient to fully account for modified

spike output, stochastic gating of dendritic voltage-gated Na+ and

K+ channels may be particularly important.

Discussion

To address the functional consequences of stochastic gating of

neuronal ion channels we developed and validated new, efficient

and general-purpose tools for numerical simulation of cells with

complex morphologies. Using these tools we have made several

new findings. First, we show that the functional impact of

stochastic ion channel gating depends on neuronal morphology

and as a result differs between neuronal cell types. Second, we

show that depending on a neuron’s morphology, ion channel

kinetics influence the functional consequences of stochastic ion

channel gating. These results suggest that detailed and well-

constrained simulations will be important for accurate prediction

of the specific functional consequences of stochastic gating in

particular cell types. Third, we show that in a realistic model CA1

neuron, stochastic gating of non-synaptic ion channels modifies the

timing of synaptically driven somatic and dendritic action

potentials, and causes substantial numbers of ‘‘extra’’ and

‘‘dropped’’ somatic and dendritic spikes compared to equivalent

deterministic neurons. These results suggests a new perspective on

dendritic integration of synaptic inputs, whereby stochastic gating

of intrinsic ion channels enables populations of neurons to

compute using probabilistic rather than fixed spike codes.

Functional consequences of stochastic ion channel
gating depend on neuronal morphology and channel
properties

Gating of single ion channels is one of the better-understood

stochastic processes in biology [24,30,52]. Nevertheless, the

functional consequences of discrete transitions between open and

closed states of ion channels found in the membranes of

morphologically complex neurons are not well understood and

for technical reasons have received relatively little attention. The

reductions in computation time obtained with PSICS enable this

issue to be addressed systematically for the first time using detailed

simulations of large numbers of reconstructed neurons (Figures 4–

9). Modification by stochastic ion channel gating of the pattern

and timing of spikes generated in response to synaptic input to a

previously well validated model CA1 pyramidal neuron (Figures 8

and 9), suggests that stochastic ion channel gating substantially

influences synaptic integration by dendritic neurons. However, our

simulations also suggest reasons for caution in extrapolating

between cell types as the consequences of stochastic gating

depended on neuronal morphology (Figures 5 and 6). Thus, the

impact of stochastic opening and closing of ion channels varies as a

function of sub-cellular location within a neuron and may differ

both between neuronal cell types and across neurons of the same

cell type. Moreover, our finding that ion channels with identical

open probability, but distinct gating kinetics produce different

membrane potential fluctuations (Figure 7), while suggesting a

previously unexplored mechanism for control of neuronal activity,

also indicates that single-channel recordings of ion channels in

dendrites and axons (e.g. [53–55]) will be important to constrain

stochastic models of excitable neurons. Given debates over the

accuracy of aspects of reconstructed neuronal morphologies

[56,57], our comparison of neuronal cell types should be

considered as a proof of principle rather than a definitive

description of a particular neurons activity. Since experimental

tests that replace a neurons stochastic with equivalent determin-

dendritic depolariations are classified as spikes. ANOVA indicated a significant (p,,1e-9) effect of model configuration on ‘‘dropped’’ and ‘‘extra’’
axonal and dendritic spikes. Key post-hoc comparisons are referred to in the main text. (E) Jitter in the timing of axonal (top) and dendritic (bottom)
action potentials for each experimental condition.
doi:10.1371/journal.pcbi.1000886.g009
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istically gating dendritic ion channels are not currently possible,

accumulation of accurate morphological and biophysical data will

be particularly important for further investigator of the roles of

stochastic gating in particular cell types.

Irrespective of the details of any particular model, our results

suggest that neuronal morphology and ion channel properties

interact to determine the functional consequences of ion channel

gating. Comparison of model neurons with different morphology,

but containing identical ion channels, indicates that dendritic

morphology plays a key role in determining the functional

consequences of stochastic ion channel gating (Figures 6–7).

Diversity between neurons in vivo in their expression of particular

ion channels [58], could accentuate or attenuate distinctions

between neurons predicted on the basis of their morphology.

Simulations of the detailed CA1 pyramidal neuron model in which

only one ion channel type was implemented stochastically suggest

several further insights into the roles of particular types of ion

channel. First, stochastic gating of any single ion channel type was

insufficient to fully account for probabilistic behavior of the fully

stochastic neuron. Second, quantitative differences between the

probabilistic behavior of the fully deterministic and stochastic

neurons were considerably less than the sum of the differences

between the fully deterministic neuron and each version of the

model in which only one ion channel type gated stochastically.

This suggests considerable redundancy in the functional conse-

quences of gating by any particular type of ion channel. Third,

stochastic gating of only a single ion channel type, for example

voltage-gated Na+ channels in Figure 9, can nevertheless

substantially modify spike output. The latter two conclusions

suggest that the results of our simulations will be robust to different

assumptions about single channel properties of particular ion

channels and at worst may under-estimate the influence of

stochastic ion channel gating (see Methods). Fourth, the impact of

stochastic gating differs between ion channels types. For example,

compare the model CA1 pyramidal neuron in which only Ih

channels gate stochastically, with equivalent models in which other

ion channels gate stochastically (Figure 9). The relatively small

impact of Ih is perhaps not surprising given the relatively small

underlying single channel conductance, which is estimated to be

on the order of 1 pS [13]. Given that Ih is a major contribution to

the resting dendritic membrane conductance of pyramidal

neurons [13,46], it might at first appear surprising that stochastic

gating of other ion channel types can have such large effects.

However, we have previously shown that as HCN channels are

deactivated by depolarization, at potentials closer to spike

threshold their impact is minimal compared to stochastic gating

of other types of voltage-dependent ion channel [11,59]. The

substantial influence on synaptically driven spike output of

stochastic gating of voltage-gated Na+ and K+ channels is

consistent with this explanation (Figure 9).

Simulation of stochastic ion channels in cells with
complex morphology

Since it is rarely possible to reduce electrical activity within

morphologically complex excitable neurons to tractable analytical

models, mechanistic simulation of axons and dendrites relies on

well-constrained compartmental models. Compartmental simula-

tions necessarily involve trade-offs between accuracy and simula-

tion time. This is a particularly important problem for simulations

that aim to account for the stochastic transitions between the states

of each individual ion channel in a realistic model neuron. To

enable efficient and accurate simulation, we adopted an algorithm

that generates a correct distribution of ion channel states at each

simulation time point, while sacrificing explicit representation of

ion channel states during the interval between time points.

Relatively short time steps are required for accurate simulation of

voltage-clamped conductances with rapid kinetics (Figure 4). In

contrast, during simulation of membrane voltage recorded in the

current-clamp configuration, high frequency current fluctuations

are filtered by the membrane capacitance and therefore have little

impact on neuronal activity. Therefore, high frequency compo-

nent of the conductance fluctuations do not have to be explicitly

simulated (Figure 4A–B) and so simulations using the modified tau

leap algorithm can take advantage of longer time steps.

Our new approach has several advantages over previous

methods for simulation of stochastic ion channel gating. While

approaches that add noise terms to the equations used to calculate

the membrane currents are computationally efficient [14,60], the

noise term is at best only indirectly related to the biophysical

properties of the simulated channels. Thus, these methods may be

of use for efficiently simulating some of the phenomenological

consequences of stochastic channel gating, but are of less utility for

addressing the relationship between properties of single ion

channels and macroscopic neuronal activity [22]. One approach

to account for single channel properties is to explicitly track the

probability that each channel makes a transition between states

during each time step [11,23]. However, this method is accurate

only if sufficiently small time steps are used [22] and is

computationally very expensive. An alternative method is to

explicitly track the exact time of transitions of channels between

states, while counting only the number of channels in each

particular state [34,35]. This demands less computation time than

explicitly tracking each channel, but nevertheless requires

generation of random numbers between time steps and therefore

becomes inefficient for longer time steps or large numbers of

channels. In contrast, PSICS uses a simulation algorithm that

accurately simulates the distribution of ion channel states at each

time step without having to track the exact time of each transition,

while also counting only the number of ion channels in each state

without having to track the states of individual channels. We show

that this can lead to an order of magnitude or greater

improvement in simulation time without loss of accuracy

(Figure 4). For all approaches, including those introduced here,

parallel computing produces a further linear reduction in

computation time with additional processors simply by enabling

the multiple simulations required for statistical evaluation of

models to be carried out simultaneously.

Probabilistic neurons and further functional
consequences of stochastic ion channel gating

By implementing a previously well-validated model of a CA1

pyramidal neuron using stochastically gating ion channels, our

simulation results provide evidence that synaptic integration by

dendritic neurons is probabilistic. While the instantaneous output

of a single neuron functioning in this way is relatively unreliable,

instantaneous representations distributed across a population of

stochastic neurons could be read out by summation of their

outputs. The impact of such probabilistic integration on

information processing and computation by populations of

pyramidal neurons remains to be determined. For CA1 pyramidal

neurons in the hippocampus, one possibility is that this

probabilistic integration is important for encoding of location by

the timing of action potentials relative to ongoing network rhythms

[61]. Indeed, our results are consistent with relatively unreliable

encoding of location by the timing of individual action potentials,

but suggest that coding mechanism might be considerably more

reliable when the activity of large ensembles of neurons is

considered.
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Challenges for future experimental and theoretical studies

include determining the conditions, additional cell types and

sub-cellular locations in which stochastic gating of ion channels

affects spike output, and to establish the consequences for

computations carried out by neural circuits. At some sub-cellular

locations noise introduced by stochastic gating of single ion

channels might impose physical constraints on the computational

properties of neurons [12] and may limit the efficiency of neural

coding [62]. Alternatively, neuronal noise sources may promote

detection of signals [63–66], enable multiplication of synaptic

responses [67], or control the pattern of action potential firing

[11]. The tools we introduce here will enable these and other

possibilities to be addressed systematically. In addition to exploring

physiological mechanisms, systematic simulations may be impor-

tant for understanding the functional consequences of changes in

morphology or ion channel localization that accompany nervous

system disorders. For example, changes in dendritic morphology

are reported in several forms of mental retardation [68], but the

functional implications of interactions between stochastic gating of

dendritic ion channels and disease or behaviorally related changes

in dendrite morphology are yet to be addressed.

Methods

All calculations were performed with PSICS (www.psics.org)

unless indicated otherwise. Both the PSICS shell and ICING are

written in Java and can run on Windows, OS X and Linux

operating systems. To minimize the time required to run

simulations, the default version of the PSICS core is written in

Fortran and has been compiled separately for each operating

system. A slower version of the core that runs in Java is also

available. The core of PSICS performs equivalent deterministic or

stochastic simulations of all models. In PSICS ion channels are

treated as distinct entities rather than as a conductance density,

and channel gating can be simulated either stochastically or in the

deterministic limit. Most of the methods involved in such

calculations are well documented elsewhere [9,69]. Here we

present the two novel aspects of the method: the way ion channels

are positioned and mapped onto a discretization of the structure;

and the approximations used to generate realizations of the

stochastic behaviour of the system much more rapidly than is

possible with previous stochastic methods. Further details of

PSICS development are given in the Supplemental Text.

Ion channel positioning
Channel positions are allocated according to user-specified

probability densities over the structure such that each channel has

a position in three dimensions. The input morphology is sub-

sampled at 1 mm for computing local number densities. Axial

positions for channels are generated either by sampling a Poisson

distribution for the distance to the next channel, or by taking uniform

increments to give the desired average density. The angles at which

channels occur around a section are allocated randomly from a

uniform distribution. At present, these angles only affect the

visualization since the structure is later discretized into elements

with end faces perpendicular to the axis. The seeds used for the

random number generator are stored with the model so that exact

allocations can be reproduced. So that allocations are portable across

platforms, the generator used is a Mersenne Twister [70], which is

included as part of PSICS rather than relying on a system library.

For computing the propagation of membrane potential changes,

the structure is compartmentalized into elements such that all

elements have approximately the same value of:
Ðxb

xa

rpdx

where xa and xb are the positions of the end points of the

compartment along the structure, r is the local radius and

p~{0:5 was used throughout this study. This is a purely

geometrical property that provides a discretization that balances

conductance between compartments against charging rates for

membrane capacitance and is independent of the membrane time

constant. PSICS allows post-hoc adjustment of the discretization

in view of the conductances arising from allocated channels, but

the facility was not used for the present study. In general, the

resulting elements are neither straight nor of uniform radius so

conductances between compartments are also computed as

integrals along the structure.

Realization of stochastic ion channel behavior
Ion channels are represented by kinetic schemes. Each scheme

has one or more complexes, and each complex is an inter-

connected set of states with expressions for the transition rates

between them. Models using the Hodgkin-Huxley gating particle

description are mapped to the corresponding scheme where each

gate corresponds to a two-state complex [24]. For deterministic

calculations, multi-complex schemes are used directly. For

stochastic calculations, multi-complex schemes are mapped to

the equivalent single-complex scheme by ‘‘multiplying-out’’

[24,71]. For a scheme with n states, the probabilities of the

channel being in each of the n states can be expressed by a

probability density vector p of length n, where pi is the probability

of being in state i. A channel in state i can only transition into one

of the states directly connected to that state. If the classical

transition rate between state i and state j is ri,j then when N
channels are in state i, the number of transitions per unit time

between from state i to state j would be Nri,j for large N (ri,j~0 if

there is no direct connection from states i to state j). In this case,

the single channel probabilities obey a similar relation giving the

rate of change of pi as the difference between the total fluxes into

and out of that state:

dpi

dt
~
X

j

rj,ipj{
X

j

ri,jpi

By gathering up the terms, this can be written in matrix form as a

master equation [72]:

dp

dt
~Mp

where,

Mi,j~ri,j for i=j

and

Mi,i~{
X

j

ri,j

In general, M will depend on the membrane potential V , and

could incorporate other dependencies such as calcium or other

second messengers. Note that, as with the transition rates

themselves, M only has non-zero elements along the diagonal

and where direct transitions are possible in the channel scheme.

Using M directly to update state occupancy probabilities and

sample the resulting distribution to generate a stochastic
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simulation of the channel corresponds to the explicit method (e.g.

[11]). If it is not necessary to follow every transition, then the

simulation can be made more efficient by integrating the master

equation over a time interval dt yielding:

ptzLt~exp Mdtð Þpt

As this integral is exact for constant M, the state occupancy

probabilities can be computed for any future time. In practice M is

often voltage dependent, so dt should be kept small enough that

there are no significant changes in M over a single time step.

In calculations, significant efficiency improvements over explicit

methods can be achieved by using the fixed step transition matrix,

T~exp Mdtð Þ, which allows channel to move through many

briefly occupied states in a single calculation step without having to

follow the dynamics of each transition. Unlike M, T is typically

non-zero everywhere, since there is a non-zero probability of the

channel making the multiple transitions necessary to get from one

state to any other state within the time step. For a deterministic

calculation, the state occupancy probability vector p is replaced by

an occupancy density vector, u, while the rest of the derivation

remains the same, so the update step for u is:

utzdt~Tut

For a stochastic calculation, the element Ti,j is the probability that

a channel currently in state j will be in state i at the end of the

time-step. The update step for a single channel involves generating

a uniform random number, r, between 0 and 1 and then

comparing it to the elements of the i’th column of T , where i is the

current state of the channel. The selected state, j, is such that:

Xj{1

k~1

Ti,kƒrv
Xj

k~1

Ti,k

That is, the elements Ti,j act as the widths of bins and the random

number is used to pick one of the destination bins according to

their relative sizes.

For small populations, the update step is applied to each

channel individually. For larger populations, significant computa-

tion time can be saved by updating only the channels that have a

non-negligible probability of changing state during the step and

rescaling the bins accordingly. Thus, if the total number of

channels in a given state is n and the probability of any channel

leaving the state in the next time step is p then the number of

channels k leaving the state in one step has a binomial distribution:

P k~mð Þ~ m! n{mð Þ!
n!

pm(1{p)(n{m)

and the probability that m or more channels will leave is:

P k§mð Þ~
Xi~n

i~m

i! n{ið Þ!
n!

pi(1{p)(n{i)

For a statistically reliable result, we require a bound on the number

of missed events, here set at 2 in 108. This requires m such

that:

P k§mð Þv2 � 10{8

In general, however, finding the smallest m that meets this

condition is a computationally costly process and, since it needs to

be done for each state of each channel population at each time

step, these costs could wipe out any benefits of not advancing the

channels individually. To avoid this problem, the following fitting

formulae are used to produce a safe estimate of m in terms of the

probability p of leaving the current state, and the number of

channels, n, in that state:

m~npz5
ffiffiffiffiffi
np
p

for nw2000 and pv0:2

m~4z8
ffiffiffiffiffi
np
p

for pv0:003

m~6z5log10nznp0:5z0:12log10nz4log10p for pv0:15

The first applicable formula is used. If none of the conditions is

met, all the channels are advanced individually. These formulae

were arrived at by a combination of experimentation and

numerical optimization to find expressions that approximate the

form of the exactly computed values of m as a function of n and p
over a logarithmically sampled grid. They ensure that the chance

of more channels making a transition out of the current state than

are considered at one step is less than 2 in 108.

For ion channels the modified tau leap method removes the

major cost of the next transition method [34,35], which lies in re-

computing next transition times whenever the membrane potential

changes significantly, even when no transition has occurred. In the

tau-leap method, a different membrane potential simply requires

the use of different transition probabilities for the next step. Since

all the required tables can be pre-computed, then if the steps are

small enough that no significant potential change occurs within a

step (a condition that is easily met), the membrane potential

change only adds very slightly to the computational cost. The

other efficiency saving of a tau-leap style algorithm over channel-

by channel calculation comes from treating a group of molecules

(channels) as a single stochastic unit. On a neuron the unit size is

determined by the electrical compartmentalization of the mem-

brane. Therefore, depending on the geometry and channel

distribution, clusters of up to 5000 channels may be possible.

The channel update step yields conductances (assumed Ohmic)

and reversal potentials for membrane currents on each compart-

ment, which are used in the Crank-Nicolson or implicit Euler

methods to compute new membrane potentials. The process is

then repeated for the next step. The allocation of channels,

discretization of the structure and tabulation of transition matrices

is performed in a pre-processing stage written in Java. The core

calculations are written in Fortran.

Simulation of reconstructed neurons
For simulations illustrated in Figures 6–8 neuronal morpholo-

gies were downloaded from the Neuromorpho database (www.

neuromorpho.org). Neurons were identified in the database as

follows. Layer V pyramidal cells: p18 and p22 from Dendritica;

g0692P1, g0699P1 and gR002P1 from Svoboda lab. Dentate

gyrus granule cells: n271, n272 and n518 from Turner lab;

428883, B106885 from Claibourne lab. Purkinje cells: alxP,

e4cb3a1 and e1cb4a1 from Martone lab; p19 and p20 from

Dendritica. CA1 pyramidal cells: n409 from Turner lab; NM1

from Ascoli lab; ri04 and ri06 from Spruston lab; pc4c from

Gulyas lab. Substantia nigra dopaminergic neurons: Nigra2a955,
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Nigra11h941-1, Nigra24a953, Nigra12h945 from Dendritica.

Parvalbumin interneurons: pv08e, pv22b, pv22e, pv22j and

pv22m from Gulyas lab. In these simulations the densities of

voltage-gated channels were based on previously published studies

[6]. The leak conductance was modeled as voltage-independent

Na+ and K+ channels with open probabilities of 0.7. The following

channels were included: fast Na+ channels (1/mm2); non-

inactivating K+ channels (0.05/mm2); high-voltage Ca2+ channels

(0.15/mm2); Na+ and K+ leak channels (0.016/mm2). The resting

membrane potential was set by modifying the ratio of Na+ to K+

leak channels. In all simulations reported here this was 260 mV.

We chose single-channel conductances of 20 pS for all ion

channels, as this is similar to values reported for single channel

recordings made from neuronal dendrites [54,55]. This value is

intermediate for cloned mammalian ion channels, which can have

single channel conductances from ,1 pS up to .150 pS [30].

Membrane capacitance was set to 0.75 mF/cm2 and axial

resistivity to 150 V cm [6]. For models of neurons that are known

to have dendritic spines (all models except the parvalbumin-

expressing interneurons), the dendritic membrane capacitance and

the number of dendritic ion channels were doubled. For each

model neuron, membrane potential was recorded at the soma and

at all dendritic locations 100 mm, 200 mm, 300 mm, etc., from the

soma. All reported results were obtained from at least 3 s of

simulated biological time. The simulation time step was 10 ms.

The simulations of a detailed model of CA1 pyramidal neuron

(Figures 8 and 9) used previously published ion channels,

morphology and channel distributions [44]. In this model

voltage-dependent ion channels are distributed in the soma, axon

and dendrites according to previous experimental measurements.

The only modification to the model was the addition of Ih

conductance and channel distribution taken from a different

publication from the same group [45] and consistent with data

from other groups [46]. The densities of Na+ and K+ leak channels

were automatically adjusted to achieve a resting potential of

approximately 270 mV throughout the cell, while maintaining a

total leak conductance consistent with the original model. The

single channel conductance of the delayed rectifier K+ channels

and voltage-dependent Na+ channels were set to 20 pS, which is

similar to estimates from single channel recordings [54,55]. For

simplicity, in the reported experiments the single channel

conductance of A/D type K+ channels and leak channels were

also set to 20 pS, which is similar to experimental measurements

for D-type channels [55], somewhat larger than estimates for

dendritic A-type channels [55] and towards the low end of the

range of single-channel conductance reported for leak channels

[30]. Thus, our simulations of models with only stochastically

gating voltage-dependent Na+ and delayed rectifier K+ channels

can be considered as fully constrained predictions given currently

available data, while our simulations of the fully stochastic model

likely estimate a lower limit for the consequences of stochastic ion

channel gating. This is because our results from simulations when

A/D type K+ channels are deterministic, but voltage-dependent

Na+ or delayed rectifier K+ channels are stochastic, nevertheless

demonstrate highly probabilistic spike firing, indicating that a

smaller single channel conductance for A/D type K+ channels

would have little impact on the results, while a possible larger

single channel conductance for the leak channels would be

expected to increase the impact of stochastic gating. Our

simulations of A/D type stochastic gating alone should be

considered as setting an upper limit for stochastic effects based

on known properties of these channels, whereas the simulations of

leak channels alone are less well constrained and serve as an

illustrative example. Unlike other ion channels, the single channel

conductance of Ih channels is set at 1 pS, which is consistent with

noise-analysis of dendritic Ih recorded from cortical neurons [13]

and the absence of step-like single channel waveforms from

measurements of Ih obtained with cell-attached recordings from

CA1 pyramidal neurons [46]. Synapses were modeled as bi-

exponential conductance changes of rise time 0.2 ms, decay time

2 ms and peak conductance 0.18 nS. Synapses were distributed

randomly across all dendrites .30 mm from the soma at an

average density of 0.1/mm2 (1502 in total). Each synapse was

activated independently according to a Poisson process with a

mean frequency of 5.5 Hz. For analysis dendritic spike times were

calculated as upward voltage crossings above a 260 mV

threshold. Visual inspection of traces confirmed that this threshold

successfully isolated all-or-nothing dendritic events.

Additional analysis of simulation data was carried out using

IGORpro (Wavemetrics). Statistical analysis used R (http://www.

r-project.org/). Comparisons of group data use ANOVAs. For

analysis of data in Figures 8 and 9 this was followed by Tukey

Honest Significant Difference test for comparisons between

individual groups. Significance values referred to in the text refer

to probabilities indicated by the latter test after adjustment for

multiple comparisons. Simulations with NEURON used version

7.0 (www.neuron.yale.edu). For comparisons between NEURON

and PSICS, simulations were run on the same hardware with

minimal competing activity. Although other factors such as cache

size and output options may contribute to performance differences

in some cases, the simulation algorithm was the main factor

determining simulation time. Parallel simulations were run on

multi-processor PCs, or on a cluster of servers (maximum 1456

processors) at the Edinburgh Compute and Data Facility (ECDF).

Supporting Information

Figure S1 Overview of PSICS. Model specification files are

listed on a green background, simulation outputs on a yellow

background and new software components on a clear background.

Found at: doi:10.1371/journal.pcbi.1000886.s001 (0.93 MB JPG)

Figure S2 Sodium channel model. (A) The sodium channel

model used to illustrate ion channel simulation with PSICS has a

single open state (O1) connected as shown to two closed states (C1

and C2). (B) The transitions between states of the model are

governed by forward a and backward b rate constants that vary as

a function of membrane potential (upper graph). The time

constants (Taux) and steady-state distribution (Xinf) for each

transition are plotted as a function of membrane potential (lower

graph). (C) Deterministic currents (bottom) generated by the gating

scheme in response to step changes in membrane potential from a

holding potential of 80 mV (top). Inset shows the activation phase

of the currents on an expanded time base.

Found at: doi:10.1371/journal.pcbi.1000886.s002 (0.25 MB JPG)

Figure S3 All-or-nothing dendritic responses of a fully stochastic

CA1 pyramidal neuron model to synaptic stimulation. (A–B)

Membrane potentials recordings from the soma (top) and

indicated basal dendrite (bottom) from twenty consecutive trials

as in Figure 8 and 9, illustrating responses to synaptic input

corresponding to the time points in Figure 8D (A) and 8E (B). The

fully propagating dendritic spike (A) and the smaller dendritic

depolarizations (B) are all-or-nothing events, indicating that they

result from triggering of dendritic spikes.

Found at: doi:10.1371/journal.pcbi.1000886.s003 (0.24 MB TIF)

Figure S4 Synaptically driven spike output is modified by

stochastic gating of single types of ion channel. Raster plots as in

Figure 9, illustrating timing of action potentials generated in
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response to synaptic stimulation for versions of the CA1 pyramidal

cell model in which the only stochastic gating ion channels are

voltage-dependet Na+ channels (A), delayed rectifier K+ channels

(B), A/D type K+ channels (C) and leak channels (D).

Found at: doi:10.1371/journal.pcbi.1000886.s004 (0.50 MB JPG)

Text S1 Stochastic simulation framework; software develop-

ment; estimate of the number of ion channels in a central neuron.

Found at: doi:10.1371/journal.pcbi.1000886.s005 (0.05 MB PDF)
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