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Abstract

A high level of robustness against gene deletion is observed in many organisms. However, it is still not clear which
biochemical features underline this robustness and how these are acquired during evolution. One hypothesis, specific to
metabolic networks, is that robustness emerges as a byproduct of selection for biomass production in different
environments. To test this hypothesis we performed evolutionary simulations of metabolic networks under stable and
fluctuating environments. We find that networks evolved under the latter scenario can better tolerate single gene deletion
in specific environments. Such robustness is underlined by an increased number of independent fluxes and multifunctional
enzymes in the evolved networks. Observed robustness in networks evolved under fluctuating environments was
‘‘apparent,’’ in the sense that it decreased significantly as we tested effects of gene deletions under all environments
experienced during evolution. Furthermore, when we continued evolution of these networks under a stable environment,
we found that any robustness they had acquired was completely lost. These findings provide evidence that evolution under
fluctuating environments can account for the observed robustness in metabolic networks. Further, they suggest that
organisms living under stable environments should display lower robustness in their metabolic networks, and that
robustness should decrease upon switching to more stable environments.
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Introduction

High-throughput single gene deletion studies in several

organisms revealed that a large fraction of genes have little or

no detectable fitness effects when compromised [1–5]. These

observations raise the question of how biological systems can

acquire and maintain such robustness against gene loss. As for any

biological trait, robustness could be adaptive, resulting from direct

selection for it, or non-adaptive, resulting as a byproduct of other

selective pressures [6]. Understanding which of these modes apply

is important both to distill the design principles of biological

systems and to understand how amenable robustness is to

manipulation [7].

Direct selection for robustness against gene loss is expected to be

weak [8], becoming relevant only under high mutation rates

[9,10]. In line with these theoretical findings, empirical analyses

find only limited contribution of gene duplications to the observed

robustness [11–15]. On the other hand, different forms of

robustness are shown to evolve in non-adaptive fashion under

certain conditions. For example, in near-neutral fitness landscapes

mutational robustness can emerge easily [16]. In metabolic

networks, it is argued that properties of enzyme kinetics can

render the systems robust against partial loss-of-function mutations

[17,18]. Moreover, robustness against small mutations is shown to

evolve in gene regulatory networks selected for dynamic stability

[19,20] and robustness against gene deletions is shown to evolve in

signaling networks under parasite interference [21].

It is possible that biomass production and adaptation to multiple

environments act as similarly realistic selective pressures on

metabolic networks that could lead to the emergence of robustness

as a byproduct. The former can drive the emergence of

isoenzymes for increased dosage [22], resulting in a clear case of

functional redundancy mediated robustness. The latter could lead

to multiple pathways, each specializing in processing metabolites

present in one of the multiple environments. These multiple

pathways could compensate for each other, particularly, in rich

media [7]. This scenario is in line with the observation that the

estimated fraction of dispensable genes at both metabolic [23–25]

and genome scale [26] reduces dramatically when multiple

environments are considered. The most recent computational

analysis of metabolic networks from Escherichia coli and Saccharo-

myces cerevisiae finds that, when the effect of deletion is tested in all

possible environments, only half of all reactions determined to be

dispensable under rich media could be considered dispensable for

‘‘real’’ [25]. Further, almost all of the remaining cases can be

explained by recent duplications, horizontal gene transfer events

or pleitropic effects (i.e. compensation by multifunctional enzymes)

[25]. It is important to note that these studies typically judge

dispensability based on stoichiometric approaches such as flux

balance analysis (FBA). By focusing only on lethal knockouts, and

ignoring the fitness effect of non-lethal ones, these approaches

therefore overestimate robustness.

Taken together, the above described studies suggest that

observed robustness against gene deletion in metabolic networks
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is a byproduct of their evolutionary dynamics under changing

environmental conditions. Early studies on the effects of changing

environments in evolution have shown that it can facilitate

polygenic variation [27,28] and can lead to modularity at network

level [29–32]. In addition, abrupt changes in selective pressure are

shown to lead to significant changes in metabolic networks [33].

Here, we specifically study the effects of fluctuating selection on

the emergence of robustness in metabolic networks. Using a well-

accepted scenario of duplication and specialization [34–37], we

simulated evolution of metabolic networks under selection for

converting environmentally available metabolites into biomass.

These simulations started from initial networks composed of

unspecific enzymes, which duplicate and specialize as evolution

progresses, resulting in metabolic networks with high biomass

production rate. To test the effect of the environment on the

properties of evolved networks we performed simulations under

stable and fluctuating environments (Figure 1). Networks that

evolved in a stable environment were selected for biomass

production in either one of two different minimal media or in a

rich medium; network fitness was a function of biomass production

rate given the metabolites in the media. Networks that evolved in a

fluctuating environment faced changes between these three media

and were selected for biomass production in all of them; network

fitness was defined as the geometric mean of fitness values in each

of the individual media. The resulting networks were tested for

their robustness against gene loss. For networks that evolved in a

fluctuating environment, robustness was determined separately in

each medium and over all media allowing us to investigate

whether any resulting robustness in these networks is apparent or

real. A detailed schematic of the simulations and analysis is given

in Figure 1.

Results

To study the effect of selection under fluctuating environments

on metabolic network properties, we relied on a proposed

evolutionary scenario [35]. According to this scenario, metabolic

networks characterized by large numbers of enzymes with high

specificity have evolved from ancestral networks consisting of few

enzymes with broad specificity [34,37]. Such evolution could be

driven by selection for increased growth rate (i.e. biomass

production rate), and mutations affecting kinetic properties of

enzymes and resulting in gene duplications. Although a number of

alternative scenarios for the evolution of novel enzymes and

metabolic pathways have been proposed [38], this scenario is

plausible for the early evolution of metabolic networks.

Here, we implement this scenario using a computational model

of metabolic networks. In brief, the model consists of metabolites,

enzymes that catalyze the transfer of biochemical groups between

metabolites, and transporters that can allow intake and release of

metabolites (see Methods). We start evolutionary simulations with

enzymes that can catalyze all group transfer reactions. In the

course of evolution enzymes can subsequently specialize through

duplications and mutations. This process is driven by the

assumption that there is a trade-off between catalytic activity

and specificity. This assumption is well supported by the existence

of specialized enzymes in nature and by several directed evolution

experiments that exploit such trade-off for protein engineering

[37–39]. The model structure allows us to capture both

subfunctionalization [40,41] and neofunctionalization [42]; two

processes that are believed to be at the core of evolution of gene

duplicates [43–46]. Running evolutionary simulations that mimic

natural evolution as a deterministic process we evolve networks

towards a local optimum and analyze the aspects in which these

optima differ for different fitness landscape. The deterministic

approach to simulating evolution corresponds to a scenario with a

large population and low mutation rate (also referred to as strong

selection - weak mutation scenario [47]). In summary, the

presented model captures the dynamics and stoichiometry of

metabolic networks and the evolution of these properties.

Previously, we have shown that it can result in the evolution of

complex metabolic networks that have very similar global

properties to their natural counterparts [36].

Using this model we have run evolutionary simulations under

different environmental scenarios (see Methods). In particular, we

have evolved metabolic networks under three stable environments

and a fluctuating one (Figure 1). In all these environments fitness

was related to the ability of the network to convert available

metabolites into biomass (see Methods). The three stable environ-

ments respectively contained either one of two randomly chosen

pairs of metabolites (minimal media; M1 and M2) or both of them

(rich media; R = M1 + M2). The fluctuating environment was

assumed to vary between these three media. In all these

simulations network fitness increased quickly as evolution

progressed, and enzymes became more specialized (Figures 2

and 3). To understand how evolution under these different

scenarios affected network robustness, we have analyzed the effect

of single gene knockouts on fitness. As shown in Figure 4, we found

that in networks evolved under fluctuating media, single gene

deletions had significantly lower fitness effects compared to

networks that evolved in stable media. Interestingly, the difference

in robustness against gene deletion was most prominent when

fitness was measured under rich media and was completely lost

when it was measured over all media seen during evolution (see

also Figure 2). Hence, fluctuating evolution resulted in the

emergence of an ‘‘apparent’’ robustness against gene deletion that

became most detectable in rich media.

To test that these results are robust against the main

assumptions of the model and the simulation scheme, we have

analyzed an alternative model. In this model, enzymes were

allowed to maintain broader activity by introducing a small

background rate for all reactions an enzyme can catalyze (see

Author Summary

One of the most surprising recent biological findings is the
high level of tolerance organisms show towards loss of
single genes. This observation suggests that there are
certain features of biological systems that give them a high
tolerance (i.e. robustness) towards gene loss. We still lack
an exact understanding of what these features might be
and how they could have been acquired during evolution.
Here, we offer a possible answer for these questions in the
context of metabolic networks. Using mathematical
models capturing the structure and dynamics of metabolic
networks, we simulate their evolution under stable and
fluctuating environments (i.e., available metabolites). We
find that the latter scenario leads to evolution of metabolic
networks that display high robustness against gene loss.
This robustness of in silico evolved networks is underlined
by an increased number of multifunctional enzymes and
independent paths leading from initial metabolites to
biomass. These findings provide evidence that fluctuating
environments can be a major evolutionary force leading to
the emergence of robustness as a side effect. A direct
prediction resulting from this study is that organisms living
in stable and fluctuating environments should display
differing levels of robustness against gene loss.

Robustness in Metabolic Networks
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Methods). This approach is inline with the idea of ‘‘underground

metabolites’’ [38] and allows us to start or continue an

evolutionary simulation from any starting network. We use this

ability to change the simulation scheme so that we start

simulations under fluctuating environments from networks that

already have evolved under stable environments. This alternative

approach is potentially more inline with conditions in nature

where networks can experience sudden changes in environmental

conditions [33]. We find qualitatively the same results as with the

previous analysis; robustness of networks evolved under a stable

environment increase when they further evolve under fluctuating

environments (Figure S2). As before, this higher robustness is

apparent, however it is not completely lost when considering all

environments a network experiences during evolution (Figure S2).

To understand the basis of such robustness we have analyzed

the structure of networks resulting from evolution under stable and

fluctuating media. As mentioned above, all evolutionary simula-

tions resulted in enzymes that are specialized and in networks with

faster biomass production compared to the ancestral ones.

However, networks evolved under fluctuating media displayed

two important features that distinguished them from networks

evolved under stable media. Firstly, fluctuating environments

resulted in networks that contain more redundant paths. The

average number of independent fluxes (see Methods) that can be

channeled through the network ranged from 1.2 to 1.4 for

networks that evolved in stable environments, while it was 4.1 for

networks evolving in fluctuating environment (Table 1). The

extent of redundant paths in the latter networks is clearly seen in

sample networks shown in Figure 3. Secondly and related,

networks evolved under fluctuating environment contained

significantly more multifunctional enzymes, i.e. enzymes that

catalyzed more than one group transfer reaction (see Methods). Of

the 100 independent simulations for each scenario, 72% of

networks that evolved under fluctuating environments contained

at least one multifunctional enzyme compared to 36%, 40% and

28% of networks evolved under stable environments M1, M2, and

R respectively. Further, in networks evolved under fluctuating

environment 24% of all enzymes were multifunctional, while only

6–9% were multifunctional in networks evolved under stable

environment (Table 1).

These clear differences in the global properties of networks

evolved under fluctuating and stable media suggest that both the

number of independent fluxes and the number of multifunctional

enzymes in a network contribute to its robustness. To better

understand the relation between these properties and robustness,

we performed a detailed analysis of the fitness effects of single gene

deletions (Table 1). In networks evolved under stable environ-

ments, the deletion of monofunctional enzymes had, on average, 7

Figure 1. Analysis scheme. To investigate the evolution of robustness against knock-outs we simulate evolution of metabolic networks in different
environmental scenarios and under selection for rate of biomass formation. We consider three constant environments containing either minimal
medium 1, minimal medium 2 or rich medium, and a fluctuating one that switches between these three media. The resulting networks are referred to
as network M1, M2, R, and V, respectively. The networks are tested for robustness by determining the fitness of knockouts. The three networks from
the constant environments (M1, M2, R) are tested in the environment where they evolved. The network from the fluctuating environment (network V)
is tested individually in each of the three media it adapted to during evolution, and over all three media. In summary, we have four different sets of
evolved networks (M1, M2, R, V) and seven different distributions of fitness values of knockouts (Rob-M1, Rob-M2, Rob-R, Rob-V-M1, Rob-V-M2, Rob-
V-R, Rob-V-V). To test whether differences in robustness between networks from constant and from fluctuating environments are transient, the
network from the fluctuating environment is subsequently evolved in the three constant environments, and the emerging networks are tested for
robustness. This gives three additional sets of evolved networks (VM1, VM2, VR), and three additional distributions characterizing their robustness
(Rob-M1fromV, Rob-M2fromV, Rob-RfromV).
doi:10.1371/journal.pcbi.1000907.g001

Robustness in Metabolic Networks
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to 11 fold larger effect compared with the deletion of multifunc-

tional enzymes. Consequently, networks that contained multifunc-

tional enzymes were on average 3 to 6 fold more robust compared

to networks without any such enzymes.

Deletion of multifunctional enzymes might result in lower fitness

effects either because these enzymes behave as isoenzymes (i.e.

back up the function of another enzyme) or catalyze reactions that

are non-essential but beneficial. We find evidence for both of these

possibilities. Firstly, almost all multifunctional enzymes have low

dosage, suggesting that the reactions they catalyze are non-

essential but beneficial when they occur at low rate. Because these

reactions are beneficial when occurring at low rate, there is no

selective pressure for the multifunctional enzymes to duplicate (so

to increase dosage) and potentially specialize. Secondly, most

multifunctional enzymes have functions that overlap with other

enzymes in the network. This finding results from a structural

analysis of all networks evolved under one of the stable

environments (M1-networks) and under fluctuating environments

(V-networks) and that contain a multifunctional enzyme: We find

that among the 36 M1-networks with multifunctional enzymes, 19

contain at least one multifunctional enzyme that behaves as

an isoenzyme. Among the 72 V-networks with multifunctional

enzymes, 42 contain at least one multifunctional enzyme that

behaves as an isoenzyme. In both M1- and V-networks,

multifunctional enzymes in the remaining networks catalyze at

least one reaction that is not directly involved in biomass

production, further supporting their non-essential role.

Interestingly, the difference in fitness effects of deleting multi- vs.

mono-functional enzymes were significantly reduced in networks

evolved under fluctuating environments. Considering fitness effects

in different media, deleting monofunctional enzymes in these

networks had, on average, only 1–2 fold larger effect compared

with deleting multifunctional enzymes. Similarly, networks con-

taining multifunctional enzymes were only 1 to 3 fold more robust

than those without any such enzymes. These analyses suggest that

while multifunctional enzymes can contribute significantly to

Figure 2. Results from sample M1 and V simulations. The plot shows the number of unique transporters and enzymes, network fitness (relative
to final fitness), and the average fitness of a knockout (i.e. robustness) over generations. Initially robustness is high because the ancestral network
contains enzymes with broad specificity, which can compensate for each other. As enzymes specialize fitness increases and robustness decreases in
general. Whenever an enzyme or transporter duplicates (as at generation 120, 170 and 190 for the M1 run), the robustness increases because the two
copies initially cover the same reactions. As the copies diverge in function, their contribution to robustness becomes smaller and smaller. The
simulation of evolution in the fluctuating environment (lower panel) shows that although robustness over all environments decreases over time,
robustness is maintained to a considerable degree on each of the three media, in particular the rich one. The resulting networks from these
simulations are shown in Figure 3.
doi:10.1371/journal.pcbi.1000907.g002
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robustness against gene deletion, evolution under fluctuating

media increased robustness of networks mostly through generation

of independent fluxes.

If evolution under fluctuating environments is the driving force

behind emergence of robustness against gene deletion, would it be

possible that robustness is lost as the environment stabilizes?

Indeed, redundant paths (i.e. independent fluxes) might infer a cost

on the organism due to increased number of enzymes that are not

always required, or because some of the paths are in fact

disadvantageous in some environments. This is the case in our

simulations as we find certain gene deletions to increase fitness

above wild type levels in networks evolved in fluctuating media

(Figure 4). To further analyze the possibility of loosing robustness

in stable environments we take networks evolved under fluctuating

media and continue their evolution under any of the three stable

media. As shown on Figure 4, we find that such subsequent

evolution results in complete loss of any gained robustness against

gene deletion; the distribution of fitness effects of gene deletions for

these networks is the same as for those which have evolved in

stable media originally. This reduction in robustness is accompa-

nied by a reduction in both the number of multifunctional

enzymes and independent fluxes (Table 1).

The finding that a switch in the environment towards stability

leads to reduction in robustness fits nicely with the observation that

prokaryotes specializing on one mode of energy generation has

much reduced fraction of dispensable genes compared to

generalists [48], however, it should be taken with care as we

model switch to a stable environment to be perfect while in reality

it is possible that environments are never entirely stable. It can be

shown that even very rare fluctuations could maintain functional

redundancy mediated robustness; for example, a gene providing a

fitness advantage of s in a given environment could be maintained

even if that environment is seen only once every s/u generations,

where u is the mutation rate [25].

Discussion

Here we have provided evidence that fluctuating environments

can lead to emergence of robustness against gene loss in metabolic

networks. Using computer simulations that embed a plausible

scenario of metabolic network evolution, we found that selection

for biomass production rate in a fluctuating media leads to

emergence of networks, which can tolerate single gene deletions

more readily. This robustness against gene loss is highest when

fitness is measured under rich media, where all metabolites seen

during evolution are considered to be available, and diminishes as

fitness is measured separately under each media. We find that the

molecular basis of such robustness in evolved networks is an

increase in the number of independent fluxes and multifunctional

enzymes.

These findings are perfectly in line with observations made in

natural, current-day metabolic networks. Computational analysis

of metabolic networks from E. coli and S. cerevisiae finds that most of

the observed robustness in rich media is apparent, strongly

diminishing as different environments are considered separately

[23–25]. While these works have suggested that such robustness

could be due to compensating pathways and to enzymes that have

differential efficiencies under different environmental conditions

[23,25], the presented study provides a clear evolutionary route to

these features. Further, it indicates that considering dynamic

response of metabolic networks might reveal more severe fitness

effects of gene deletions when considering multiple environments.

Interestingly, we find that robustness and its underlying features

would be lost entirely as the environment stabilizes and network

evolution continues. This leads to the prediction that robustness of

Figure 3. Structure, reaction kinetics and knockout effects for sample networks resulting from evolution under three different
stable environments (M1, M2, and R) and one that fluctuates over these three (V). Metabolites constituting biomass are shown with a gray
backdrop, while metabolites taken from the medium are shown in a black box. For example, network M1 takes up metabolites X8 and X23 (in binary
notation, metabolites 01000 and 10111) from the media and uses a network of 4 enzymes and 4 transporters in order to produce biomass
metabolites X17, X22, X23 and X26 (in binary notation, metabolites 10001, 10110, 10111, and 11010). The net reaction of the network is
2601000+4610111Rbiomass +00111+01101. The latter two metabolites are the waste products X7 and X13. Note that in this sample run, one of the
metabolites required for biomass formation happens to be present in the environment. The table shows that most knockouts are lethal in this
network. Only transporters T0 and T1, which excrete the waste products X7 and X13 respectively, can be knocked out. Even then, the knockout infers
large fitness costs as without the transporters the waste metabolites accumulate in the cell and strongly inhibit growth. Network M2 uses X1 and X30
for biomass formation. The resulting network consists of 4 enzymes and 5 transporters. X8, X13 and X14 are excreted as waste products. The rich
medium combines the resources available in the two minimal media.
doi:10.1371/journal.pcbi.1000907.g003

Table 1. Network properties and robustness compiled from all networks resulting from 100 simulations for each of the
evolutionary scenarios.

M1 M2 R V M1fromV M2fromV RfromV

N Independent Fluxes 1.3 1.4 1.2 4.1 1.4 1.5 1.6

N Enzymes 545 542 509 724 596 600 587

N Multifunctional Enzymes 48 49 35 177 21 32 31

Avg. Robustness per Multifunctional Enzyme 0.890 0.874 0.935 0.677 0.886 0.929 0.893

Avg. Robustness per Monofunctional Enzyme 0.078 0.104 0.127 0.416 0.210 0.111 0.134

Avg. Robustness For Networks With Multifunctional Enzyme 0.281 0.297 0.338 0.614 0.263 0.313 0.427

Avg. Robustness For Networks Without Multifunctional Enzyme 0.046 0.070 0.096 0.382 0.082 0.102 0.242

The columns labeled M1, M2, R, and V display results from networks evolved under the two minimal media, the rich media and the fluctuating media respectively. The
last three columns show results of continued evolution of those networks, which were obtained under fluctuating evolution, in stable media M1, M2 and R.
Multifunctional enzymes are defined as those, which can catalyze more than one group transfer reaction (see Methods). Shown robustness values for networks evolved
under fluctuation environment are those measured under rich media.
doi:10.1371/journal.pcbi.1000907.t001
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the metabolic network in an organism should be directly

correlated with environmental conditions it experiences; organ-

isms whose metabolism depends on stable resources should display

lower robustness. This prediction is supported both from a specific

gene deletion study in Mycoplasma genitalium [3], which has a

minimal metabolism, and from a larger comparison of gene

dispensability in specialist and generalist prokaryotes [48].

Any attempt to fully distill design principles of biological systems

has to consider evolutionary dynamics [49]. This can be achieved

with in silico evolution as presented here or alternatively by

considering the space of possible metabolic networks and how

evolution could move in this space. The two approaches are

complementary; recent modeling studies using the latter approach

are providing us with important insight on common design

principles that can result in evolution [50,51], while approaches

like the one presented here show how different selective pressures

can shape the global properties of metabolic networks. As with any

modeling study, the presented analysis has limitations and

potential caveats. In particular, our analysis was limited in

network size due to computational costs associated with evolu-

tionary simulations and the generic model and the measure of

robustness had to be based on several simplifications and

assumptions about metabolism. While we find that our main

findings are robust against such limitations and the main modeling

choices, a full confirmation of our results can only be achieved

with experimental studies. In this regard, we note that long-term

evolution experiments under stable lab conditions provide a direct

test bed to confirm the ideas presented here. These studies have

already shown that evolution under stable environments reduce

the metabolic breadth of E. coli [52]. We would expect that it has

also reduced its ‘‘apparent’’ robustness against gene loss.

Methods

Methods have been described in detail previously [36]. In brief,

we implement a well-accepted scenario of metabolic network

evolution [35], where an ancestral network composed of few

unspecific enzymes evolves through mutations altering kinetic

rates and duplications. At the core of this scenario is the argument

that new enzyme activities result from specialization of enzymes

with broad activity [34]. There is now empirical evidence that

such specialization have led to the evolution of most, if not all,

enzyme superfamilies [37]. In addition, laboratory evolution has

been successfully employed to select or de-select for promiscuous

functions, thereby altering enzyme function(e.g. [38,39]).

The details of different modeling choices we made are as

follows.

Metabolites
Metabolites are assumed to consist of five different biochemical

groups. Each biochemical group is either present once or is absent,

resulting in a total of 32 possible metabolites. Each metabolite can

be represented by a binary string of length 5, where ‘‘1’’ at position

g denotes the presence of group g, whereas ‘‘0’’ denotes the

absence of that group. Metabolites are associated with a random

free energy that is taken from a uniform distribution between zero

and one, and that is required to specify thermodynamic properties

of the biochemical reactions. For the production of biomass, it is

necessary to have at least one donor and acceptor of each group as

external metabolites. Thus, a minimal medium contains two

randomly chosen metabolites as a donor-acceptor pair. Rich

medium consists of two different random donor-acceptor pairs.

Four randomly chosen metabolites are involved in biomass

formation. All of these random choices are made independently

for each evolutionary simulation.

Enzymes
Enzymes catalyze the transfer of a specific biochemical group.

We assume that groups are transferred by a ‘‘ping-pong

mechanism’’: A donor of a group transfers the group to the

appropriate enzyme and is thereby transformed into its corre-

sponding acceptor. The enzyme then transfers the group to an

acceptor, thereby transforming it into its corresponding

donor. Thus an enzyme can be in two possible states, Ei
(1) and

Ei
(0), with Ei

(1) + Ei
(0) = Ei. Here, Ei is the total dosage of enzyme i,

Figure 4. Distribution of relative fitness for single knockouts in networks resulting from different evolutionary scenarios. Each
distribution contains measurements from 100 networks and is shown as a boxplot, as implemented in the statistical package ‘‘R’’ (www.r-project.org).
See legend of Figure 1 for analysis and naming details. To statistically analyze differences between the distributions, we performed pair-wise
Kolmogorov-Smirnov tests. As expected, differences between equivalent distributions were statistically not significant (M1 vs. M2: p<0.6; M1fromV
vs. M2fromV: p<0.3; V-M1 vs. V-M2: p<0.7). The fitness distribution for R networks is highly similar to M1 and M2 (p<0.96 and 0.8, respectively). The
distributions M1fromV and M2fromV are similar to the distributions M1, M2 and R, with indication for statistically significant differences: Four of the
pair-wise comparisons yield p-values larger than 0.1; while two comparisons yield p-values below 0.05 (M2fromV vs. M1: p<0.026; M2fromV vs. R
p<0.008). All other pair-wise comparisons show statistically highly significant differences, with all p-values smaller than 0.0001.
doi:10.1371/journal.pcbi.1000907.g004

Robustness in Metabolic Networks
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Ei
(0) is the concentration of the enzyme without its group being

bound to it, and Ei
(1) is the concentration of enzyme with its group

being bound to it. The free energy difference between both states

of an enzyme is assumed to be a random value taken from a

uniform distribution ranging from zero to one. We further assume

that in principle all metabolites that contain a specific biochemical

group (i.e., half of the 32 metabolites) can serve as a donor for the

transfer reaction involving that group, whereas all metabolites that

do not contain that group can in principle serve as an acceptor.

We assume linear kinetics for the transfer of a group to an enzyme,

given by v = kij(Ei
(0)X(ij)

(1)2Ei
(1)X(ij)

(0)/qij), where kij is the rate

constant of the reaction j of an enzyme i, X(ij)
(1) is the concentration

of the donor of the reaction, X(ij)
(0) is the concentration of the

corresponding acceptor, and qij is the equilibrium constant of the

reaction resulting from the free energies of the reactants. For the

transfer of a group from a donor to an acceptor, two half-reactions

need to be coupled. This results in Michaelis-Menten–like kinetics

and implies that functional enzymes need to maintain nonzero rate

constants for at least two reactions that are coupled. Enzymes that

maintain nonzero rate constants for more than two reactions are

defined as multifunctional. We assume that in the initial network

there are 5 enzymes that are unspecific and transform groups from

each donor to each acceptor with the same rate constant. The

initial dosage of enzymes is Ei = 1.

Transporters
We assume that transporters transport metabolites passively

across the cell membrane. The rate of transport is given by

v = Titij(Xj2Xjext), where Ti is the dosage of the transporter i, tij is

the rate constant for the transport of metabolite j, Xj is the

metabolite concentration in the cell, and Xjext is the metabolite

concentration in the environment. We assume that in the initial

network there is a single transporter that transports all metabolites

with the same rate constant. The initial dosage of the transporter is

T0 = 1.

Biomass formation, growth, and network fitness
Biomass is formed by the condensation of specific metabolites.

The rate of biomass formation follows linear kinetics given by the

product vBM = kBMPiXi over all metabolites Xi that are involved in

biomass formation. The rate constant is set to kBM = 1 in all

simulations. We assume that the formation of biomass leads to

growth. The growth rate is given by W = 1/V*dV/dt = vBM/

(C0+CEE+CTT), where C0 is the amount of biomass that is required

for structural compounds (i.e., those compounds that are not

directly involved in cellular metabolism), CE is the amount of

biomass per enzyme, CT is the amount of biomass per transporter,

E is the total dosage of enzymes, and T is the total dosage of

transporters. The parameters C0, CE, and CT are set to 10, 1, and

1, respectively. Note that due to cell growth, metabolites are

constantly diluted at a rate equal to the growth rate. The fitness of

a network in a given medium is assumed to be proportional to the

steady-state growth rate. The fitness in an environment that

fluctuates between different media is given by the geometric mean

over the fitness values a network has on each of the media.

Tradeoff between specificity and catalytic activity
We assume that enzymes can either catalyze a large number of

reactions with low activity, or a lower number or reactions with

improved catalytic activities. Specifically, we assume that the sum Sj

kij
1/a and Sj tij

1/a over all rate constants kij or tij of an enzyme or

transporter, i, respectively, is constant. For values of a.1, increasing

the rate constant for a single reaction has an over-proportional effect

on all other rate constants. In our simulations we use Sj kij
1/a = 1,

Sj tij
1/a = 1, and a = 2. This implies, for example, that a transporter

catalyzing the transport of a single metabolite has a four times

higher rate constant for this reaction than a transporter that is

specialized on the transport of two metabolites.

The resulting trade-off between enzyme specificity and activity

in the model is inline with the general findings from protein

engineering and directed evolution experiments [37,53]. In

particular, the tradeoff in our model allows specialized enzymes

to retain some (minor) catalytic activity for other reactions. This

resembles a situation described as weak negative tradeoff [37].

However, because two specialized enzymes will be better than a

single multifunctional enzyme present at double dosage, there is

also selection for specialization. The presence of such selection in

the model seems justified by the fact that most enzymes in natural

metabolic networks are specialized.

In an alternative model, we further relax the assumption of a

strong tradeoff between specificity and catalytic activity and allow

enzymes to specifically maintain a background activity for all

possible reactions. This alternative model allows us to use any

network for the starting point of evolutionary simulations. Using

this model, we have analyzed whether forcing specialization of

enzymes towards specific reactions (which in some extent

decreases complexity in the system) has any effect on our

conclusions. As shown in Figure S2, we find that this alternative

model to produce qualitatively the same results as with the main

model.

Mutations and the course of evolution
We assume that there are two types of mutations: (1) mutations

that change the kinetic properties of an enzyme and (2) mutations

that change the number of copies of an enzyme, i.e., gene deletions

and duplications. For the first type of mutation we assume that the

value of kij
1/a or tij

1/a, respectively, for a single reaction is either

increased or decreased by a small value of m = 0.05, while the rate

constants of the other reactions are decreased, or increased

appropriately. Gene deletions and duplications decrease and

increase the dosage of an enzyme respectively. To simulate

evolution, we first calculate the effect of all possible mutations in

the current network on the steady-state growth rate to obtain the

mutant with maximal increase in fitness. This mutation is then

assumed to become fixed and the resulting network is used to

search for the next mutations. Details on the calculation of the

steady states are as described in [36]. Gene duplications and

deletions are assumed to be rare compared to mutations affecting

the catalytic properties of enzymes and transporters and are

considered only if none of the mutations affecting kinetic

properties are beneficial. We find that relaxing this assumption

and considering duplications as frequently as other mutations does

not alter the conclusions given in the main text (Figure S1). An

evolutionary simulation ends if there are no beneficial kinetic

mutations, gene duplications or deletions.

For each set of independent simulations, we randomly chose

nutrients, metabolites involved in biomass formation, and the free

energies of the metabolites. Changing free energies of the

metabolites alters the energetic landscape of the initial network

and might favor different pathways even if the topology of the

network remains the same.

Model parameters
Note that, while changing the many parameters of the model

could easily alter the properties of individual evolved networks, the

qualitative nature of the results presented here would be main-

tained. This is because our analysis is a comparative one among

networks that evolve under different evolutionary scenarios. While
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model details would change the outcome of evolution in specific

simulation, they would do so in similar ways under the different

scenarios considered.

Specific parameter choices in this study differ from a previous

study using the same model [36], as here we run a large number of

simulations of smaller networks. To be able to manage the

computational cost of these simulations, we adjusted the para-

meters for the costs of biomass formation (from 50 to 10), the

number of metabolites involved in biomass formation (from 8 to

4), and the mutation size (from 0.01 to 0.05).

Network robustness
The evolved networks contain many enzymes in multiple copies.

These multiple copies of a single enzyme could be seen as

isoenzymes. As one would expect for isoenzymes, the knockout of

a single copy would have a relatively small effect. We here

determine robustness by knocking out all enzymes of the same

type. This gives a measure for how essential the reaction catalyzed

by an enzyme is.

More specifically, we calculate robustness as network’s rate of

biomass production (vBM, see above) in the face of enzyme

knockouts. To measure it, we delete each enzyme existing in a

given network one by one and calculate the rate of biomass

formation for each mutant. This allows us to characterize the full

dynamical effect of a gene deletion on biomass formation, rather

than just viability (i.e. non-zero vs. zero biomass production rate)

and effects on yields.

Independent metabolic fluxes
To understand the global structure of evolved networks, we

measure metabolic flux from metabolites to biomass. In particular,

we calculate, for each network, the number of independent fluxes

by using the kernel of the stoichiometric matrix derived from that

network. The details of this technique is discussed in detail

elsewhere [54].

Supporting Information

Figure S1 Distribution of relative fitness for single knockouts in

networks resulting from different evolutionary scenarios and using

a model version where duplications are introduced as frequently as

small mutations. Each distribution contains measurements from

100 networks and is shown as a boxplot, as implemented in the

statistical package ‘‘R’’ (www.r-project.org). See legend of Figure 1

for analysis and naming details.

Found at: doi:10.1371/journal.pcbi.1000907.s001 (2.58 MB TIF)

Figure S2 Distribution of relative fitness for single knockouts in

networks resulting from different evolutionary scenarios and using

a model version where enzymes are forced to maintain a non-zero

rate for all possible reactions. The simulation scheme is also

changed from the original analysis; for the fluctuating environment

scenario, we have used networks evolved under stable environ-

ments as the starting network. This corresponds to modelling a

shift in the environment from stable source to fluctuating sources

of metabolites. Each distribution contains measurements from 20

networks and is shown as a boxplot, as implemented in the

statistical package ‘‘R’’ (www.r-project.org). See legend of Figure 1

for analysis and naming details.

Found at: doi:10.1371/journal.pcbi.1000907.s002 (2.55 MB TIF)
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21. Salathé M, Soyer OS (2008) Parasites lead to evolution of robustness against
gene loss in host signaling networks. Mol Syst Biol 4: 202.

22. Conant GC, Wolfe KH (2007) Increased glycolytic flux as an outcome of whole-

genome duplication in yeast. Mol Syst Biol 3: 129.

23. Harrison R, Papp B, Pál C, Oliver SG, Delneri D (2007) Plasticity of genetic

interactions in metabolic networks of yeast. Proc Natl Acad Sci U S A 104:
2307–2312.

24. Papp B, Pál C, Hurst LD (2004) Metabolic network analysis of the causes and

evolution of enzyme dispensability in yeast. Nature 429: 661–664.

25. Wang Z, Zhang J (2009) Abundant indispensable redundancies in cellular
metabolic networks. Genome Biol Evol 2009: 23.

26. Hillenmeyer ME, Fung E, Wildenhain J, Pierce SE, Hoon S, et al. (2008) The

chemical genomic portrait of yeast: uncovering a phenotype for all genes.
Science 320: 362–365.

27. Gillespie JH, Turelli M (1989) Genotype-Environment Interactions and the

Maintenance of Polygenic Variation. Genetics 121: 129–138.

28. Turelli M, Barton NH (2004) Polygenic variation maintained by balancing

selection: pleiotropy, sex-dependent allelic effects and G6E interactions.
Genetics 166: 1053–1079.

29. Lipson H, Pollack JB, Suh NP (2002) On the origin of modular variation.

Evolution 56: 1549–1556.

30. Kashtan N, Alon U (2005) Spontaneous evolution of modularity and network
motifs. Proc Natl Acad Sci U S A 102: 13773–13778.

31. Force A, Cresko WA, Pickett FB, Proulx SR, Amemiya C, et al. (2005)

The origin of subfunctions and modular gene regulation. Genetics 170:
433–446.

32. Soyer OS (2007) Emergence and maintenance of functional modules in signaling
pathways. BMC Evol Biol 7: 205.

Robustness in Metabolic Networks

PLoS Computational Biology | www.ploscompbiol.org 9 August 2010 | Volume 6 | Issue 8 | e1000907
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