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Abstract

A prevailing theory proposes that the brain’s two visual pathways, the ventral and dorsal, lead to differing visual processing
and world representations for conscious perception than those for action. Others have claimed that perception and action
share much of their visual processing. But which of these two neural architectures is favored by evolution? Successful visual
search is life-critical and here we investigate the evolution and optimality of neural mechanisms mediating perception and
eye movement actions for visual search in natural images. We implement an approximation to the ideal Bayesian searcher
with two separate processing streams, one controlling the eye movements and the other stream determining the
perceptual search decisions. We virtually evolved the neural mechanisms of the searchers’ two separate pathways built from
linear combinations of primary visual cortex receptive fields (V1) by making the simulated individuals’ probability of survival
depend on the perceptual accuracy finding targets in cluttered backgrounds. We find that for a variety of targets,
backgrounds, and dependence of target detectability on retinal eccentricity, the mechanisms of the searchers’ two
processing streams converge to similar representations showing that mismatches in the mechanisms for perception and
eye movements lead to suboptimal search. Three exceptions which resulted in partial or no convergence were a case of an
organism for which the targets are equally detectable across the retina, an organism with sufficient time to foveate all
possible target locations, and a strict two-pathway model with no interconnections and differential pre-filtering based on
parvocellular and magnocellular lateral geniculate cell properties. Thus, similar neural mechanisms for perception and eye
movement actions during search are optimal and should be expected from the effects of natural selection on an organism
with limited time to search for food that is not equi-detectable across its retina and interconnected perception and action
neural pathways.
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Introduction

Neurophysiology studies of the macaque monkey [1–3] support

the existence of two functionally distinct neural pathways in the

brain mediating the processing of visual information. The

behavior of patients with brain damage has led to the proposal

that perception is mediated by the ventral stream projecting from

the primary visual cortex to the inferior temporal cortex, and that

action is mediated by the dorsal stream projecting from the

primary visual cortex to the posterior parietal cortex [4–6]

(Figure 1a). Although there has been debate about whether this

separation into ventral/dorsal streams implies that the brain

contains two distinct neural representations of the visual world

[7–12], there has been no formal theoretical analysis about the

functional consequences of the two different neural architectures

on an animal’s survival. Visual search requires animals to move

their eyes to point the high-resolution region of the eye, the fovea,

to potentially interesting regions of the scene to sub-serve

perceptual decisions such as localizing food or a predator. What

is the impact of having similar versus different neural mechanisms

guiding eye movements and mediating perceptual decisions on

visual search performance for an organism with a foveated visual

system? We consider two leading computational models of

multiple-fixation human visual search, the Bayesian ideal searcher

(IS) [13–15] and the ideal saccadic targeting model (maximum a

posteriori probability, MAP [16,17]) for a search task of a target in

one of eight locations equidistant from initial fixation (Figure 1b).

The ideal searcher uses knowledge of how the detectability of a

target varies with retinal eccentricity (visibility map) and statistics

of the scenes to move the fovea to spatial locations which

maximize the accuracy of the perceptual decision at the end of

search [13] (Figure 1b). The saccadic targeting model (MAP)

makes eye movements to the most probable target location [6,17]

which is optimal if the goal was to saccade to the target rather than

collect information to optimize a subsequent perceptual decision

[1] (Figure 1b). Depending on the spatial layout of the possible

target locations and the visibility map, the IS and MAP strategies

lead to similar (Figure 1c) or diverging eye-fixations (Figure 1d–e).

For example for a steeply varying visibility map (Figure 1c) both

models make eye movements to the possible target locations while

for a broader visibility map (Figure 1d–e) the ideal searcher tends

to make eye movements in between the possible target locations

attempting to obtain simultaneous close-to-fovea processing for

more than one location. Covert attention allows both models to

select possible target locations and ignore locations that are

unlikely to contain the target when deciding on saccade endpoints
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and making perceptual search decisions [18,19]. Perceptual target

localization decisions for both models are based on visual

information collected in parallel over the whole retina, temporally

integrated across saccades, and based on the location with highest

sensory evidence for the presence of the target. Critically, we

implemented the models to have two processing pathways, one

determining where to move the fovea and the other stream

processing visual information to reach a final perceptual decision

about the target location. Rather than having a single linear

mechanism or perceptual template (Figure 1b), each pathway in

the model had its own neural mechanism which is compared to the

incoming visual data at each possible target location. Likelihood

ratios [20] of the observed responses for each of the mechanisms

under the hypothesis that the target is present or absent at that

location are used to make decisions about where to move the eyes

and perceptual decisions (see Materials and Methods).

We used a genetic algorithm as a method to find near-optimal

solutions for perception and action mechanisms but also to

simulate the effects of the evolutionary process of natural selection

on the neural mechanisms driving saccadic eye movements and

perceptual decisions during search. The computational complexity

of the ideal Bayesian searcher makes it difficult to virtually evolve

the model (see note 1 in Text S2) and thus we used a recently

proposed approximation to the ideal searcher that is computa-

tionally faster (Entropy Limit Minimization, ELM [15,21]). The

ELM model chooses the fixation location that minimizes the

uncertainty of posterior probabilities over the potential target

locations. The decision rule can be simplified to choose the

fixation location with the maximum sum of likelihood ratios across

potential target locations, each weighted by its squared detect-

ability given the fixation location [15]. The ELM model can be

shown to approximate the fixation patterns of the ideal searcher

[15] and capture the main characteristics of the fixation patterns of

the IS for our task and visibility maps (Figure 1c–e; ELM) (see note

2 in Text S2). The process of virtual evolution started with the

creation of one thousand simulated individuals with separate linear

mechanisms for perception (ventral) and eye movement program-

ming (dorsal; Figure 2a). Each pathway’s template for each

individual was created from independent random combinations of

the receptive fields of twenty four V1 simple cells. Each simulated

individual was allowed two eye movements (see note 3 in Text S2)

before making a final perceptual search decision about the location

of the target. Performance finding the target in one of eight

locations for five thousand test-images (one thousand for natural

images) was evaluated and the probability of survival of an

individual was proportional to its performance accuracy. A new

generation was then created from the surviving individuals

through the process of reproduction, mutation and cross-over

(Figure 2a). The process was repeated for up to 500 generations.

Results

We first evolved the ideal searcher approximation (ELM model)

for different shape luminance targets (isotropic Gaussian, vertical

elongated Gaussian and cross pattern consisting of a positive and

negative polarity elongated Gaussian) embedded in 1/f noise and a

steep visibility map (Figure 1c). Irrespective of the target shape,

virtual evolution led to converging perception (ventral) and

saccade (dorsal) mechanisms that are similar to the target

(Figure 2b; see Video S1, Video S2, and Video S3 for virtual

evolution). To further investigate the generality of the result we

evolved the ELM model to search a circular Gaussian target added

to backgrounds with different statistical properties: white noise, 1/f

noise and importantly, a calibrated set of natural image

backgrounds [22]. Figure 3 (2nd row) presents the distribution of

perceptual decision accuracies across individuals in a generation

and shows that perceptual performances of simulated individuals

in the population improve with generations and then converge to

an asymptote. We characterized the similarity between the

perception and saccade mechanisms by computing the correla-

tions between the 2 dimensional linear mechanisms for each

individual in each generation. Figure 3 (3rd row) shows that the

distribution of correlations across individuals in the population

evolves to unity irrespective of the background type. To visualize

in detail the shape of the evolved templates, we analyzed the radial

profile of the templates of the highest performing simulated

individuals in the last generation (Figure 3; 4th row). For all three

backgrounds the saccade and perception templates converge to

similar shapes (perception and saccade 2-D template correlations

for the best performing templates in the last generation:

0.99060.006, 0.98660.013, 0.98260.013). In addition, the linear

mechanisms for the 1/f noise and natural scenes are narrower

than those for the white noise and show an inhibitory surround

(Figure 3).

These previous results were based on a visibility map that

steeply declines with eccentricity and rely on the assumption that

humans are near-ideal searchers. We, thus, evolved the mecha-

nisms for the case of a broader visibility map that is similar to that

measured for human observers in 1/f noise [15] (Figure 4a) and

showed that the convergence of neural mechanisms generalizes to

different visibility maps (Figure 4a) and also to a model in which

eye movement planning is assumed to follow a saccadic targeting

strategy (MAP) rather than approximating an ideal strategy

(Figure 4a). Furthermore, Figure 4b shows that there is nothing

particular about the symmetry of the eight location configuration

search task since similar convergent evolution is observed for an

asymmetric four location task (Figure 1e).

We also evaluated whether our results would change if the

model included the increasing size of V1 receptive fields and lower

frequency tuning with retinal eccentricity (see note 4 in Text S2).

Figure 5a (right graph) shows the center frequency and bandwidth

(standard deviation) of the oriented Gabor receptive fields as a

Author Summary

The brain has two processing pathways of visual
information, the ventral and dorsal streams. A prevailing
theory proposes that this division leads to different world
representations for conscious perception than those for
actions such as grasping or eye movements. Perceptual
tasks such as searching for our car keys in a living room
requires the brain to coordinate eye movement actions to
point the high resolution center of the eye, the fovea, to
regions of interest in the scene to extract information used
for a subsequent decision, such as identifying or localizing
the keys. Does having different neural representations of
the world for eye movement actions and perception have
any costs for performance during visual search? We use
computer vision algorithms that simulate components of
the human visual system with the two separate processing
streams and search for simple targets added to thousands
of natural images. We simulate the process of evolution to
show that the neural mechanisms of the perception and
action processing streams co-evolve similar representa-
tions of the target suggesting that discrepancies in the
neural representations of the world for perception and eye
movements lead to lower visual search performance and
are not favored by evolution.

Similar Neural Mechanisms for Perception & Action
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function of retinal eccentricity. The computational time demands

of this simulation restricted us to evaluate this model for a fixed set

of receptive field weights across eccentricities (see note 5 in Text

S2) and limited set of scenarios: 1/f noise, steep visibility map and

two targets: a low frequency Gaussian (Figure 5b; left) and a

Difference of Gaussians (DoG) with a center frequency of 8 c/deg

(Figure 5b; right). Due to the fixed set of weights across

eccentricity, in this model the spatial profile of the linear

combination of receptive fields scales up with eccentricity. Thus,

for each retinal eccentricity category there was a pair of evolved

template profiles. Figure 5c shows that convergent evolution still

results when receptive field size increases with eccentricity and

irrespective of the spatial frequency of the target. Figure 5d

presents the similar radial profiles of the of evolved perception and

saccade mechanisms for the fovea and a sample peripheral retinal

location (perception and saccade 2-D template correlations for the

best performing templates in the last generation averaged across

retinal eccentricities were: Gaussian target: 0.96360.008; DoG

target: 0.96160.004).

Do all scenarios lead to converging evolution of the perception

(ventral) and action (dorsal) pathways? No, if we take a case in which

the sought target is equally detectable across the retina (flat visibility

map), the results show the correlations between the perceptual and

saccade templates do not converge to unity (Figure 6a). A second

example is a case in which the organism makes a decision after eight

eye movements rather than two eye movements (Figure 6b).

Because the organism gets to fixate on all eight target locations,

there is little added benefit of an efficient saccadic system and the co-

evolution is much slower (Figure 6b). A third scenario of partial

convergence results if we adopt a strong model of two visual

processing streams which spatially pre-filter the visual input based

on the properties of the cells in the parvocellular and magnocellular

lateral geniculate nucleus (LGN) ([23]; see Figure 6d) and assume no

further interaction across pathways. The differential spatial

frequency filtering of the two pathways can introduce constraints

in the frequency content of the evolved mechanisms preventing a

full convergence of the templates (Figure 6e; perception and saccade

2-D template correlations for the best performing templates in the

last generation for: 1/f noise: 0.60360.082). A similar simulation

with the same target but white noise instead of 1/f noise also

resulted in partial convergence (perception/saccade 2-D template

correlation of 0.85660.046).

Figure 1.Virtual evolution of perception and saccade with different visibility maps, eye movement models and configurations.
a. Ventral (perception) and dorsal (action) streams projecting from the primary visual cortex (V1). b. Flow chart for two models of human eye-
movement search: Ideal Bayesian Searcher (IS) and the Saccadic targeting model (maximum a posteriori probability model, MAP). c. 8 alternative
forced choice target search for steep visibility map. d. 8 alternative forced choice target search for broad visibility map. e. 4 alternative forced choice
target search for broad visibility map. Light blue circles outline possible target locations. Location of fixations for 1st (blue) and 2nd saccades (red) for
three models: IS, MAP and Entropy Limit Minimization (ELM) in white noise The MAP model simulations include small random saccade endpoint
errors to facilitate visualization of the different fixations. Central cross indicates initial fixation point for all models.
doi:10.1371/journal.pcbi.1000930.g001

Similar Neural Mechanisms for Perception & Action
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Discussion

We used an approximation to an Ideal Bayesian Searcher

(Entropy Limit Minimization model; ELM) to virtually evolve

separate linear mechanisms for eye movements and perceptual

decisions during visual search for a variety of targets embedded in

various synthetic and natural image backgrounds. Evolved

templates contain similarities to the target but for the 1/f and

natural images they are narrower than the target and contain a

subtle inhibitory surrounding not present in the signals but often

present in monkey neuronal receptive fields and human behavioral

receptive fields [9,19] (see blue outline in Figure 2b). A previous

study has shown that such inhibitory surrounds serve to suppress

high amplitude noise in the low frequencies and optimize the

detection of spatially compact signals in natural images [24]. The

current result extends previous results [24] to show the optimality

of inhibitory surrounds during visual search in natural images for

an organism with a foveated visual system and saccadic eye

movements.

Central to this paper, the mechanisms for perception and

saccades evolved to similar representations. This result is robust

across different types of backgrounds, signals, visibility maps, and

Figure 2. Virtual evolution of two separate streams with the genetic algorithms for three different targets. a. Virtual evolution of the
perception (ventral stream) and saccade (dorsal stream) templates constructed from different linear combinations of twenty four different V1 simple
cells which spanned the target (Gabor functions with center frequencies, 0.5, 1, 2, 4 cycles/degree for 6 different orientations, 30 degrees apart, and
octave bandwidths). Probability of survival of an individual depends on search accuracy of the ideal searcher approximation (ELM model) with the
two templates. b. Top row three different targets (from right to left: isotropic Gaussian, vertical elongated Gaussian and the difference of a vertical
and horizontal elongated Gaussians) used in different evolution simulations for search in 1/f noise and a steep visibility map (See Figure 1c, left). All
targets are luminance grey patterns but are shown in pseudo-color and scaled for each image to maximize the use of the color scale.
doi:10.1371/journal.pcbi.1000930.g002

Similar Neural Mechanisms for Perception & Action
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spatial distributions of possible target locations. Due to computa-

tional constraints we did not investigate the more general case of

allowing the target to appear at any location within the image but

there is no particular reason to suggest that our result would differ

for this latter general case. In addition, similar convergence

between mechanisms was found for what arguably are the most

common contender algorithms to model how humans plan eye

movements during search: an approximation to the ideal searcher,

ELM and a saccadic targeting model; MAP model; [13]. For

simplicity our original models did not include receptive fields that

increased with retinal eccentricity but an implementation of such a

model led to similar convergent evolution for a low and a higher

spatial frequency target.

The scenarios for which we did not find full convergent

evolution of the linear mechanisms were for cases for which the

target was either equi-detectable across the retina or the organism

had enough time to fixate all of the possible target locations.

Note, however, that for both cases, performance of the evolved

individuals does improve with increasing generations (Figure 6a–

b) through the evolution of the perceptual template to a target-

like structure. Yet, there is no performance advantage for

evolving a neural mechanism for saccades that encodes target

information because, for these cases different eye movement

patterns have little or no impact on perceptual performance. A

third scenario which resulted in partial convergence was a two

stream model with pathway-specific pre-filtering of the visual

Figure 3. Evolution plots for detecting the isotropic Gaussian target embedded in three different backgrounds. 1st row: Sample
images for the 8 alternative forced choice (AFC) search task for an isotropic Gaussian shaped luminance target with a steep visibility map (Figure 1c
left) added to white noise, 1/f noise, and natural images. Center of circles indicate the possible target locations and the central cross is the initial
fixation position for the models. 2nd row: Distribution of search accuracies for simulated individuals as a function of generation. 3rd row: Distribution
of correlations between perception and saccade templates of individuals in each generation. Bottom row: Perception (red) and saccade (blue)
templates radial profiles (averaged across all angles) of best performing simulated individual for each background type. Results are averages across
ten different virtual evolution runs each with 500 generations. Plots only show data up to the 200th generation for which convergence has occurred.
Radial profile of the Gaussian signal is shown in a dashed line for comparison.
doi:10.1371/journal.pcbi.1000930.g003
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input. A strong assumption that there are no interconnections

between the two pathways would result in processing constraints

based on the early stages of visual processing of both pathways.

Inclusion of pre-filtering properties of the parvocellular and

magnocellular LGN cells restricted the full convergence of the

evolved mechanisms. These finding suggest that if we adopt a

strict separation of pathways and take into account properties of

LGN cells we should not always expect similar mechanisms

driving perception and saccadic decisions during search. The

specific circumstances for which we will not find convergent

evolution and the degree of similarity between evolved templates

will depend on the spatial frequency of the target and background

statistical properties (see results for 1/f noise vs. white noise). Yet,

is the strict separation of pathways and constraints to the filtering

properties of parvocellular (perception) and magnocellular

(action) LGN cells tenable for the case of eye movements and

perceptual decisions during search? A recent psychophysical

study [9] used the same Gaussian target as in the simulations and

reverse correlation to show that estimated underlying templates

mediating human saccadic actions and perceptual search deci-

sions are similar. Thus, these psychophysical findings would

suggest that the strong assumption of no interconnections across

pathways and constraints by the early LGN processing might not

hold at least for the case of perception and eye movements during

visual search.

Together, our present results suggest a theory of why evolution

would favor similar neural mechanisms for perception and action

during search [9] and provide an explanation for the recent study

finding similar estimated underlying templates mediating human

saccadic decisions and perceptual decisions. Our findings and

theory do not necessarily imply either that one pathway mediates

both perception and action nor are they incompatible with the

existence of separate magnocellular and parvocellular pathways.

Instead, our theory would be consistent with the idea that

pathways for perception and oculomotor largely overlap, leading

to significant sharing of visual information across pathways

[8,12,25,26]. For the case of saccadic eye movements, visual

cortical pathways through the frontal eye fields [27] and the lateral

intra-parietal cortex [28] play critical roles, as well as brainstem

and cortical pathways through the superior colliculus [29]. In

addition, studies have related areas in the ventral stream (V4) to

target selection of saccades [30,31]. In addition, the results do not

prohibit small differences in visual processing for perception and

saccadic action but provide functional constraints on how much

discrepancy can exist between neural mechanisms without

jeopardizing the survival of the organism.

In the larger context, the similar neural mechanisms for

perception and saccade actions should be understood as another

effective strategy implemented in the brain, in addition to

guidance by target properties [13,14,32,33], optimal saccade

planning [15], contextual cues [34,35] and miniature eye

movements [36] to ensure successful visual search. Finally, the

approach of the present study demonstrates how the rising field of

natural systems analysis [37,38] can be used in conjunction with

virtual evolution and physiological components of the visual

system to evaluate whether properties of the human brain might

reflect evolved strategies to optimize perceptual decisions and

actions that are critical to survival.

Materials and Methods

Targets and backgrounds
We assumed a viewing distance of 50cm for the models. Search

targets for simulations were: a) A Gaussian target with 0.5539

square root contrast energy (SCE) and a standard deviation of

0.1376 degrees (Figure 1c; 2b left column; 3); b) An elongated

Gaussian with 0.9594 SCE, standard deviations of 0.4128 deg. in

the vertical direction and 0.1376 degrees in the horizontal

direction (Figure 2b center column, Figure 4); c) The difference

of a vertically oriented and a horizontally oriented elongated

Gaussians with 0.8581 SCE (Figure 2b, right column). The white

noise root mean square contrast (rms) was 0.0781. The same rms

was used for white noise filtered with the 1/f function (1/f noise).

Possible target locations were equidistant 7 degrees from the center

fixation cross. Independent external and internal noise samples

were refreshed with each saccade for the white and 1/f noise. For

the natural images the external backgrounds were fixed but the

internal noise refreshed across saccades.

Figure 4. Evolution plots for different models and scenarios detecting the elongated Gaussian target (Figure 2b; middle). a. 8 AFC
search with a broad visibility map using 1/f noise for the Entropy Limit Minimization model (ELM) and the Saccade Targeting model (MAP); b. 4 AFC
with broad visibility map using 1/f noise for the ELM and MAP model. All results based on averages across 10 virtual evolution runs.
doi:10.1371/journal.pcbi.1000930.g004

Similar Neural Mechanisms for Perception & Action
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Figure 5. Evolution plots for a model with changing V1 receptive field size/spatial frequency with retinal eccentricity. a. 8 AFC search
task in 1/f noise (left) and graph (right) showing the change in central spatial frequency and width of channel in the frequency domain of oriented
Gabor functions with retinal eccentricity. b. Radial profiles in the frequency domain of Gaussian target (left) and DoG target (right) with a center
frequency of 8 cycles/degree. c. Distribution of correlations between perception and saccade templates of individuals in each generation for Gaussian

Similar Neural Mechanisms for Perception & Action
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Model simulations
Here, we briefly describe the models implementations (see Text

S1 for detailed mathematical development and details). The initial

stage of all three models investigated (ideal searcher, IS; entropy

limit minimization, ELM; and saccadic targeting, MAP) is the dot

product of a perceptual and saccade template (w) with the image

data (g) at all possible target locations, r~wT g where r is the

resulting scalar response and w and g are expressed as 1-D

vectors. The templates for the perceptual decisions and saccade

planning were independent and random linear combinations of 24

Gabor functions that spanned the targets: spatial frequencies, 0.5,

1, 2, 4 cycles/degree for 6 different orientations, 30 degrees apart,

and with octave bandwidths. A subset of simulations (Figure 6) also

modeled pre-processing of the image by separate LGN cells

target (left) and DoG target (right). d. Perception and saccade templates radial profiles (averaged across all angles) of best performing simulated
individual for low-frequency Gaussian target (left) and higher frequency DoG target (right).
doi:10.1371/journal.pcbi.1000930.g005

Figure 6. Evolution plots for scenarios which resulted in partial or no convergence of two templates. All proportion correct and
correlation plots shows the distribution for individuals in each generation. All results based on averages across 10 virtual evolution runs. a. 8 AFC
search of the elongated Gaussian signal for a flat visibility map (ELM model); b. 8 AFC search of the elongated Gaussian signal for a broad visibility
map, natural images, but with 8 eye movements which allows the model to fixate on all possible target locations (ELM model); c. 8 AFC search of an
isotropic Gaussian signal for a steep visibility map using 1/f noise for the ELM model and considering two visual processing streams with different
spatial pre-filtering based on LGN parvocellular and magnocelluar properties; d. Normalized frequency amplitude for Gaussian target, parvocellular
LGN cell and magnocellular LGN cell; e. Perception and saccade templates radial profiles (averaged across all angles) of best performing simulated
individual for the model with pathway LGN pre-filtering.
doi:10.1371/journal.pcbi.1000930.g006

Similar Neural Mechanisms for Perception & Action
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corresponding to the magnocellular (dorsal) and parvocellular

(ventral) cells. The filtering was done using DoG functions with

different center frequencies (see Text S1 for mathematical details)

prior to the processing by the Gabor functions.

Use of a larger number of Gabor functions did not significantly

change the evolved templates for the targets considered but

required prohibitively longer computational times due to the

dimensionality explosion. For the template derived for the case of

the isotropic Gaussian target we used an additional constraint of

equal weighting for all orientations of the Gabor functions for a

given spatial frequency. Most of the simulations used the fixed 24

Gabor functions irrespective of retinal eccentricity. A subset of

simulations (see Figure 5) used sets of 24 Gabor functions that

increased linearly in size and also decreased in the central

frequency tuning with retinal eccentricity (see details in effects of

retinal eccentricity section). Template responses were integrated

across saccades. Calculation of likelihood ratios use Gaussian

probability density functions which depend on the image

parameters for the white and 1/f Gaussian noisy images. For the

natural images, the likelihood calculation required estimating the

probability density function from a training set of 3000 images and

fitting the probability density functions with Laplacian distribu-

tions convolved with a Gaussian distribution representing the

internal noise (see Text S1).

Effects of retinal eccentricity
Two methods were used to model the detrimental effect of

retinal eccentricity on the detectability of the target. The first

method which is similar to Najemnik and Geisler [13] was

implemented by adding internal noise to the scalar template

response: ~rrk(t),i~rk(t),izek(t),i, where the additive internal noise

scalar value ek(t),i is sampled from a Gaussian distribution which

standard deviation (sk(t),i) is dependent on the distance ( i.e. retinal

eccentricity) between the tth fixation k(t) and the template

response location i out of m possible target locations. Also the

internal noise was proportional to the template’s response standard

deviation resulting from the external image variability. The

visibility maps referred to as steep and broad (see also Figure S1)

were obtained with internal noise standard deviations given by:

s
steep
k,i ~so 0:8z2e½ �, ð1aÞ

sbroad
k,i ~so

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:64exp e2=18ð Þ{1

q
ð1bÞ

where so is the standard deviation of the template response due to

external noise, e is the eccentricity in degrees, and the subscripts k

refer to the fixation location, and i to the possible target location.

For all models, independent samples of internal noise were used

for each saccade and pathways.

The second method to model the effects of retinal eccentricity

included internal noise (see above) and also varied the sets of 24

Gabor functions with retinal eccentricity.

The size of Gabor functions increased with the retinal

eccentricity (e) so that the standard deviation of the spatial

Gaussian envelope is given by:

ds~

ffiffiffiffiffiffiffiffiffiffiffi
2Ln2
p

so 1{e=42ð Þ
2cz1

2c{1
, ð2Þ

where c is the bandwidth and s0 is the center frequency of Gabor

function in the fovea. Thus, the standard deviation in the

frequency domain of each Gabor function (Figure 5a; right graph)

decreases as:

df ~
1

2pds

ð3Þ

The center frequency tuning of the Gabor functions (s) linearly

decreased with retinal eccentricity: se~so 1{e=42ð Þ.

The saccadic targeting model
The saccadic targeting or maximum a posteriori probability

model (MAP) chooses the location of the next fixation with the

maximum product of likelihoods ratios (LRk(t),i) across previous

and present fixation (t = 1,…, T):

k�MAP(Tz1)~~ arg max
i

P
T

t~1
LRk(t),i ð4Þ

For the case of white noise and 1/f Gaussian noise the

expression can be simplified to the sum of log-likelihood ratios:

k�MAP(Tz1)~ arg max
i

XT

t~1

log LRk(t),i

� �

~ arg max
i

XT

t~1

Dm~rrk(t),i{0:5Dm2

s2
ozs2

k(t),i

� �
:

ð5Þ

where Dm is the difference in mean response of the template to the

signal plus background and background only and all other symbols

are defined above.

The ideal searcher (IS)
The ideal searcher selects as the next fixation the location that

will maximize the probability of finding the target after the eye

movement is made:

k�IS(Tz1)~ arg max
k(Tz1)

Xm

i~1

priorik(Tz1),iPCk(Tz1),i

 !

~ arg max
k(Tz1)

Xm

i~1

Pk(T),iPCk(Tz1),i

 ! ð6Þ

where PCk(Tz1),i is the proportion correct (PC) given that the

target location is i, and the next fixation is k(Tz1). The term

priorik(Tz1),i~Pk(T),i is the prior that the ith location contains the

target given the sensory evidence collected up to the present

fixation: Pk(T),i! P
T

t~1
LRk(t),iand m is the number of possible target

locations. For white noise and 1/f noise Gaussian noise, PCk(Tz1),i

becomes:

PCk(Tz1),i~

ð
w yk(Tz1),i

� �
P
j=i

W yk(Tz1),iz
XT

t~1

yk(t),i{yk(t),j

� �" #
dyð7Þ

where w is the probability density function of the Gaussian

function in Equation (9a), W the cumulative density function of the

Gaussian function in Equation (9b), yk(t),iand yk(t),j , are the log-

likelihood ratios which are known scalar values based on acquired
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visual information,

yk(t),i~ log LRk(t),i

� �
~

Dm~rrk(t),i{0:5Dm2

s2
ozs2

k(t),i
, ð8aÞ

yk(t),j~ log LRk(t),j

� �
~

Dm~rrk(t),j{0:5Dm2

s2
ozs2

k(t),j
: ð8bÞ

while yk(Tz1),i and yk(Tz1),j are random variables describing log-

likelihoods after the next fixation and described by normal

probability density functions:

yk(Tz1),i~
Dm~rrk(Tz1),i{0:5Dm2

s2
ozs2

k(Tz1),i
*N

1

2
d ’2k(Tz1),i,d ’k(Tz1),i

	 

, ð9aÞ

yk(Tz1),j~
Dm~rrk(Tz1),j{0:5Dm2

s2
ozs2

k(Tz1),j
*N {

1

2
d ’2k(Tz1),j , d ’k(Tz1),j

	 

ð9bÞ

where d ’k(Tz1),i~
Dmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
ozs2

k(Tz1),i

q (d ’k(Tz1),j ) is the detectability

at target location i (j), given fixation at location k(Tz1). The

present formulation is identical to that of Najemink and Gielser

[13] but uses likelihood ratios rather than product of posteriors.

Entropy limit minimization model (ELM model)
The entropy limit minimization model chooses as the next

fixation the locations that minimize the expected entropy and can

be approximated by maximizing the expected information gain.

This can be shown to be approximated by calculating for each

potential fixation location, k(Tz1), a sum of the posterior

probability for each location weighted by the squared detectability

given the fixation location [15]:

E DH(Tz1)jk(Tz1)½ �~ 1

2

Xm

i~1

Pk(T),id ’
2
k(Tz1),i: ð10Þ

where H(T)~{
Pm

i~1 Pk(T),i log Pk(T),i

� �
is the Shannon entropy of

Pk(T),i, and DH(Tz1)~H(Tz1){H(T) is the information gain.

Perceptual decisions
For all models, the final perceptual decision about the target

location was obtained by combining the likelihood ratios for each

possible target locations across all fixations and choosing the

location with the highest product of likelihood ratios:

arg max
i

P
T

t~1
LRk(t),i

	 

~ arg max

i

P
fs rk(t),i

� �
fb rk(t),i

� �
 !

: ð11Þ

where the likelihoods of the responses given the background only

and the target are given fb(.) and fs(.) which are the probability

density functions (pdf) assumed to be Gaussian (white noise and 1/

f noise) or empirically estimated from samples (see next section) for

the natural images.

Natural images
The distribution of template responses for the natural image

dataset [22] were estimated from 24,000 image patches extracted

from the eight possible target locations for 3000 natural images.

We fit the distribution of these responses for each template of each

simulated individual with a Laplacian distribution:

L(x)~
1

2b
exp {

Dx{mD
b

	 

, ð12Þ

where m is the mean parameter and bw0 is a scale parameter. To

take into account the effect of additive Gaussian internal noise on

the probability density function of the template responses we

convolved the Laplacian distribution with the Gaussian distribu-

tions:

(N � L)(x)~

ðz?

{?
N(u)L(x{u)du, ð13Þ

where N(x) and L(x) are Gaussian and Laplace probability

density functions respectively (see Figure S2).

Genetic algorithm
We used the Genetic Algorithm Optimization Toolbox (GAOT)

[39]. Arithmetic crossover parameter was set to operate 50 times

per generation, and uniform mutation to operate 50 times per

generation. The selection process used a real-valued roulette wheel

selection [38]. A generation consisted of 1,000 individual

parameter settings. All individuals were randomly initialized, and

allowed to evolve over 500 generations (see Text S1 for additional

details). Reported results for each scenario/model were averages

across ten simulated evolution runs.

Supporting Information

Figure S1 Three visibility maps used in present paper.

Found at: doi:10.1371/journal.pcbi.1000930.s001 (0.07 MB TIF)

Figure S2 The probability density function of natural images is

estimated from empirical distributions. (a) Gaussian and Laplace

distributions fit to the distribution of template responses to natural

images. (b) Convolution of Laplacian distribution with a Gaussian

internal noise distribution.

Found at: doi:10.1371/journal.pcbi.1000930.s002 (0.15 MB TIF)

Text S1 A detailed description of the methods used in the paper.

Found at: doi:10.1371/journal.pcbi.1000930.s003 (0.39 MB

DOC)

Text S2 Some notes for the manuscript.

Found at: doi:10.1371/journal.pcbi.1000930.s004 (0.03 MB

DOC)

Video S1 Virtual evolution of linear neural mechanisms

(templates) for perception (ventral stream) and saccadic action

(dorsal stream) for search of an elongated Gaussian target. Video

shows for each generation a perception and saccade template of a

randomly sampled simulated individual. Legend below video

indicates the generation number.

Found at: doi:10.1371/journal.pcbi.1000930.s005 (7.83 MB GIF)

Video S2 Virtual evolution of linear neural mechanisms

(templates) for perception (ventral stream) and saccadic action

(dorsal stream) for search of a cross pattern consisting of a positive

and negative polarity elongated Gaussian. Video shows for each

generation a perception and saccade template of a randomly

sampled simulated individual. Legend below video indicates the

generation number.

Found at: doi:10.1371/journal.pcbi.1000930.s006 (8.65 MB GIF)
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Video S3 Virtual evolution of linear neural mechanisms

(templates) for perception (ventral stream) and saccadic action

(dorsal stream) for search of an elongated Gaussian target in

natural images. Video compares a pair of evolved perception and

saccade templates and a pair of randomly generated templates.

Found at: doi:10.1371/journal.pcbi.1000930.s007 (3.71 MB GIF)
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