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Abstract

Integrated constraint-based metabolic and regulatory models can accurately predict cellular growth phenotypes arising
from genetic and environmental perturbations. Challenges in constructing such models involve the limited availability of
information about transcription factor—gene target interactions and computational methods to quickly refine models
based on additional datasets. In this study, we developed an algorithm, GeneForce, to identify incorrect regulatory rules and
gene-protein-reaction associations in integrated metabolic and regulatory models. We applied the algorithm to refine
integrated models of Escherichia coli and Salmonella typhimurium, and experimentally validated some of the algorithm’s
suggested refinements. The adjusted E. coli model showed improved accuracy (,80.0%) for predicting growth phenotypes
for 50,557 cases (knockout mutants tested for growth in different environmental conditions). In addition to identifying
needed model corrections, the algorithm was used to identify native E. coli genes that, if over-expressed, would allow E. coli
to grow in new environments. We envision that this approach will enable the rapid development and assessment of
genome-scale metabolic and regulatory network models for less characterized organisms, as such models can be
constructed from genome annotations and cis-regulatory network predictions.
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Introduction

A current challenge in systems biology is reconstructing

transcriptional regulatory networks from experimental data (e.g.

gene expression, genome sequence, and DNA-protein interaction),

due to the complexity of interactions in these networks and the

limited information on network components and interactions for

most organisms [1,2]. Even for well-studied model organisms, such

as E. coli and Saccharomyces cerevisiae, inferred or indirect regulatory

interactions have to be included in genome-scale transcriptional

regulatory reconstructions due to existing knowledge gaps in how

genes are transcriptionally regulated [3,4]. Reconstructed regula-

tory networks will be incomplete, reflecting incomplete knowledge

about cis-regulatory networks, and may include incorrect interac-

tions. As such, methods for iterative validation and refinement of

regulatory reconstructions are needed in order to assess new

experimental datasets as they emerge [5,6]. Such approaches need

to identify and eliminate inconsistencies between the reconstructed

network and new experimental data, and to include newly

discovered network interactions [3]. However, identifying the

cause of inconsistencies in a highly interconnected network using

manual efforts is not a trivial task, and can be labor intensive

particularly for genome–scale transcriptional regulatory network

models. Therefore, systematic approaches that automate this

iterative procedure are useful for identifying new or incorrect

connections in biological models; such approaches have been

developed for analysis and correction of metabolic networks [7–9].

In this paper, we present an approach that allows for the

automated adjustment of an integrated genome-scale metabolic

and transcriptional regulatory network model, by comparing the

emergent properties of the integrated networks to cellular growth

phenotypes. These adjustments result in testable hypotheses about

transcriptional regulation and metabolism in organisms.

While there are many types of regulatory modeling approaches

(reviewed in [10]), Boolean modeling of regulatory interactions

can be beneficial when modeling large-scale regulatory networks

because (i) such formalism requires minimal parametric details to

be incorporated [11], and (ii) these Boolean models can be

integrated with constraint-based metabolic models [3,4]. One of

the commonly used constraint-based modeling approaches for

metabolic models is flux balance analysis (FBA), which predicts an

optimal steady-state flux distribution in a metabolic network [12].

This can be extended to integrated metabolic and regulatory

models, referred to as regulated flux balance analysis (rFBA),

which accounts for transcriptional regulation as well as the other

governing physicochemical constraints [13,14]. While the meta-

bolic and regulatory models in rFBA are solved iteratively, newer

approaches for integrating metabolic and regulatory models allow

the models to be combined into a single model using an mixed-

integer linear programming (MILP) formalism [15]. In this case,
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steady-state regulatory flux balance analysis (SR-FBA) is used to

identify optimal flux distributions that satisfy both models

simultaneously. We have recently developed an efficient SR-FBA

formulation that systematically integrates transcriptional regulato-

ry and metabolic networks [16] which was used here.

In this work, we developed an algorithm (called GeneForce) to

reconcile integrated regulatory and metabolic model predictions

with experimental data, by automatically identifying and overrid-

ing transcriptional regulatory rules that cause inconsistencies

between model predictions and experimental observations. The

approach can be used in cases where both the experimental data

and an un-regulated metabolic model agree on a positive growth

phenotype (cells can grow), but the integrated metabolic and

regulatory model predicts a non-growth phenotype (cells cannot

grow). In these cases, the GeneForce algorithm allows the

integrated metabolic and regulatory model to achieve growth by

violating regulatory rules as needed, while minimizing the total

number of regulatory violations in order to maximally preserve the

original regulatory interactions present in the regulatory network

reconstruction. These rule violations indicate that regulatory rules

describing gene expression are incorrect or that isozymes or

alternative pathways are present in the metabolic network.

We first applied the GeneForce method to refine the genome-

scale transcriptional regulatory network for E. coli, iMC1010v1 [3]

which was updated here to include newly discovered Lrp

regulatory interactions [17]. The algorithm was used to analyze

a large collection of ,50,000 E. coli knockout mutant growth

phenotypes [18,19], and the suggested regulatory corrections

resulted in a ,1–8% improvement in model accuracy over the

original models, which had already been adjusted during their

initial development to improve model accuracy. In addition to

correcting regulatory rules, we applied the GeneForce algorithm to

predict genes that, if overexpressed or constitutively expressed,

could rescue non-growth phenotypes of E. coli strains (wild-type or

mutants) in certain growth environments. Finally, we applied the

GeneForce method to investigate the conservation of transcriptional

regulatory interactions between E. coli and S. typhimurium. The E.

coli transcriptional regulatory rules were integrated with a

metabolic model for S. typhimurium that included metabolic genes

and reactions from a recent metabolic reconstruction iRR1083

[20]. GeneForce suggested a small set of rule corrections for this

hybrid network model were needed, based on analysis of S.

typhimurium growth phenotyping data, suggesting that regulation

may be highly conserved between these two organisms. While the

approach has been used here to correct Boolean representations of

transcriptional regulation, it could easily be extended to consider

non-Boolean approaches to modeling transcriptional regulation as

they are developed.

Results

Regulatory rule correction algorithm, GeneForce
We developed an automated MILP approach, GeneForce, to

identify problematic Boolean regulatory rules in an integrated

metabolic and transcriptional regulatory model. The method

identifies regulatory rules that prevent the models from predicting

cellular growth in conditions, which are capable of supporting

growth experimentally. The approach can be used when the

integrated metabolic and regulatory model does not predict

growth, but experimental data and metabolic model predictions

(without any regulatory constraints) indicate growth occurs.

The basic idea of the GeneForce algorithm is to allow the

integrated metabolic and regulatory model to violate a minimal set

of transcriptional regulatory rules so that growth can occur in a

particular condition. The algorithm therefore adds an additional

constraint that the model must satisfy a minimal threshold growth

rate. The algorithm uses a set of ‘rule-violation’ equations (see

Supporting Information Text S1 for details) to relax certain

regulatory constraints (by allowing for expression of un-expressed

genes) thus allowing the model to readjust the metabolic and

regulatory model solution space to include solutions with growth

rates exceeding the minimum threshold. The ‘rule violation’

equations, invoked at the gene level, allow the regulatory rules for

metabolic genes to be violated using additional surrogate gene

expression indicators (y9g) that can differ in value from the gene

expression indicators (yg), the latter of which are determined by

Boolean regulatory rules. Normally in the integrated metabolic

and regulatory model a flux is constrained to be zero if the

necessary metabolic genes are determined to be un-expressed

(yg = 0). In the GeneForce algorithm, the bounds on the metabolic

fluxes are dependent on y9g instead of yg. The reaction

dependence on y9g then allows the model to override a minimum

number of gene expression indicators (where yg = 0 but y9g = 1) so

that the threshold growth rate can be achieved.

The example in Figure 1 illustrates how the GeneForce algorithm

uses the rule violation technique to achieve non-zero growth in an

integrated metabolic and regulatory model in agreement with the

metabolic model predictions. As shown in the Figure 1A the

metabolic model predicts positive growth in the presence of Axt,

whereas the integrated metabolic and regulatory model predicts

no growth due to the regulatory interactions between gene G1 and

transcription factor TF1 (Figure 1B). Expression of G1 is needed

for growth since the corresponding enzyme catalyzes an essential

reaction (BRC), but expression of G1 requires TF1 to be active,

and the binding activity of TF1 is inhibited by metabolite A. This

non-growth phenotype is overcome in the GeneForce algorithm by

making the reaction availability dependent on the surrogate

gene expression indicator y9G1, which is not dependent on the

Author Summary

Computational models of biological networks are useful
for explaining experimental observations and predicting
phenotypic behaviors. The construction of genome-scale
metabolic and regulatory models is still a labor-intensive
process, even with the availability of genome sequences
and high-throughput datasets. Since our knowledge about
biological systems is incomplete, these models are
iteratively refined and validated as we discover new
connections in biological networks, and eliminate incon-
sistencies between model predictions and experimental
observations. To enable researchers to quickly determine
what causes discrepancies between observed phenotypes
and model predictions, we developed a new approach
(GeneForce) that automatically corrects integrated meta-
bolic and transcriptional regulatory network models. To
illustrate the utility of the approach, we applied the
developed method to well-curated models of E. coli
metabolism and regulation. We found that the approach
significantly improved the accuracy of phenotype predic-
tions and suggested changes needed to the metabolic
and/or regulatory models. We also used the approach to
identify rescue non-growth phenotypes and to evaluate
the conservation of transcriptional regulatory interactions
between E. coli and S. typhimurium. The developed
approach helps reconcile discrepancies between model
predictions and experimental data by hypothesizing
required network changes, and helps facilitate the
development of new genome-scale models.

GeneForce: An Approach for Refining Network Models
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Figure 1. Example Network Illustrating the GeneForce Approach. (A) Predicted fluxes through an un-regulated metabolic network, where all
reactions are available (indicated by the green arrow) and flux through the biomass reaction (vBiomass) is maximized. The numbers and thickness of
the arrows indicate flux values. (B) Predicted flux through an integrated metabolic and regulatory model (SR-FBA), where numbers and arrow
thicknesses indicate flux values. The regulatory network includes regulation of two genes (G1 and G2) by two transcription factors (TF1 and TF2),
where TF1 activates G1 and TF2 represses G2. G1 is needed for the BRC reaction and G2 is needed for the ARD reaction. Binary gene expression
status (yG1 and yG2) and transcription factor activity (xTF1 and xTF2) indicators show the expression and binding status of G1, G2, TF1 and TF2,
respectively, with value 1 indicating the expressed/active condition and 0 indicating the unexpressed/inactive condition. Regulatory interactions are

GeneForce: An Approach for Refining Network Models
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regulatory rules. In this case, yG1 = 0 and y9G1 = 1 since the

associated reaction is essential for growth (Figure 1C). Since the

flux ranges in GeneForce are directly dependent on y9g rather than

yg, the reaction associated with G1 can carry flux through it

allowing growth to occur, even though the gene is not expressed in

the Boolean model. It should be noted that the other regulatory

rule in the network (yG2 repressed by TF2) was not overruled

(yG29 = yG2 = 0), even though yG29 could also take the value 1

instead of 0. This is because the algorithm minimizes the sum of

the distances between the surrogate and the original gene

expression indicators, (
P

g

y0g{yg ), and hence the number of

regulatory rule violations by the algorithm. Minimization of this

objective function forces the binary vector of y9g to remain as close

as possible to that of yg, thus minimizing the number of rule

violations. This ensures that the original, literature-derived

regulatory rules are maximally conserved and reflected in the

predicted behavior of the integrated metabolic and regulatory

network.

Rule correction by GeneForce: application to an E. coli
regulatory network model

We used the GeneForce algorithm to refine the regulatory rules

in an updated metabolic and regulatory E. coli model based on

iMC104 (the regulatory portion of the integrated iMC1010v1

model [3]), where we had revised the regulatory rules for genes in

the Lrp regulon based on experimental data [17] (see methods for

details). The Lrp-modified iMC104 model was combined with a

metabolic model and the resulting integrated model was used to

predict growth phenotypes that were compared to experimental

growth phenotypes for a large number of knockout mutants tested

for growth in various conditions [18,19]. The model refinements

were carried out in three successive steps. First, the updated

regulatory rules from iMC104 were integrated with the metabolic

model iJR904 [21] and rule corrections were made to give the first

refined version of the regulatory model iMC105A. Second, the

iMC105A regulatory model was integrated with an updated

metabolic network iAF1260 [22] and adjusted to give the second

refined regulatory model, iMC105AB. Finally, the iMC105AB

regulatory model was further refined using phenotypic data

generated in this study for three global transcription factor

knockout mutants (DarcA, DpurR and Dlrp) to give the final version

of the regulatory model iMC105ABC. Here we consider the

regulatory models (iMC104, iMC105A, iMC105AB, and iM-

C105ABC) to be just the regulatory part of the integrated models

(the number indicates the total number of transcription factors).

Integration of iJR904 with Lrp-modified iMC104 regulatory

rules allowed comparison of 32,050 growth phenotype predictions

to experimental data (Supporting Information Table S1). The

GeneForce algorithm identified genes with possible problematic

regulatory rules in 3,079 out of the 32,050 cases examined, where

each case represents a mutant grown in a different condition.

Alternative optimal solutions exist for only 298 of the 3,079 cases,

where most (281 out of 298) were needed to correct predictions for

growth on L-serine as a nitrogen source or the DsdaB mutant.

These 3,079 cases correspond to cases where a zero growth

prediction by the integrated metabolic and regulatory model

contradicted both the experimental data and the metabolic model

prediction (+/+/2; where + indicates growth and 2 indicates no

growth, and the order corresponds to the results from experiments

/ metabolic model / integrated model). Not all regulatory rules

identified by the algorithm in the 3,079 cases were adjusted, as

they may cause new incorrect predictions in other conditions.

Instead, corrections were made for regulatory rules that were

frequently identified as problematic for a particular knockout

mutant or growth environment (Table 1, refinement step A). In

total, regulatory rules for ten genes (glmU, ilvY, ilvC, sdaC, cycA,

gcvB, dsdX, rpiR, acnA, and ilvA) were corrected in the first

regulatory model refinement, iMC105A. Two gene-protein-

reaction (GPR) associations were also corrected in the metabolic

model for two amino acid transport reactions (L-methionine and

D-serine). These model adjustments led to an ,8% improvement

in the overall accuracy of the integrated model from 73.9% to

81.5% (Table 2 and Figure 2A). Due to the addition of the

transcriptional regulator gcvB, this revised regulatory network

iMC105A contained a total of 105 transcription factors.

The second set of refinements (refinement step B), occurred

when the iJR904 metabolic network was replaced with the

updated metabolic network iAF1260 [22]. The inclusion of the

latest metabolic network allowed integrated model predictions to

be compared against 50,327 growth phenotypes, since more genes

and environments are represented in this larger metabolic network

(Supporting Information Table S2). Using this extended set of

growth phenotypes, the algorithm identified a new set of

problematic regulatory rules in iMC105A, and corrections were

made for eleven additional genes, argD, astCADBE, speA, metH, thrA,

rhaS, and rhaR (Table 1, refinement step B) leading to a second

revision of the regulatory model, iMC105AB. Initial correction of

the regulatory rule for argD fixed 262 errors (+/+/2 changed to +/

+/+) associated with cases where arginine is the nitrogen source,

but also introduced 297 new errors (2/+/2 changed to 2/+/+)

for cases where arginine is the carbon source. To correct these new

errors we subsequently refined the rules for the astCADBE operon

and speA gene, in addition to argD, to reconcile the model with

both arginine conditions. The prediction accuracy of the

integrated metabolic and regulatory model (iAF1260+iMC105A)

was 78.1% before all eleven rule corrections were made, and with

this additional second set of regulatory refinements, the iM-

C105AB model could achieve a slightly higher accuracy, 79.9%

(Table 2 and Figure 2A) and with significantly greater coverage of

the available experimental data (50,327 cases versus 32,050 cases).

In the third set of refinements, the refined regulatory model,

iMC105AB, was tested by comparing predictions to newly

acquired experimental data for three transcription factor knockout

mutants (DarcA, DpurR, and Dlrp). The five transcription factors in

iMC105AB with the most metabolic gene targets are Crp, Fnr,

ArcA, PurR and Lrp. Experimental data was already available for

knockout mutants for two of these transcription factors (Crp and

Fnr), however, growth phenotyping data for DarcA, DpurR, and

Dlrp mutants was not available. Therefore, growth experiments on

phenotype microarrays (Biolog, Hayward, CA) were conducted for

the three mutant strains DarcA, DpurR, and Dlrp. The GeneForce

algorithm identified an additional nine genes needing regulatory

shown as dashed lines, where a normal or blunt arrowhead indicates activation and repression, respectively. The colors indicate the state
(active = green, inactive = red) of transcription factors and metabolic gene expression, or the availability of metabolic reactions (available = green,
unavailable = red). (C) Fluxes and surrogate gene expression indicator values as predicted by the GeneForce approach. The reactions (BRC and ARD)
are now dependent on the surrogate gene expression indicators (y9G1 and y9G2) instead of the expression status of genes G1 and G2 (yG1 and yG2). A
threshold biomass flux (mthreshold) is set as a constraint and the GeneForce algorithm minimizes the sum of the differences between the surrogate
gene expression indicators (shown in c) and the gene expression indicators (shown in b) while satisfying this constraint.
doi:10.1371/journal.pcbi.1000970.g001
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Table 1. E. coli model refinements and the conditions under which they were identified by GeneForce.

Refinement
Step Gene Original Rule Refined Rule Condition# Comment

A metINQ (NOT MetJ) GPR correction Gly-Met (N)
Met-Ala (N)

Unknown transporter for
L-methionine (PMID: 4604763)

A glmU (NagC) (ON) N-acetyl-D-glucosamine (C,N)
N-acetyl-D-mannosamine (C,N)
N-acetyl-neuraminic acid (N)

Essential gene (PMID:
8407787)

A ilvY (NOT val-L(e).0 ) (ON) b3773 (ilvY) á-acetolactate or á-
acetohydroxybutyrate inducer
for ilvY (PMID: 10588699)

A ilvC (ilvY) (ilvY AND NOT (val-L(e).0))
OR (NOT ilvY)

b3773 (ilvY) Constitutive expression of ilvC
in ilvY strain (PMID: 6783625)

A sdaC* (Crp AND (NOT Lrp OR
(leu-L(e).0)))

((Crp AND (NOT Lrp OR
(leu-L(e).0)))) OR
(ser-L(e).0)

L-serine (N) Transporters for ser-L; sdaC
ser-L specific, sstT major, tdcC
anaerobic (PMID: 8026499)

A cycA (NOT Lrp OR (leu-L(e).0)) (NOT GcvB) D-alanine (C,N) No Lrp binding; CycA transporter
for 6 amino acids (PMID: 19118351)

A gcvB (NOT GcvR AND GcvA) D-alanine (C,N) New regulatory small RNA
(PMID: 10972807)

A dsdX GPR correction DsdC or
(DsdC and Crp)

D-serine (C,N) New ser-D transporter (This
study, PMID: 16952954);
regulation (PMID: 7592420)

A rpiR (NOT (rib-D(e).0)) (NOT ((all-D(e).0) OR
(rib-D(e).0)))

b2914 (rpiA) iJR904 requires rpiB for rpiA
strain (PMID: 10559180)

A acnA (SoxS) (ON) b0118 (acnB) Two aconitases
(PMID: 9202458)

A ilvA* (NOT Lrp OR (leu-L(e).0)) (ON) b2797 (sdaB) L-serine/L-threonine deaminases;
SdaA (anaerobic), TdcB (anaerobic),
IlvA (PMID: 13405870, 15155761)

B argD (NOT ArgR) (ON) L-arginine (N) Required for L-lysine biosynthesis

B astABCDE ((NOT(Growth.0) AND RpoS)
OR (NRI_hi AND RpoN)) AND
(NOT Lrp OR (leu-L(e).0))

((NOT(Growth.0) AND RpoS)
OR (NRI_hi AND RpoN))

L-arginine (N) AST pathway for L-arginine
degradation (PMID: 9696779)

B speA (NOT (PurR)) (NOT (PurR)) AND (NOT
(AGMT.0))

L-arginine (C) Putrescine inhibits transcription
of speA (PMID: 1646785)

B metH* (MetR) (metR) OR (met-L(e).0) Gly-Met (N)
Met-Ala (N)

methionine represses metE, but
not metH (PMID: 16622061)

B thrA (NOT (thr-L(e).0 OR ile-L(e).0))
AND (NOT Lrp OR (leu-L(e).0))

(NOT (thr-L(e).0 OR
ile-L(e).0))

Gly-Met (N)
Met-Ala (N)

methionine represses metL, but
not thrA (PMID: 3910040)

B rhaS (RhaR) (RhaR OR (RhaR AND Crp)) L-lyxose (C) rhaA, rhaT ,- RhaS ,- RhaR
/emph> (PMID: 8757746)

B rhaR (rmn(e).0) (rmn(e).0 OR lyx(e).0
OR man(e))

L-lyxose (C) RhaR ,- rhamnose, lyxose,
mannose (PMID: 8757746)

C serC (Lrp AND NOT (leu-L(e).0)
OR (NOT (Crp)))

(ON) b0889 (lrp) Essential in glucose and glycerol
minimal medium (PMID: 17012394)

C aroA (Lrp AND NOT (leu-L(e).0)) (ON) b0889 (lrp) Essential in glucose and glycerol
minimal medium (PMID: 17012394)

C leuD (NOT(leu-L(e).0) AND Lrp) (NOT(leu-L(e).0) b0889 (lrp) Essential in glucose and glycerol
minimal medium (PMID: 17012394)

C leuC (NOT(leu-L(e).0) AND Lrp) (NOT(leu-L(e).0) b0889 (lrp) Essential in glucose and glycerol
minimal medium (PMID: 17012394)

C leuB (NOT(leu-L(e).0) AND Lrp) (NOT(leu-L(e).0) b0889 (lrp) Essential in glucose and glycerol
minimal medium (PMID: 17012394)

C leuA (NOT(leu-L(e).0) AND Lrp) (NOT(leu-L(e).0) b0889 (lrp) Essential in glucose and glycerol
minimal medium (PMID: 17012394)

C ilvB* (NOT(leu-L(e).0 OR
val-L(e).0) AND Crp) to (ON)

(ON) b0889 (lrp)
glucose (C)
gluconate (C)

ilvB required in glucose
condition (this study)

C ilvN* (NOT(leu-L(e).0 OR
val-L(e).0) AND Crp) to (ON)

(ON) b0889 (lrp)
glucose (C)
gluconate (C)

regulatory subunit of ilvBN
encoded enzyme complex (PMID:
1512191)

GeneForce: An Approach for Refining Network Models
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rule corrections (Table 1, refinement step C) which all caused

incorrect phenotype predictions for the Dlrp mutant (Supporting

Information Table S3). Incorporation of these Lrp specific

corrections led to the final refined version iMC105ABC, which

resulted in a small overall improvement (0.01%) in model accuracy

over the previous version iMC105AB (Table 2 and Figure 2A)

when evaluating all data, but a large improvement for the new

phenotype measurements of the three transcription factor deletion

mutants (81.7% accuracy using iMC105ABC vs. 66.1% using

iMC105AB for Dlrp, DpurR, and DarcA phenotypes).

For each +/+/2 case the minimum number of genes whose

regulatory rules had been violated by the GeneForce algorithm was

determined. The distribution of the number of rule corrections

needed for the +/+/2 cases is shown for the first two refinement

steps in Figure 3 before and after the model adjustments were

made (listed in Table 1). The results show that in most cases a

single regulatory rule was preventing the integrated model from

making the correct prediction. The first set of refinements

eliminated most of the +/+/2 cases (Figure 3A), leaving fewer

genes needing rule corrections in the subsequent steps (Figure 3B),

even though more experimental data (50,557 versus 32,050) could

be compared to model predictions.

Alternative optimal solutions were generated for each refine-

ment step by adding integer-cut constraints and re-solving the

GeneForce problem. The number of +/+/2 cases for which

alternative optimal solutions exist can be found in Supporting

Information Table S4. In most cases, they were specific to a

particular knockout mutant or growth environment, and the

alternative optimal solutions were two or three isozymes catalyzing

an essential reaction. For some instances we were able to find

enough information in the literature to determine the most likely

isozymes involved (ilvA, metH, sdaC and thrA). For other cases

described below (dctA, rpiB, and ilvBN), we performed additional

growth phenotyping experiments to determine the final set of

corrections. Overall application of the GeneForce algorithm to

correct +/+/2 cases led to (i) changes in the regulatory rules for

metabolic genes (e.g. glmU, ilvBN, and dctA) (ii) changes in the rules

for TF activities (e.g. RpiR), or (iii) changes in the gene-protein-

reaction (GPR) associations in the metabolic network (e.g. dsdX).

Some examples from the different types of changes are presented

below, and in some cases additional mutant phenotypes were

screened by experiments to confirm the necessary model changes

identified by GeneForce.

In our analysis, the regulatory rule describing the regulation of

glmU by the NagC transcription factor was identified as the most

problematic rule, causing approximately one third of the total

incorrect zero growth predictions by the Lrp-modified iM-

C104+iJR904 integrated model. GeneForce identified the regula-

tory rule for glmU gene as needing a correction for most mutants

grown in conditions where any of the three amino sugars, N-

acetylglucosamine (GlcNAc), N-acetylneuraminate, and N-acet-

ylmannosamine were present. GlmU catalyzes two consecutive

reactions producing an essential precursor UDP-N-acetyl-glucos-

amine (UDP-GlcNAc) for the cell wall of E. coli [23,24]. This gene

has been found to be essential in E. coli [25], supporting

GeneForce’s prediction that the regulatory rule for glmU is

incorrect.

The following two regulatory rules in iMC104 precluded the

gene from being expressed in the integrated model under certain

conditions: ‘NagC is active if NOT (GlcNAc OR glucosamine-6-

phosphate)’ and ‘glmU is expressed if NagC is active’. The first rule

prohibited NagC from being active in the presence of any of the

three amino sugars because glucosamine-6-phosphate is a

common intermediate in their degradation pathways. The

inactivity of NagC subsequently prohibited the expression of glmU

in the integrated model, resulting in a non-growth phenotype

prediction. GeneForce violated the glmU regulatory rule so that

GlmU can carry out the two essential reactions. Although the

Refinement
Step Gene Original Rule Refined Rule Condition# Comment

C dctA* (((‘‘CRP noMAN’’) AND NOT(ArcA)
AND (DcuR))

(ON) b0889 (lrp)
L-malate (C)

dctA deletion causes prolonged
lag phase (this study)

*indicates alternative optimal solutions exist for this change.
#(C) indicates carbon source and (N) indicates nitrogen source.
A- Rule corrections needed for iMC104+iJR904.
B- Rule corrections needed for iMC105A+iAF1260.
C- Rule corrections needed for iMC105AB+iAF1260.
doi:10.1371/journal.pcbi.1000970.t001

Table 1. Cont.

Table 2. Accuracy and number of rule correction and rescue non-growth cases at successive stages of regulatory rule refinements.

Metabolic networka iJR904 iJR904 iAF1260 iAF1260 iAF1260

Regulatory networkb iMC104 iMC105A iMC105A iMC105AB iMC105ABC

Total comparisonsc 32,050 32,050 50,327 50,557 50,557

Rule correction cases (+/+/2) 3,079 445 1,546 565 510

Rescue cases (2/+/2) 2,041 1,847 2,130 2,087 2,070

Integrated model accuracyd 23,670 (73.9%) 26,112 (81.5%) 39,288 (78.1%) 40,403 (79.9%) 40,441 (80.0%)

a,bMetabolic and regulatory networks used in the integrated models.
cTotal number of growth phenotypes analyzed.
dNumber (percent) of cases where the integrated model predictions were in agreement with experimental data.
doi:10.1371/journal.pcbi.1000970.t002
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regulatory rules shown above were in agreement with experimen-

tal data reported in the literature, the Boolean representation of

the regulatory interaction was too stringent in the model. The

glmU gene contains two upstream promoters P1 and P2, and the

transcription factor NagC is shown to induce expression using the

promoter P1 in the absence of any of the three amino sugars [26].

However, the second glmU promoter, P2, is weakly induced in

presence of N-acetylglucosamine, suggesting that the activating

role of NagC could be dispensable for this promoter [26]. This

suggests that the expression of glmU is not completely abolished

when NagC is inactive, and that the low level of induction at P2 is

still sufficient to allow for the production of UDP-GlcNAc. Since

glmU is required for growth in other environments as well, it is

always expressed in the refined set of regulatory rules.

The integrated model made incorrect predictions for the Dlrp

mutant in a few different conditions, including growth on glucose,

gluconate, and L-malate as sole carbon sources. For the glucose

and gluconate conditions, GeneForce found that either ilvHI or

ilvBN needed to be expressed since these two isozymes are used for

the synthesis of branched chain amino acids. To evaluate which of

these isozymes is used by the cells, we screened a number of Lrp

double mutants for growth on glucose and found that only

DlrpDilvB is unable to grow; however, DlrpDilvN, DlrpDilvH, and

DlrpDilvI were all capable of growing in glucose minimal media

(Figure 4A). This is consistent with earlier reports that the catalytic

subunits (ilvB and ilvI) are still active in the absence of the smaller

regulatory subunits (ilvM, ilvN and ilvH) [27]. To reconcile the

positive growth phenotype of a Dlrp mutant grown on malate,

GeneForce needed to override the regulatory rule for one of the

malate transporters in E. coli. We subsequently found that DdctA

and DlrpDdctA mutants did not grow on L-malate, while the Dlrp

mutant grew (Figure 4B) , implying that the dctA rule needed

correction.

Ribose-5-phosphate isomerase (RPI) catalyzes the reversible

conversion of ribose-5-phosphate to ribulose-5-phosphate in the

pentose phosphate pathway. Two RPIs have been identified in E.

coli, RpiA and RpiB, which are genetically and biochemically

distinct. RpiA is constitutively expressed and accounts for most of

the RPI activity in wild-type cells [28]. RpiB also functions as an

allose-6-phosphate isomerase, catalyzing the second step in the

allose degradation pathway [29]. It has been shown that rpiB

expression is repressed by a regulator, RpiR, which is located on

the same operon [30]. We subsequently measured growth of DrpiA,

DrpiB, and DrpiADrpiB mutants on D-ribose and D-allose, and

found that only the double deletion exhibited a lethal phenotype

on D-ribose (Figure 4C), while neither DrpiB nor DrpiADrpiB

Figure 2. Accuracy and Number of Rule Correction Cases.
Application of GeneForce to correct growth phenotype predictions by
overriding regulatory rules (A) Growth phenotype prediction accuracy
of integrated regulatory-metabolic network models at various steps of
regulatory network refinement. Accuracy (solid circles) is calculated by
dividing total number of correct (experimentally consistent) predictions
by the total number of cases evaluated (open squares) at each step. The
colors correspond to the metabolic networks used in the integrated
metabolic and regulatory network models with red for iJR904 and blue
for iAF1260. (B) The total number of ‘rule correction’ cases (solid circles)
for each regulatory network is plotted. Such cases are represented by +/
+/2 (Exp/Met/Met+Reg) in the growth comparison tables (Supporting
Information Table S1 and S2).
doi:10.1371/journal.pcbi.1000970.g002

Figure 3. Number of Rule Corrections Needed to Correct Model
Predictions. Distribution of rule corrections for +/+/2 cases before
and after rule corrections for (A) iJR904 with rules from iMC104 (with
Lrp modified regulatory rules) and iMC105A, and (B) iAF1260 with rules
from iMC105A and iMC105AB. The total number of +/+/2 cases for each
integrated model is indicated in parenthesis in the legend. For each +/
+/2 case the minimum number of genes requiring regulatory rule
corrections was determined. Panels A and B are histograms represent-
ing the number of cases where 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 genes
need regulatory rule corrections.
doi:10.1371/journal.pcbi.1000970.g003
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mutant grew on D-allose (Figure 4D). The original regulatory rule

for RpiR had only D-ribose as an inducer; as a result no growth in

the D-allose medium condition was incorrectly predicted by the

integrated model. We subsequently changed the rule for rpiR to

also include D-allose as an inducer based on the study of allose

catabolism [31].

Figure 4. Phenotyping Experiments to Confirm Rule Corrections. Growth phenotype screens for (A) BW25113 (parent strain), lrp::kan DilvB,
lrp::kan DilvN, lrp::kan DilvH, and lrp::kan DilvI on glucose M9 minimal media, (B) BW25113, lrp::kan, DdctA, and lrp::kan DdctA on L-malate M9 minimal
media, (C) BW25113, DrpiA, DrpiB, and rpiA::kan DrpiB on D-ribose M9 minimal media, (D) BW25113, DrpiA, DrpiB, and rpiA::kan DrpiB on D-allose M9
minimal media, (E) BW25113, DcycA, DdsdX, and cycA::kan DdsdX on D-alanine M9 minimal media, and (F) BW25113, DcycA, DdsdX, and cycA::kan
DdsdX on D-serine M9 minimal media.
doi:10.1371/journal.pcbi.1000970.g004
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Another interesting case was the suggested regulatory refine-

ments for cycA based on the utilization of D-alanine and D-serine.

In this case the algorithm helped lead to improvements in GPR

associations in the metabolic network as well as the regulatory rule

for cycA. The integrated model incorrectly predicted that these

compounds could not be used as carbon and nitrogen sources,

which GeneForce attributed to the expression rule for the CycA

transporter. We subsequently measured growth of DcycA, DdsdX,

and DcycADdsdX mutants, and found that the DcycA and

DcycADdsdX mutant were unable to grow with D-alanine as a

carbon source (Figure 4E) and that only the DcycADdsdX double

mutant was unable to grow with D-serine as a carbon source

(Figure 4F). This indicates that cycA is expressed under both

conditions and that dsdX is also expressed when D-serine is present

as a carbon source. The transport of D-serine by DsdX has only

been shown in an uropathogenic strain of E. coli [32] and based on

our phenotyping results this protein appears to have the same

function in BW25113 as well. As a result, the DsdX transporter

was to be added to the metabolic model and the regulatory rule for

cycA was modified. Altogether, these experimental results illustrate

how GeneForce can help identify incorrect regulatory rules or

missing metabolic functionality which cause model-data discrep-

ancies.

To investigate the effects the model corrections have in other

conditions we evaluated how many new false positives were

introduced (i.e. 2/+/2 cases became 2/+/+) for each refinement

step (Supporting Information Table S4) and whether the predicted

flux distributions would change using flux variability analysis [33].

In refinement steps A and B, the number of new false positives was

only ,7% of the total number of corrected errors. Although 17

new false positives were introduced in refinement step C to correct

53 model errors, the corrections were supported by experimental

results. Aside from the argD case described above, we did not find

any rule corrections that caused significantly more false positives

for other knockout mutant or medium conditions. We further

evaluated the effects the model changes had on predicted wildtype

optimal metabolic flux distributions. Flux variability analysis was

done before and after Refinement A with iJR904 and before and

after Refinements B+C with iAF1260. This analysis was done for

conditions in which the models predict non-zero growth rates

before and after the refinements (84 media conditions for iJR904

and 112 media conditions for iAF1260), since the model changes

were not intended to affect these conditions. We found that the

model changes had no significant effect on the predicted wildtype

fluxes for the 84 and 112 conditions examined (maximum and

minimum predicted flux values changed by less than 0.004 mmol/

gDW/hr, which corresponds to ,0.04% of the carbon source

uptake rates), except for the two conditions with L-malate and

D,L-malate as carbon sources. In these two conditions, the

regulatory rule change for dctA in Refinement C allows D-malate

to be transported and L-malate to be transported with a more

energetically efficient transporter. As a result higher growth rates

can be achieved for these two conditions and the optimal flux

distributions will change significantly.

Use of GeneForce algorithm for predicting mechanisms
for rescuing non-growth phenotypes

In addition to identifying regulatory rules that cause inconsis-

tencies between model predictions and experimental growth

phenotypes, another utility of the GeneForce algorithm is to

identify genes whose transcriptional regulation prevents cells from

growing. In this case the integrated model and regulatory rules are

correct, and the un-expressed state of certain metabolic genes

prevents the cells from utilizing a particular carbon or nitrogen

source. The algorithm functions in the same manner as before,

with the difference being that it is used in 2/+/2 cases in which

cells are incapable of growing experimentally, the metabolic model

indicates that the genes necessary to support growth are present in

the genome, but the integrated metabolic and regulatory model

correctly predicts a non-growth phenotype because the necessary

genes are not expressed. While the algorithm would falsely violate

regulatory rules in order to allow the model to achieve a non-zero

growth rate, such false violations are of interest since they indicate

which genes if over-expressed would allow for growth. Experi-

mentally, such results could be tested by increasing the expression

of the identified genes.

In our analysis of ,32,000 mutant phenotypes using

iJR904+iMC105A, we identified ten medium conditions, where

the GeneForce algorithm repeatedly identified genes whose over-

expression could enable aerobic growth of mutant (and likely wild-

type) E. coli strains. In each of these nutritional states: (i) the

majority of the E. coli knockout mutants were unable to grow, (ii)

the metabolic model incorrectly predicts growth, and (iii) the

integrated metabolic and regulatory model correctly predicts no

growth. In seven out of the ten aerobic conditions, either a single

gene or a single operon was needed to be expressed in violation of

the regulatory rules to allow for growth. This list included citT,

xylA, allC, fucO, atoDAEB, ttdAB, and nirBD, which correspond to

the different medium conditions listed in Table 3. The distribution

of the number of genes needing overexpression to rescue these

non-growth phenotypes (2/+/2) occurred in the first two

refinement steps (Supporting Information Table S1 and Support-

ing Information Table S2) is shown in Figure 5. Similar to the case

for rule corrections (Figure 3), most of the rescue non-growth cases

required over-expressing a single gene. The refinement of the

regulatory rules (listed in Table 1) slightly reduced the number of

rescue non-growth cases by ,1–10% as some cases changed from

2/+/2 to 2/+/+ (Figure 5).

We subsequently looked for experimental evidence in the

literature that would corroborate the algorithm’s predictions of

genes whose overexpression can rescue non-growth phenotypes.

We found direct evidence in support of citT, fucO and atoDAEB

rescuing the inability of wild-type E. coli to grow aerobically on

citrate, 1,2-propanediol, and butyrate, respectively [34–38]. The

citT gene encodes a citrate transporter, and Pos et al. have shown

that plasmid mediated over-expression of citT allows for aerobic

growth on citrate [34]. The 1,2-propanediol oxidoreductase

(FucO), is required for growth on 1,2-propanediol anaerobically,

but under aerobic conditions this gene is not expressed preventing

utilization of this compound. Constitutive expression of fucO leads

to an ability to grow on 1,2-propanediol aerobically [35,37]. Wild-

Table 3. Single genes or operons that are predicted to rescue
non-growth phenotypes under aerobic conditions.

Media Gene Condition

Citrate citT Carbon Source

Sucrose xylA Carbon Source

1,2 propanediol fucO Carbon Source

Butyrate atoDAEB Carbon Source

L-tartrate ttdAB Carbon Source

Allantoin allC Nitrogen Source

Nitrite nirBD Nitrogen Source

doi:10.1371/journal.pcbi.1000970.t003
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type E. coli is unable to utilize saturated short chain fatty acids,

such as butyrate, and studies have shown that the constitutive

expression of atoC, an activator of the atoDAEB operon, instills the

ability to grow on butyrate [36,38].

We were unable to find direct evidence in support of allC

(allantoin) and ttrAB (L-tartrate) but these genes encode enzymes in

the catabolic pathways for these substrates. Wild-type E. coli can

utilize allantoin as a sole nitrogen source anaerobically, but not as

a sole carbon source [39]. The inability to degrade allantoin

aerobically is thought to be due to the oxygen mediated inhibition

of the regulatory gene allS, which is an activator of the allantoin

regulon containing allC [39]. It is possible that constitutive

expression of allC would allow for utilization of allantoin in an

oxic environment. Similar strategies may also be proposed for the

ttrAB operon, which is also repressed in the presence of oxygen

thereby preventing aerobic growth on L-tartrate, a substrate that

can be used anaerobically [40].

Conservation of transcriptional regulation in E. coli and
S. typhimurium

The two bacterial strains, S. typhimurium LT2 and E. coli K-12

MG1655 are closely related and both organisms have been well

studied experimentally and modeled. However, the transcriptional

regulatory network of S. typhimurium is less characterized

experimentally, than E. coli’s, and a genome-scale transcriptional

regulatory model for S. typhimurium is not available. Recently, a

metabolic network model, (iRR1083) for S. typhimurium was

published [20], and we investigated the effects of conserving the

E. coli transcriptional regulatory interactions in S. typhimurium by

superimposing the E. coli regulatory constraints on the Salmonella

metabolic network. The regulatory model iMC105A was integrat-

ed with the metabolic model iRR1083, and we evaluated whether

this chimeric model was consistent with growth phenotypes for S.

typhimurium. The expectation was that if the transcriptional

regulatory networks were highly conserved few regulatory rule

violations would be needed to correctly predict growth.

We transferred the regulatory rules in iMC105A for E. coli genes

to their orthologs in S. typhimurium, and used the GPR association

in the S. typhimurium metabolic network to constrain fluxes through

the metabolic reactions. Among the 1,083 S. typhimurium genes

included in iRR1083, 782 genes had orthologs in E. coli that were

included in iJR904 (which included a total of 904 metabolic genes).

Additionally, among the 105 E. coli transcription factors in

iMC105A, we found 86 had orthologs in S. typhimurium which

were incorporated into the chimeric model. These differences in

conservation of metabolic and regulatory genes allowed us to

transfer approximately 83% of the regulatory rules in iMC105A,

while discarding the remaining rules associated with metabolic

genes not present in S. typhimurium or regulatory rules involving

transcription factors present only in E. coli. Any metabolic ortholog

present in S. typhimurium but regulated by transcription factors

without orthologs in S. typhimurium were kept unregulated in the

chimeric model.

We applied the GeneForce algorithm to this hybrid E. coli

regulatory-S. typhimurium metabolic model and evaluated model

predictions against wild-type S. typhimurium growth phenotypes in

196 medium conditions (Supporting Information Table S5), which

resulted in a surprisingly small number of regulatory rule

violations, suggesting a highly conserved transcriptional regulatory

network between E. coli and S. typhimurium, at least for conserved

orthologs. As seen in Table 4, only a total of 18 genes (out of 505

genes with regulatory rules) needed regulatory rule corrections,

some of which (argD, rhaR and rhaS) also needed rule corrections in

subsequent refinements of the E. coli integrated model as well

(Table 2, correction list B). Thus, 15 out of the 18 genes suggested

some regulatory differences between the two species (Table 4). For

example, the prp operon was forced to be active by the algorithm

because S. typhimurium is capable of utilizing 1, 2-propanediol

aerobically while E. coli is not [41]. The prpBCDE operon of S.

typhimurium encodes enzymes that are needed for utilization of 1,2

propanediol [42]. Regulatory rules in iMC105A state that the E.

coli prp operon is induced by propionate, while for S. typhimurium,

there is evidence that this operon is induced by the coordinated

function of regulatory proteins PrpR, IHF, and RpoN, where

activation of PrpR is induced by 2-methylcitrate, a reaction

intermediate in the 1,2-propanediol utilization pathway [43,44].

Therefore, the algorithm correctly identified the prp genes as

having incorrect rules for S. typhimurium but not for E. coli.

The glnA gene (encoding glutamine synthetase) was also

identified as requiring a rule correction in S. typhimurium but not

in E. coli for growth on glucose and D-gluconate medium. This

difference is primarily attributed to differences in the GPR

association for glutamine synthetase between the two metabolic

networks, where glnA encodes a sole enzyme for glutamine

synthesis in S. typhimurium, whereas in the E. coli models an

additional isozyme YcjK can catalyze the same reaction when glnA

expression is suppressed. Recently, however the YcjK has been

Figure 5. Number of Rule Corrections Needed to Rescue Non-
Growth Phenotypes. Distribution of ‘rescue non-growth’ (2/+/2)
cases before and after rule corrections for (A) iJR904 with rules from the
iMC104 (with Lrp modified regulatory rules) and iMC105A, and (B)
iAF1260 with rules from iMC105A and iMC105AB. The number in
parenthesis in the legends indicates the total number of (2/+/2) cases
for the different integrated models. For each 2/+/2 case on the
minimum number of genes requiring regulatory rule violations was
determined. Panels a and b are histograms representing the number of
cases requiring 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 genes to be
overexpressed to rescue non-growth phenotypes.
doi:10.1371/journal.pcbi.1000970.g005
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shown to be incapable of synthesizing glutamine from glutamate

and ammonia so the regulatory rule for glnA and GPR association

for glutamine synthetase needs to be updated in the E. coli model

as well [45]. Similarly, the focA gene encodes the sole formate

transporter in S. typhimurium but has an alternative gene focB in E.

coli, which explains why the focA regulatory rule was not

problematic in our analysis of E. coli growth phenotypes.

The initial integrated metabolic and regulatory model for S.

typhimurium, when tested against the wild-type S. typhimurium growth

phenotypic data in 196 medium conditions was 77% accurate.

The unregulated metabolic model (unregulated iRR1083) was

82% accurate against the same growth phenotyping data. After

introducing the refined rules (Table 4), the refined integrated

metabolic and regulatory model was able to achieve 83% accuracy

for this dataset, a value similar to those found in this study for

integrated models of E. coli metabolism and regulation.

Discussion

In this work we developed a new optimization-based approach,

GeneForce, for systematically refining a genome-scale transcrip-

tional regulatory model by comparing model predictions against

high-throughput growth phenotypic data. The developed ap-

proach was used to (i) refine existing transcriptional regulatory and

metabolic models of E. coli and suggest regulatory rule corrections,

(ii) explain how transcriptional regulation prevents cellular growth

in certain conditions and identify genes which can rescue non-

growth phenotypes if expressed, and (iii) construct and refine a

new integrated regulatory and metabolic model for S. typhimurium.

We showed that even well curated transcriptional regulatory

and metabolic models for E. coli [3,21,22] can be further improved

by using the developed approach. Here, cases where the integrated

model under-predicted growth (cells grew experimentally and the

metabolic model predicted growth, but the integrated model did

not predict growth) were used to improve the integrated metabolic

and regulatory model. A total of 42 model corrections (27 listed in

Table 1 and an additional 15 described in the Materials and

Methods section) were identified and when implemented they

improved the accuracy of the models by 1–8%. The improved

integrated metabolic and regulatory model predictions were found

to better predict metabolic mutant phenotypes than other

constraint-based methods using only metabolic models. When

the iAF1260 metabolic model was used, flux balance analysis

(FBA) was ,76.5% accurate and minimization of metabolic

adjustment (MOMA) [46] was ,75.6% accurate (data not shown),

while the integrated metabolic and regulatory model (iA-

F1260+iMC105ABC) was ,79.6% accurate when predictions

were made for the metabolic gene knockouts. The integration of

metabolic and regulatory network models is thus important for

being able to more accurately predict behavior of metabolic

mutants, as well as, transcription factor mutants.

In addition to fixing incorrect model predictions, we showed

that GeneForce can also be used to evaluate correct model

predictions of non-growth conditions to explain how regulation

prevents the use of particular nutrients since the needed enzymes

are encoded in the genome. We used the approach to suggest a set

of genes which if expressed can rescue non-growth phenotypes of

mutant and wildtype strains. Experimental testing of these

hypotheses would validate that particular metabolic transforma-

tions occur and could be used to engineer novel growth

phenotypes in an organism.

In addition to applying the GeneForce approach to already

developed and refined metabolic and regulatory E. coli models, we

also applied it to a new integrated model for S. typhimurium. We

constructed an initial transcriptional regulatory model for S.

typhimurium, by transferring the regulatory network from a closely

Table 4. Regulatory rules needing correction when integrated with a S. typhimurium metabolic network.

Gene Original rule Refined Rule

prpB (ppa(e).0) (PrpR AND RpoN AND (HimA AND HimD))

prpC (ppa(e).0) (PrpR AND RpoN AND (HimA AND HimD))

prpD (ppa(e).0) (PrpR AND RpoN AND (HimA AND HimD))

prpRb (MCITS.0)

himAb ON

himDb ON

fadL ((NOT (Crp OR FadR OR OmpR))) ON

fucO (((((FucR) OR (rmn(e).0)) AND (NOT (o2(e).0))) AND Crp) OR (((FucR) OR (rmn(e).0)) AND (NOT (o2(e).0)))) (fuc-L(e).0 OR rmn(e).0)

glnA (Crp AND RpoN) ON

ttdA (NOT(o2(e).0) AND (tartr-L(e).0)) (tartr-L(e).0)

ttdB (NOT(o2(e).0) AND (tartr-L(e).0)) (tartr-L(e).0)

focA (ArcA OR Fnr AND (Crp OR NOT (NarL))) ON

argD a (NOT ArgR) (NOT ArgR) OR (arg-L(e).0)

prsA (NOT PurR) ON

guaA (NOT (PurR AND Crp)) ON

guaB (NOT (PurR AND Crp)) ON

rhaS a (RhaR) (RhaR OR (RhaR AND Crp))

rhaR a (rmn(e).0) (rmn(e).0 OR lyx(e).0 OR man(e))

Corrections common to E. coli and S. typhimurium.
bprpR, himA and himD were added to the regulatory network to update the regulatory rule for the prpBCD operon, and were not part of the original 505 regulatory rules

for S. typhimurium.
doi:10.1371/journal.pcbi.1000970.t004
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related organism. We then applied the approach to correct

regulatory rules in the integrated metabolic and regulatory model

of S. typhimurium [20]. The results showed that the transcriptional

regulatory network in E. coli is highly consistent with the growth

phenotypes of S. typhimurium, indicating that the regulatory

networks in these two organisms may be highly conserved between

these two organisms. A similar observation was found previously

by Babu et al., where ,90% of E. coli regulatory interactions were

predicted to be conserved in S. typhimurium based on the presence

of orthologs of transcription factors and their target genes in S.

typhimurium [47]. While the resulting integrated model is still

consistent with observed phenotypes for S. typhimurium, additional

work is still needed to expand this initial regulatory model to

include organism-specific regulatory interactions (such as altered

regulons and regulons that are unique for S. typhimurium).

The number of available metabolic reconstructions is rapidly

increasing, which is made possible by the increased number of

genome sequences [48]. However, the development of genome-

scale transcriptional regulatory models is currently limited by the

lack of available data for most organisms. Different approaches

have been developed to model transcriptional regulatory networks

(reviewed in [10]), but a Boolean approach has been commonly

used for building genome-scale transcriptional regulatory models

due to its scalability. Integrated models of metabolism and

transcriptional regulation have been developed using a Boolean

approach for some model organisms, such as E. coli [3] and S.

cerevisiae [4], but our current understanding of transcriptional

regulation in microorganisms is still limited due to its complexity,

interconnectivity, and intrinsic noise in these networks compared

to metabolism. The GeneForce approach can be very useful for

validating and refining transcriptional regulatory models against

new experimental data, as well as for developing new regulatory

models where initial models often yield a number of predictions

that are inconsistent with experimental data. In the past, the

identification of regulatory rules causing inconsistencies between

model predictions and experimental observations was done

through a time intensive, trial and error process [3].

Other types of non-Boolean methods are needed to integrate

genome-scale metabolic and regulatory models, since Boolean

approaches cannot capture all transcriptional regulatory interac-

tions (e.g. regulation of essential genes) and gene expression and

metabolic fluxes have variable levels that cannot be reflected using

‘On/Off’ variables. Modeling methods are available to predict gene

expression levels [49], and these predictions could be used to

constrain metabolic fluxes [50–52] at a genome-scale. The

GeneForce algorithm could be easily extended to consider other

types of integrated metabolic and regulatory models as they are

developed, where the number of genes needing expression levels

higher than those predicted by the regulatory models could be

minimized. As such, the approach would still reconcile integrated

metabolic and regulatory network models with observed growth

phenotypes and suggest improvements of such models. Other

approaches have been developed for metabolic models that use

experimentally determined flux distributions as a means to refine

metabolic models [53], and the GeneForce algorithm could be

extended to compare more quantitative data including biomass

yields (where the measured yields are used to determine the

minimum growth rate threshold) and measured fluxes (where model

fluxes are constrained to be a certain distance from the experimental

values) as such quantitative data become available at a large-scale.

Although automated approaches for refining metabolic models

have been developed [7,9,54,55], such an approach has not been

created for integrated models of metabolism and transcriptional

regulation. The approach developed here finds a minimum set of

refinements needed to correct one case at a time. While we did not

find it to be a significant problem here, it is possible that making

model refinements to correct one case may cause a significant

number of new incorrect predictions for other cases. Approaches

that consider multiple cases simultaneously could be advanta-

geous, but they were not considered here because of the added

computational burden for considering all conditions simultaneous-

ly. The approach described here can be used to improve

transcriptional regulatory network models by accounting for how

a hypothesized regulatory network will affect metabolism and

thereby cellular behavior. We envision that predictions of cis-

regulatory networks, based on genomic analysis and/or experi-

mental data, can be translated into Boolean regulatory models that

can be rapidly refined using our developed approach. The

identified refinements can then suggest further experiments and

lead to a re-evaluation of cis-regulatory networks. By integrating

models of metabolism and regulation, phenotypic data can be

evaluated against regulatory network predictions (which is difficult

to do without a metabolic model), thereby expanding the types of

datasets (e.g. gene expression, genome sequence, and DNA-

protein interaction) that can be used to reconstruct transcriptional

regulatory networks.

Materials and Methods

Strains
The Keio collection of in-frame single-gene deletion strains [25]

and E. coli K-12 BW25113 (the parent strain of the Keio

collection) were used to confirm the model changes identified by

GeneForce. The kanamycin resistant gene (kan) was removed from

the single-deletion strains before screening mutant phenotypes in

the microplate reader (for methods see [56]). In addition, seven

double mutants (lrp::kan DilvB, lrp::kan DilvN, lrp::kan DilvH, lrp::kan

DilvI, lrp::kan DdctA, rpiA::kan DrpiB, and cycA::kan DdsdX) were

generated using P1 transduction (for methods see [57]).

Growth phenotyping experiments
Phenotype microarray (PM) experiments were conducted for

the arcA::kan, purR::kan, and lrp::kan strains from the Keio collection

using PM1 and PM2 plates following manufacturer protocols

(Biolog Inc., CA). Briefly, strains were grown on BUG+B agar

plates and resuspended in inoculating fluid containing Dye A and

loaded onto plates. Plates were incubated at 30uC and absorbance

readings were taken at 600nm at 24 and 48 hours. Other strains

were screened for growth in triplicate at 37uC in a Tecan Infinite

200 microplate reader (Tecan Group Ltd., Switzerland). Optical

density measurements at 600 nm were taken by the microplate

reader every 15 minutes. The Tecan OD measurements (ODTecan)

were converted to an OD value in a spectrophotometer with a 1cm

pathlength (OD600), using a predetermined linear relationship,

OD600 = (2.566)ODTecan+0.0028. Strains were pre-cultured over-

night in 2 g/liter glucose-supplemented M9 minimal medium,

except for a few strains (listed in Figure 4A) that were evaluated for

their ability to grow on glucose which were instead pre-cultured in

LB medium. Pre-cultured cells were washed and resuspended in

media containing a new carbon source so that the starting OD (at

600 nm) was around 0.05. All carbon sources were tested in M9

minimal medium (6.8 g of Na2HPO4, 3 g of KH2PO4, 0.5 g of

NaCl, 1 g of NH4Cl, 2 ml of 1M MgSO4, and 100 ml of 1 M CaCl2
per liter) supplemented with 2 g/liter of carbon source.

Data analysis
High-throughput growth phenotyping (Biolog Inc., CA) data for

E. coli from the ASAP database [18] were analyzed to assign

GeneForce: An Approach for Refining Network Models
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‘‘growth (+)’’ or ‘‘no growth (2)’’ for mutants grown in different

conditions. In addition to the dataset (Mutant Biolog Data I)

evaluated by Covert and colleagues [3], an additional dataset

(Mutant Biolog Data II) was analyzed in this study. We considered

the phenotype microarray (PM) data for carbon (PM1 and PM2)

and nitrogen sources (PM3) that can be simulated by the

computational models, which consisted of 223 mutants in 130

conditions or 303 mutants in 153 conditions, depending on which

model was used (see below). For each PM plate, the negative

control value was subtracted from each data point (OD600), and a

cutoff parameter of 0.1 was applied to determine whether the cells

could grow (+) or not grow (2). The cutoff parameter was

obtained by separating a bimodal-like distribution of the data

(Supporting Information Figure S1), and the results were not

highly sensitive to this parameter. Another set of high-throughput

phenotyping data for single gene knockout mutants of E. coli [19]

was also used. This dataset includes growth phenotypes for 1,440

mutants in 95 environmental conditions using a GN2-MicroPlate

(Biolog Inc., CA). However, the conditions that can be simulated

by the models consist of only 102 mutants in 30 conditions or 128

mutants in 31 conditions depending on the model used, since the

majority of evaluated mutants involved knockouts of genes with

unknown function. The phenotypic data for three global

transcription factor knockout mutants (DarcA, DpurR, and Dlrp)

was generated in this study using the phenotype microarrays

(Biolog Inc., CA) as described above. In this study, we have

excluded the phenotypic data for cells grown on formate and L-

serine as carbon sources, and xanthine and xanthosine as nitrogen

sources, as they are likely false positives in the PM datasets

(formate [3]; xanthine and xanthosine [7] and L-serine (tested in

this study, data not shown) ).

Models and simulation conditions
The genome-scale models of metabolism (iJR904 [21], iAF1260

[22]) and regulation (iMC104v1 [3]) for E. coli were integrated and

used in this study. First, regulatory interactions for the global

transcription factor, Lrp, were updated in the regulatory rules

represented in the iMC104 model based on the recent regulatory

reconstruction from analysis of gene expression and ChIP-chip

data [17]. The Lrp reconstruction categorized regulatory interac-

tions into six different modes based on the gene expression

responses of genes controlled by Lrp to exogenous leucine. We

have converted each regulatory mode into Boolean logic rules, and

updated the regulatory rules in conjunction with existing rules.

Preliminary computational analysis was performed to identify

essential genes for growth in glucose minimal media that were

predicted to be un-expressed based on the updated Lrp rules; the

regulatory rules for these seven essential genes were then changed

back to the original ones before mutant phenotypes were

evaluated. In addition, when the metabolic part of the integrated

model was replaced with the recent metabolic reconstruction,

iAF1260 instead of iJR904, another set of preliminary rule

corrections were needed for the eight genes that are essential only

in iAF1260, due primarily to changes in the biomass equation.

These fifteen preliminary rule corrections were made before the

integrated model was compared to mutant phenotypes, and thus

they are not listed in Table 1 (see Supporting Information Table

S6 for details).

Simulation conditions for the models were determined based on

the available carbon or nitrogen sources in the media as previously

described elsewhere [3] (see Supporting Information Table S7).

When testing the growth on different carbon sources, ammonia

was used as a nitrogen source and the maximum uptake rate for

ammonia was constrained to be 10 mmol/gDW/hr. Pyruvate was

used as a carbon source for testing growth on different nitrogen

sources, and its uptake rate was constrained to be 11.3 mmol/

gDW/hr. Oxygen uptake rate was constrained to be 10 mmol/

gDW/hr for all cases, and uptake rates for other essential nutrients

in each model were specified as listed in Supporting Information

Table S7.

FBA and steady-state regulatory flux balance analysis (SR-
FBA)

Flux balance analysis (FBA) [58] was performed to predict the

maximum growth rate for mutants under different conditions

using the metabolic models. In order to simulate gene deletions in

the metabolic models, we have included GPR associations where

reactions are constrained to have zero flux if an associated gene is

deleted. For the integrated metabolic and regulatory models, we

have systematically formulated an SR-FBA problem [15] with

gene knockout and transcriptional regulatory constraints [16].

Predictions were made by maximizing growth rate for each

mutant in each condition. If the maximum growth rate was

positive then the model predicted growth is designated as (+), or

otherwise designated as (2).

GeneForce formulation
GeneForce identifies the minimal set of genes that are required

for growth, but are unexpressed in a given condition due to

transcriptional regulatory constraints. In the GeneForce formula-

tion, unexpressed genes are allowed to violate the regulatory rules,

and the number of violations is minimized to prevent unnecessary

rule violations. A rule violation is implemented by introducing

surrogate gene expression indicator variables (y9g) to allow flux

through reactions whose associated genes are not expressed

according to the Boolean regulatory rules. A minimum growth

rate requirement is introduced by setting the lower bound for

growth rate to a minimum threshold value, and the threshold

value was set to 10% of the maximum growth rate predicted by

the metabolic model in this study. The algorithm was relatively

insensitive to threshold values between 5 and 50% (see Supporting

Information Table S8), because most integrated model growth rate

predictions were above 80% or below 5% of the metabolic model

predicted growth rate (see Supporting Information Figure S2).

Alternative optimal solutions were found by adding integer-cut

constraints and re-solving the problem. See Supporting Informa-

tion Text S1 for more details.

Rule correction
To identify possible regulatory rule corrections, we analyzed

the cases where the metabolic model and experimental data

agree that the mutant can grow, but the integrated model

predicts no growth (+/+/2; corresponding to experimental

data / metabolic model / integrated model). If a certain set of

regulatory rules were repeatedly violated in the GeneForce

solutions to allow for growth of a specific mutant or in a

particular medium condition, the regulatory rules for those genes

were corrected based on experimental evidence from the

literature. When alternative optimal solutions were available,

meaning that different sets of rule violations could correct the

non-growth phenotype predictions, we examined each set of

solutions and chose the most appropriate one for the specific case

based on results from additional experiments and/or information

in the literature. If a set of rule corrections caused inconsistencies

in other mutant or medium condition, such corrections were not

made unless there was strong experimental evidence for the rule

correction.
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Supporting Information

Figure S1 Histograms of OD600 measurement in Biolog

Phenotype Microarrays (PM).

Found at: doi:10.1371/journal.pcbi.1000970.s001 (0.19 MB PDF)

Figure S2 Histograms of relative growth rate predictions by

iJR904 and iMC104 (with Lrp modified regulatory rules) for

postive and negative experimental growth phenotypes.

Found at: doi:10.1371/journal.pcbi.1000970.s002 (0.07 MB PDF)

Table S1 Phenotype-model comparison using iJR904 and

iMC104 (with Lrp modified regulatory rules).

Found at: doi:10.1371/journal.pcbi.1000970.s003 (0.51 MB XLS)

Table S2 Phenotype-model comparison using iAF1260 and

iMC105A.

Found at: doi:10.1371/journal.pcbi.1000970.s004 (0.77 MB XLS)

Table S3 Phenotype-model comparison using iAF1260 and

iMC105AB/iMC105ABC for DarcA, DpurR, and Dlrp mutants.

Found at: doi:10.1371/journal.pcbi.1000970.s005 (0.03 MB XLS)

Table S4 Detailed statistics of model-data comparisons and

alternative optimal solutions for each refinement step.

Found at: doi:10.1371/journal.pcbi.1000970.s006 (0.03 MB XLS)

Table S5 Phenotype-model comparison using iRR1083 (Salmo-

nella typhimurium LT2) and iMC105A.

Found at: doi:10.1371/journal.pcbi.1000970.s007 (0.03 MB XLS)

Table S6 Preliminary analysis for integrating the new Lrp

reconstruction and metabolic model iAF1260.

Found at: doi:10.1371/journal.pcbi.1000970.s008 (0.05 MB XLS)

Table S7 Simulation conditions for Biolog Phenotype Micro-

arrays (PM) and GN2-Microplate.

Found at: doi:10.1371/journal.pcbi.1000970.s009 (0.06 MB XLS)

Table S8 Sensitivity analysis for different values of minimum

growth rate requirement using iJR904 and iMC104 (with Lrp

modified regulatory rules).

Found at: doi:10.1371/journal.pcbi.1000970.s010 (0.03 MB XLS)

Text S1 Detailed description of the GeneForce formulation.

Found at: doi:10.1371/journal.pcbi.1000970.s011 (0.05 MB

DOC)
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