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Abstract

The oligomerization/co-localization of protein complexes and their cooperative regulation in protein function is a key
feature in many biological systems. The synergistic regulation in different subunits often enhances the functional properties
of the multi-enzyme complex. The present study used molecular dynamics and Brownian dynamics simulations to study the
effects of allostery, oligomerization and intermediate channeling on enhancing the protein function of tryptophan synthase
(TRPS). TRPS uses a set of a/b–dimeric units to catalyze the last two steps of L-tryptophan biosynthesis, and the rate is
remarkably slower in the isolated monomers. Our work shows that without their binding partner, the isolated monomers
are stable and more rigid. The substrates can form fairly stable interactions with the protein in both forms when the protein
reaches the final ligand–bound conformations. Our simulations also revealed that the a/b–dimeric unit stabilizes the
substrate–protein conformation in the ligand binding process, which lowers the conformation transition barrier and helps
the protein conformations shift from an open/inactive form to a closed/active form. Brownian dynamics simulations with a
coarse-grained model illustrate how protein conformations affect substrate channeling. The results highlight the complex
roles of protein oligomerization and the fine balance between rigidity and dynamics in protein function.
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Introduction

The formation of protein oligomeric units often produces

increased stability with improved function for the multi-enzyme

complexes [1]. The co-localization of protein subunits can shape

the active sites, allow allosteric cooperativity, provide an additional

level of signaling or regulation, and even permit channeling of

intermediates during an enzymatic turnover, which are some of

the prime concerns in protein chemistry from the mechanistic

point of view [2–10]. Such protein dynamics are long recognized

to be intimately linked to enzymatic catalysis, but their relationship

is exceedingly challenging to delineate [11]. Several experimental

and computational studies have probed these fundamental

enzymatic processes and their relationships and have provided

invaluable insights into the molecular mechanisms [12–17].

Hemoglobin is one of the classical and well-studied proteins that

exhibit large-scale ligand-induced conformational changes and

allosteric cooperativity during the regulation of oxygen transpor-

tation. However, for a more complicated and larger system such as

tryptophan synthase (TRPS), understanding protein function in

relation to the protein dynamics and formation of the multi-

enzyme complex becomes even more challenging.

The current work investigated TRPS, a pyridoxal 59-phosphate

(PLP)-dependent abba protein complex that catalyzes the last 2

steps of tryptophan biosynthesis in bacteria, fungi and plants.

Research studies conducted over the past 40 years have revealed

interesting structural, dynamic and mechanistic features of this

protein. The protein was the first known enzyme to exhibit 2

distinct catalytic activities modulated by allosteric and synergistic

interactions and demonstrating an intermolecular substrate

channeling process through a 25-Å long tunnel without exposing

the intermediate to the environment (see Figure 1(a)). The a–

subunit of TRPS resembles TIM barrel protein and is composed

of 2 functionally important a–loops, L2 (a–residues 53–60) and L6

(a–residues 179–193), that surround the a–active site. The

significant contributions of these loops in the a–catalysis and a/

b–intersubunit communications have been widely recognized by

both experimental and computational work [18–23]. Within the

superfamily of PLP-dependent enzymes, the b–subunit of TRPS is

classified as fold type II (see definition in Text S1) [24] and

contains a movable communication domain (COMM domain; b–

residues 102–189). The b–H6 of the COMM domain (residues

165–181) preferentially interacts with flexible a–L2 and a–L6 and

mediates intersubunit allosteric communication. Both a– and b–

subunits can adopt open and closed conformations. A fully closed

conformation is proposed to be the active state of the protein in

terms of catalysis and substrate channeling.

Although the isolated a– and b–monomeric units of TRPS can

independently catalyze the a– and b–reactions, respectively, the

rate is very slow [25–27]. Steady–state kinetic studies [28] revealed

that the rate of the a–reaction in the isolated a–subunit is ,100

times slower than that in the abba tetramer of Escherichia coli

TRPS, which has 84% identities and 94% similarities with the

Salmonella typhimurium TRPS used in our simulation studies. This

observation reflects a strong synergistic effect of subunits on the a–

catalysis in the multi-enzyme complex. However, the synergistic
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effects on the b–catalysis are less pronounced. The rate of the b–

reaction in the isolated b–subunit of Zea mays TRPS (ZmTSB1),

which shares 96% identity with the bacterial b–subunit of TRPS,

is only 1.5 times slower than the oligomeric TRPS of Z. mays [29].

While studying the stability of TRPS, Yutani and co–workers

found that the isolated a– and b–subunits of Pyrococcus furiosus

TRPS, which share 35% and 59% sequence identity with the a–

and b–subunits of the S. typhimurium TRPS, respectively, are highly

stable [30–31]. The study concluded that entropic effects are the

major factors contributing to the stability. Similar results have

been observed for Thermus thermophilus, a hyperthermophile with

30% and 55% identical amino acid sequences to the correspond-

ing a– and b–subunits of the S. typhimurium TRPS, which indicate

the importance of entropic effects in stability of the monomeric

subunits [32]. Other kinetic studies investigated the homologs of

the S. typhimurium a–subunit, such as BX1 (33% identical to the S.

typhimurium a–subunit) and indole-3-glycerol phosphate lyase (IGL)

from Z. mays. Both enzymes can efficiently catalyze the a–reaction

without the other protein partner, but BX1 and IGL are about

1400 and 1150 times, respectively, more efficient than the isolated

a–subunit of the E. coli TRPS [33]. The faster reaction rate for

BX1 may be due to a highly stable Glu134 (structurally and

functionally equivalent to the a–Glu49 of TRPS). Unlike the

flexible a–Glu49 of TRPS, Glu134 of BX1 is rigid and preferably

stays in the active conformation [34]. This finding suggests that

efficient catalysis may require a fine balance between stability and

flexibility of enzymes, although the detailed molecular aspects of

such linkages are not clear.

In this study, we addressed fundamental questions of protein

chemistry, including 1) the importance of oligomerization of

protein subunits, 2) understanding subunit cooperativity and

correlative motions, 3) the linkage between allostery and

cooperativity with protein function, and 4) protein conformational

changes in substrate channeling. We performed several sets of

explicit water molecular dynamics (MD) simulations of a/b–

dimeric and isolated a– and b–monomeric units of the S.

typhimurium TRPS with and without ligands. Notably, the isolated

a– and b–monomeric units are folded proteins and are stable in

solution experimentally, but their catalysis rates are reduced [34].

The trajectories were analyzed, and intra– and inter–subunit

correlated motions were illustrated. The ligand–protein interaction

energies, entropic effects, and H–bond networks were also studied.

Brownian dynamics simulations with a coarse-grained model were

performed on selected protein conformations from the MD

simulations to study substrate channeling.

Materials and Methods

Construction of the ligand–free (LF) open conformation
a/b–dimeric unit

Since the protein data bank only contains a–subunit with a

closed a–L6 loop, we performed a 15-ns MD simulation with a

generalized Born (GB) implicit solvent model to obtain an open a–

L6 loop conformation [35]. This method has been already

employed for studying the HIV-1 protease flaps to successfully

demonstrate the open and closed states of this protein [36]. The

initial structural coordinates for the a–subunit were obtained from

the Salmonella typhimurium TRPS (PDB entry 2J9X); the a–site

ligand was manually removed [37]. The coordinates of three

missing residues (Ala190, Leu191, and Pro192) in the a–L6 loop

were taken from a completely closed S. typhimurium TRPS (PDB

entry 3CEP) [38]. After a subsequent minimization, equilibration

and MD simulations with the GB model in the Amber package

[39], several open conformations of the ligand–free a–subunit

were collected on the basis of the distance between a–Thr183 (a–

L6) and a–Asp60 (a–L2). The open conformations of the ligand–

free a–subunit were combined with a ligand–free open b–subunit

(PDB entry 1QOQ) to construct several ligand–free TRPS with

open a– and open b–subunit [40]. The modeled a/b–dimeric

units were minimized and equilibrated in explicit water. The

systems were then subjected to a minimum of 13–18 ns of explicit

MD simulations and important distances were subsequently

analyzed. The most stable ligand–free a/b–dimeric unit in terms

of smooth distance fluctuations was then selected for a 60-ns MD

simulation by use of the NAMD 2.6 program [41].

Construction of the ligand–bound (open conformation)
and ligand–bound–reference (closed conformation)
dimeric units

A ligand–bound complex was constructed by placing both a–

and b–site ligands in the binding sites. IGP was docked into the a–

site of the ligand–free complex obtained from the procedure

described in the previous section (the detail parameters of protein–

ligand docking are given in Text S1). Since the side-chains of the

a–site produced considerable changes during the free protein

simulation (in particular the a–Phe212), molecular docking

programs could not reproduce the crystal structure conformation

of IGP. Therefore, the substrate was manually placed into the

binding site, and the distances of catalytically important residues

a–Asp60 and a–Glu49 with IGP were maintained, as suggested by

experiments. The b–site ligand, aminoacrylate, was docked into

the b–subunit of the ligand–free a/b–complex by use of the

Autodock4 package [42]. The choice of IGP and aminoacrylate as

ligands for a– and b–sites, respectively, ensures the closed

conformation of the a/b–complex. The system containing a–

and b–site ligands is termed the ligand–bound (LB) complex. After

subsequent minimization and equilibration, a 100-ns MD

trajectory was collected to observe the possible ligand-induced

conformational changes in the complex. Since the simulation may

require a very long time (probably a couple hundred ns long) to

Author Summary

Conformational changes of enzymes are often related to
regulating and creating an optimal environment for
efficient chemistry. An increasing number of evidences
also indicate that oligomerization/co-localization of pro-
teins contributes to the efficiency of metabolic pathways.
Although static structures have been available for many
multi-enzyme complexes, their efficiency is also governed
by the synergistic regulation between the multi-units. Our
study applies molecular dynamics and Brownian dynamics
simulations to the model system, the tryptophan synthase
complex. The multi-enzyme complex is a bienzyme
nanomachine and its catalytic activity is intimately related
to the allosteric signaling and the metabolite transfer
between its a– and b–subunits connected by a 25-Å long
channel. Our studies suggest that the binding partner is
crucial for the ligand binding processes. Although the
isolated monomers are stable in the ligand–free state and
can form stable interaction if the substrate is in the final
bound conformation, it has higher energy barrier when
ligand binds to the active site. We also show that the
channel does not always exist, but it may be blocked
before the enzyme reaches its final bound conformation.
The results highlight the importance of forming protein
complexes and the cooperative changes during different
states.

Cooperative Regulation in Protein Function
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Figure 1. Structure of the a/b–dimeric unit of tryptophan synthase. (a) A labeled diagram of the a/b–dimeric unit of tryptophan synthase
(TRPS). The important regions have been color coded: blue for a–L2 (residues a53–60), red for a–L6 (residues a179–193), purple+pink for the b–
COMM domain (residues b102–189), and pink for the b–H6 of COMM domain (residues b165–181). The approximate location of the interconnecting
channel is shown as a solid brown line. (b) The network of H–bonds at the a/b–interface of the TRPS dimeric unit. Some of the H–bonds play key roles
in allosteric communications and the substrate channeling process. The interacting pair of residues is zoomed in, and the formation of possible H–
bonds is shown in small panels.
doi:10.1371/journal.pcbi.1000994.g001
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exhibit the switching of the a– and b–subunits from open/semi-

open (LB state) to the completely closed states, we also run a

reference simulation with a completely closed conformation.

Therefore, another TRPS system, with IGP and aminoacrylate

in the a– and b–site, respectively, was prepared by using the initial

coordinates from a crystal structure (PDB entry 3CEP). This is our

reference structure with completely closed a– and b–subunits,

which we termed the ligand–bound–reference (LBR) complex. We

created a 50-ns MD simulation after subsequent minimization and

equilibration processes.

Construction of the isolated monomeric units of TRPS
The isolated monomeric units for all three states (LF, LB and

LBR) were simply prepared by splitting the a/b–dimeric units into

their subsequent a– and b–monomers, so that the initial

geometries of isolated monomeric units were exactly the same as

their corresponding subunits in the dimeric unit for comparison.

Computer simulation protocol
For the molecular dynamics simulations, the ff03 amber force

field and general amber force field (GAFF) were applied to both

a/b–dimeric and isolated a– and b–monomeric units (LF, LB and

LBR TRPS complexes) [43–44]. An antechamber was used to

create the topology and coordinate files for the ligands [45]. The

protonation states for histidines, aspartates and glutamates were

assigned by the MCCE program [46]. The TRPS dimeric units

contain one a– and one b–subunit, whereas isolated monomers

contain only one of each subunit.

Although no substrates bound to the LF dimeric and isolated

monomeric units, a PLP molecule was kept as a co-factor in the b–

active site. The systems were electronically neutralized by the

addition of 14 Na+ ions for the a/b–dimeric units and 6 and 8 Na+

ions for the isolated a– and b–monomeric units. The LB TRPS

represents a transition stage of the ligand binding process and was

constructed by manually docking a substrate into a free subunit (see

reference [47] for details). The system includes 3-indole-D-glycerol-

39-phosphate (IGP) in the a–active site and aminoacrylate in the b–

active site; systems were subsequently neutralized by the addition of

13, 5 and 8 Na+ ions for the a/b–dimeric and isolated a– and b–

monomeric units, respectively. Both LF and LB complexes have one

Na+ ion placed close to the b–active site, as suggested by

experiments. The LBR complex refers to a completely closed state

of TRPS comprised of IGP and aminoacrylate in the b– and b–

active sites of the complex, respectively. The carbonyl group of

aminoacrylate was unprotonated, and six crystal waters were kept in

the b–site. The Cs+ ion located close to the b–active site in the

crystal structure (PDB entry 3CEP) was replaced with the Na+ ion;

13 more Na+ ions were added to neutralize the a/b–dimeric unit;

and 5 and 8 Na+ ions were used to neutralize the isolated a– and b–

monomers, respectively.

All 9 complexes were solvated by use of a 12 Å TIP3P water

box with the xleap program in the Amber10 package [39]. Each

dimeric unit has about 86000 atoms, whereas isolated monomers

have #48000 atoms. The initial energy minimization for water

molecules involved the sander program in Amber10. The NAMD

2.6 program was then used for further minimization, equilibration

and production runs. Before equilibration, the systems were

gradually heated from 250 to 300 K for 30 ps. The resulting

trajectories were collected every 1 ps. The total trajectory lengths

for the a/b–dimeric units were 60, 100 and 50 ns for LF, LB and

LBR states, respectively. For the isolated a–monomeric units, the

trajectories were 50 ns long for both the LF and LBR states, and

150 ns for the LB state. The production runs for the isolated b–

monomeric units were 56, 126 and 45 ns for the LF, LB and LBR

states, respectively. The NPT ensemble was applied, and periodic

boundary conditions were used throughout the MD simulations. A

temperature of 298 K was maintained by use of a Langevin

thermostat with a damping constant of 2 ps21, and the hybrid

Nose-Hoover Langevin piston method was used to control

pressure at 1 atm. The SHAKE algorithm was used to constrain

the length of all bonds involving hydrogens; therefore, the time

step was set to 2 fs. The non-bonded interactions were truncated

at a distance of 14 Å with a switching beginning at 12 Å. The

particle mesh Ewald method was used to treat long-range

electrostatic interactions beyond the cut-off limit. The VMD

program [48] was used for visualization and graphical represen-

tation. PyPAT script was used to analyze the H-bond network and

MutInf [49] for the correlated motions in simulated trajectories.

RMSF and entropy were calculated by Bio3D [50] and T-Analyst

[51], respectively.

The Brownian dynamics simulation algorithm, together with a

coarse-grained model (CGBD), was used to study the motions of the

indole molecule in the channel formed by the a– and b–subunits.

The CGBD simulation method has been well described [52–53]. In

our simulation, the amino acids are represented by one bead placed

at the Ca of each residue [54]. Most residues were assigned an

effective radius from an existing publication [55]. For residues in the

active sites and along the channel, the bead radius was measured by

the distance between the Ca and side-chain based on a crystal

structure (PDB entry 3CEP). For indole, each ring is represented by

one bead, and an effective radius was based on the size of the pyrrole

and benzene ring of 1.6 Å and 1.9 Å, respectively.

The protein is held rigid, and the motion of each bead of indole

is simulated with use of the BD algorithm of Ermak and

McCammon [56] and Shen et al. [57]. Although the slower

protein fluctuations might have a role during indole channeling,

the coupling between protein conformational changes and indole

motion was not taken into account in this study [58–59]. Multiple

protein conformations were chosen for the CGBD simulations.

The diffusion coefficient used in the algorithm to move a bead was

computed by the Stokes-Einstein equation, and the viscosity of

water was set to 1 cp (T = 293 K). In our coarse-grained model,

the beads of indole are linked by a virtual bond, and Coulombic

and van der Waals interactions were applied for intermolecular

interactions [54–56]. A Lennard-Jones type functional form was

used for van der Waals interactions, Uvdw = 0.5[((ri+rj)/

(rij))
821.5((ri+rj)/(rij))

6], where ri and rj are the effective radii of

beads i and j, respectively. The Coulombic interaction was

approximated by Uelec = qiqj/eij rij, and a distance-dependent

dielectric coefficient (eij = 4rij) was used to avoid unrealistic in vacuo

Coulombic interactions [60–61].

Conformations for the simulations are snapshots taken from 0,

6, 12, 24, 30, 40 and 50-ns MD simulations in the LBR state; 2,

12, 24, 48-ns MD simulations in the LF and LB states. All the

snapshots were superimposed on the crystal structure (PDB entry

3CEP) and the coarse-grained indole molecule was placed in the

same position in the a–active site shown in the crystal structure.

For each snapshot, 500 different random number seeds were used

to study motions of indole as it approached the b–active site. The

simulations used a 50-fs time step and were run for 2–4 ms. A

simulation was terminated if indole reached the b–site or escaped

farther than 40 Å of the a–active site. If indole cannot reach the

b–site within 4 ms, then we consider that the channel is blocked. If

indole diffuses farther than 40 Å of the a–active site, then we

consider that indole escapes, since it is unlikely that indole diffuses

back to the active sites. We computed a distance between one bead

of indole and the center of mass of the b–state in a given protein

conformation to determine whether the indole reacted. If the

Cooperative Regulation in Protein Function
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distance was closer than 5 Å, then the indole reacted at the b–

active site.

Interaction energy and entropy calculation
The MM-PBSA approach was used to compute the ligand–

protein interaction energies. The total energy Etot(r) can be

divided into two terms: potential energy term, U(r), and solvation

energy term, W(r), both functions of the coordinate r. The

molecular mechanical energies were computed in a single MD step

in the Sander module using a cutoff value of 40 Å for the non-

bonded interactions. The solvation energy can be further

decomposed into a Poisson-Boltzmann term, WPB, for electrostatic

solvation free energy [62], and a cavity/surface area term, Wnp,

for nonpolar solvation free energy [63–64]. For the electrostatic

component of the solvation energy, the dielectric constant of the

interior protein (solute) was set to 1, whereas an implicit solvent

dielectric constant of 80 was defined for the solvent region. The

nonpolar solvation free energy was approximated with the

commonly used solvent-accessible surface area (SASA) model.

The SASA was estimated with a 1.6-Å solvent-probe radius as

implemented in Sander. Amber10 was used to compute all energy

terms for each snapshot saved during the MD simulations, with

waters removed [39]. The change in mean energy on molecular

interactions can be split as follows:

DvEtotw~DvUcwzDvUvdwwzDvUelewzDvWPBw

zDvWnpw,
ð1Þ

where DUc represents the changes in valance energy (bond, angle,

dihedral and improper dihedral energies), DUvdw represents van

der Waals interactions, DUele represents Coulombic interactions,

and DWPB and DWnp represent polar and nonpolar solvation free

energy, respectively. Each individual interaction energy term is

calculated according to the following equations:

DvEProtein�ligandw~vEsubunitwithligandw{vEsubunitwithoutligandw

{vEligandw, ð2Þ

where D,EProtein-ligand. is the ligand–protein interaction energy.

Note that the valance energy term is cancelled during the

calculations.

The configurational entropy S consists of conformational and

vibrational parts, which describe the number and width of

occupied energy wells, respectively [65–67], computed from each

dihedral angle. The configurational entropy is calculated by the

Gibbs entropy formula [68]:

S~{R

ð
p(x) ln p(x) dx, ð3Þ

where p(x) is the probability distribution of dihedral x and R is the

gas constant. T-analyst was used to compute the Gibbs entropy,

and only the internal dihedral degree of freedom of rotatable

dihedrals is considered in the entropy calculations. The absolute

temperature T was set to 298 K in this study. The change in

configurational entropy of dihedrals of interest between a bound

and free state can be obtained by TDSconfig. = TSbound2TSfree.

Results/Discussion

TRPS is one of the best-characterized examples of an

oligomeric enzyme with stringent allosteric regulation of the

catalytic reaction. The enzyme has been proposed to cycle

between a low-activity open conformation in the ligand–free (LF)

state and a high-activity closed conformation in the ligand–

bound–reference (LBR) state. The allosteric interactions are

significantly influenced by the presence of a– and b–site ligands.

Experiments suggest that destabilizing the a/b–interface or

separating the a– and b–subunits loses allosteric communication,

thus resulting in impaired catalysis, particularly at the a–site [22].

The 9 simulations starting from the a/b–dimeric unit or the

isolated monomers with different states i.e. ligand–free (LF; IGP-

free and/or aminoacrylate-free but PLP), ligand–bound (LB; IGP-

bound and/or aminoacrylate-bound to the semi–open conforma-

tion proteins), and ligand–bound–reference (LBR; IGP-bound

and/or aminoacrylate-bound to the closed conformation proteins)

allow us to investigate the cooperativity between subunits and

protein allostery induced by ligand binding. Moreover, we used

Brownian dynamics simulations to study the coupling between the

conformational changes and substrate channeling processes.

Allosteric communications in the free and bound dimeric
complex

Effective local or allosteric protein communication is a key to

protein function. In most macromolecules, these communications

are usually governed by non-bonded inter/intra-molecular

interactions, such as van der Waals and electrostatic attractions

and hydrophobic effects. Among these attraction forces, changes

in hydrogen bond networks and surface areas are useful

quantitative measurements for protein communication.

Figure 1(b) demonstrated that interactions at the a/b–interface

in TRPS combine hydrophobic interactions [69], and salt bridges

and H-bonds. Experimental mutational studies for some of these

interacting residues show that the salt bridges and H-bonds

regulate allosteric and synergistic motions in the protein complex.

A quantitative comparison of some H-bond networks, across the

subunits and within the subunits, at the a/b–interface of LF and

LBR dimeric units is shown in Figure 2(a, b). The analysis reveals

a stronger communication at the a/b–interface of the LBR

dimeric unit than at that of the LF dimeric unit. This finding

suggests that binding of ligands in the a– and b–active sites of

TRPS enhances the subunit communications, which are necessary

to synchronize the catalysis taken in both a– and b–active sites

located 25 Å apart from each other.

Correlated motions in proteins are ubiquitous and often related

to protein functions. Assessing such correlations is therefore crucial

for understanding protein function. Although we observed more

inter-subunit interactions in the LBR state, the correlations are

more pronounced in the LF state. The complex is also more

flexible in the LF state, and the motions are not random but are in

concert. Figure 3 shows a comparative correlation of regions

important for subunit communication, such as a–L2, a–L6, b–H6

of COMM domain and residues at the a/b–interface of the TRPS

dimeric unit in the LF and LBR states obtained by the use of the

MutInf package [49]. With a few exceptions in the b–subunit, in

general, the correlation is weaker at/near the dimeric interface in

the LBR state than the LF state; loops a–L2 (red rectangular box)

and a–L6 loops (blue rectangular box) show significant correlation

in the LF state. The correlation map suggests that the a–subunit

(a–L2, a–L6 and the interfacial residues) and b–H6 of the COMM

domain (pink rectangular box) has weak correlation in the LBR

state. A possible reason for a weaker correlation is that stronger

inter-subunit interactions rigidify those regions (Tables 1 & 2)

upon binding of the ligands, resulting in smaller magnitudes of

correlative motions. We suggest that in the LF state, the concerted

Cooperative Regulation in Protein Function
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motions may help and guide the loops and the COMM domain to

close when substrates bind to the active sites.

Structural flexibility of isolated monomers versus a/b–
dimeric unit

Fully closed protein conformations are believed to appear only

when both a– and b–site ligands are present in the a/b–dimeric

complex; they provide the optimized geometry necessary for

enzyme catalysis. The closed conformations can optimize

substrate–protein interactions to stabilize the substrate in the

active site. To quantify the stability of substrates binding to the a/

b–dimeric unit versus the isolated a– or b–monomer, we

performed end-point energy calculation, also known as MM-

PBSA calculations. Although more rigorous free energy calcula-

tion methods, such as umbrella sampling or metadynamics, need

to be applied to get detailed free energy profile, it may need

excessively large computational power to fully sample the energy

landscape for a system with this big size [70–71]. A simple

thermodynamic cycle and single-trajectory post-processing allow

for efficiently computing the various contributions and differences

in ligand binding to the dimeric and isolated monomeric units.

Because the catalytic rates are greatly reduced in the substrate-

isolated monomeric complexes, we anticipated that both ligands

might show weaker intermolecular attraction in the monomers.

Unexpectedly, both a– and b–substrates in the substrate-isolated

monomeric complexes showed fairly strong intermolecular

attractions in the LBR TRPS state than in other states, which

suggests that the monomers are nearly as stable as the dimeric

unit. However, substrates in the LB monomer have higher inter-

molecular energies and are unstable, and the conformations of

ligand-monomer complexes deviate from their dimer conforma-

Figure 2. H–bond formations in different states. A quantitative
comparison of H–bond formations in percentages for residues located
at the a/b–interface of ligand–free (LF; blue bars) and ligand–bound–
reference (LBR; red bars) dimeric units obtained from the molecular
dynamics (MD) simulations of the TRPS complex. The formation of the
H–bonds between a– and b–interfacial residues is given in (a), while (b)
shows the formation of the H–bonds of the a– and b–interfacial
residues within a– and b–subunits, respectively. The x–axis is labeled
with the interacting pair of residues; the a–residues are labeled green
and the b–residues are black.
doi:10.1371/journal.pcbi.1000994.g002

Figure 3. Comparison of correlated motions between different states. The comparison of correlated motions in the dimeric units with (a)
ligand–free and (b) ligand–bound–reference states. The labeled a–residues on the x– and y–axes have a white background and the b–residues have a
black background. Red, blue and pink rectangular boxes represent residues in a–L2, a–L6 and b–H6 of the COMM domain, respectively. The interfacial
residues in both a– and b–subunits are underlined in green.
doi:10.1371/journal.pcbi.1000994.g003
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tions, especially in the a–subunit. Table 3 gives a comparison of

ligand–protein interaction energies in the LB and LBR mono-

meric and dimeric complexes. The values of DEtotal for the isolated

LBR monomers (a= 27.6 and b= 280.5 Kcal/mol) are similar

to those in the LBR dimeric unit (a= 210.9 and b= 276.7 Kcal/

mol), which suggests that the ligand–protein intermolecular

attractions do not have significant differences between the isolated

LBR monomers and the dimer. The changes in the electrostatic

(D,Uele+WPB.) and the non–polar solvation (DWnp) energy terms

upon dissociation of the dimeric unit into the monomeric units are

insignificant in the LBR states. In the LB states, the transition

states during ligand binding processes, substrates interact weakly

with the protein in both a– and b–monomers and the a/b–

dimeric unit. Interestingly, the interactions are much weakened in

the isolated a–monomer, which indicate that without forming an

a/b–dimeric unit, ligand binding substantially disturbs the stability

of the protein. Overall, both a– and b–substrates are less stable in

the LB state than are ligands in the LBR state. The LB state is in

association processes, whereas ligands are binding to TRPS. These

findings suggest that the a/b–dimeric unit helps both a– and b–

site ligands bind in the active sites and bring the proteins to the

closed conformations through a systematically advanced allosteric

communication across the a/b–interface. Absence of interface

communication (i.e., the isolated monomers) detains the transition

of open conformations to closed conformations and results in the

deceleration of catalysis in monomer complexes.

Of interest is knowing whether the isolated a– and b–

monomeric units are more disordered than a/b–dimeric units,

which may be less favorable for ligand binding. Therefore, we

calculated the root mean square fluctuations (RMSFs) of Ca atoms

and torsional entropy for each residue for the first ,50 ns long

trajectory of the LF and LBR states. Figure 4 shows a comparison

of the RMSF values of the isolated a–monomeric unit and the a/

b–dimeric units for both LF and LBR states, which match well

with the trends of the fluctuations in the B-factors of the TRPS

crystal structures. The RMSF plot clearly indicates that most of

the regions in the isolated a–monomeric unit are more rigid, as

compared to the a–subunit of the a/b–dimeric unit in the LF

state, while an opposite trend can be observed for the LBR state.

The effect of the ionic strength on the dynamics of the

hydrophobic surface for the isolated a–monomeric unit in the

LBR state seems negligible. The RMSF plot obtained from a 50 ns

long explicit water MD simulation with 100 mM NaCl concen-

tration is compared with those of the isolated a–monomeric unit

and the a–subunit of the a/b–dimeric unit, and is given in Figure 1

in Text S1. For the b–monomeric units, in general, the difference

in the RMSF values is insignificant. To quantitatively account for

these flexibilities, torsional entropy was computed for the isolated

monomeric and dimeric units in different states. The entropy

computed for the peptide bond L angles was similar with all

simulations, so we focused on other more flexible dihedral angles.

The total entropic contributions for the backbone (K and J) and

sidechains (SCs) indicated that in the LF state, both isolated a–

and b–monomeric units are surprisingly more rigid than the

dimeric unit (see Tables 1 & 2). Khare et al. [72] have observed a

similar behavior in the wild-type Cu, Zn superoxide dismutase

(SOD1) enzyme, where some residues are more rigid in the

monomeric SOD1 as compared to dimer and are coherent with

the NMR data. In TRPS, the difference is particularly significant

in the sidechain rotation. Regions involved in ligand binding and

closing the binding sites, such as a– and b–active sites, a–L6, a–

L2, and b–COMM, show a pronounced decrease in sidechains

motions of the isolated monomeric units, thus contributing to their

rigidity. The hydrophobic binding interface between the subunits

provides alternative contact points that allow sidechains of residues

in the dimeric unit to adopt different binding conformations (data

not shown). In addition, the correlated motions through non-direct

sidechains contacts also increase protein flexibility, so such

correlated motions vanish in the monomer.

Upon ligand binding, the protein flexibility was reduced largely

in the dimeric unit; however, surprisingly, no significant entropic

penalty was found in the isolated LBR monomers (TDS = ,1.6

and ,1.7 kcal/mol for the a– and b–subunits, respectively). When

the substrate binds in the a–active site, the dihedrals entropy of the

a–subunit loses 57.6 kcal/mol in the dimeric unit (Table 1).

Because ligand IGP has intra–molecular interactions and is not

very flexible in its free state, the entropy loss from reducing the

flexibility of a few rotatable bonds of IGP is not significant

(,2 kcal/mol). The difference is comparatively less sizable in the

b–subunit; binding the b–ligand to the active site produces a

protein dihedral entropy loss of 32.5 kcal/mol in the dimeric unit

(Table 2). Interestingly and unexpectedly, without the partners, the

isolated monomers are more rigid in the LF state. Although

binding a chemical ligand to a protein may always result in losing

Table 1. Computed configuration entropy of important
regions in the a–subunit from different states.

Configuration entropy from dihedral degree of freedom for the a–
subunit (TS, kcal/mol)

Protein system a–L6 a–L2 a–active site Total

a–subunit in the
a/b–dimeric unit

LF 22.38 5.93 4.52 57.86

LB 20.51 12.81 3.55 44.32

LBR 8.64 28.29 21.18 0.21

Isolated a–monomer LF 12.68 1.52 3.25 16.14

LB 23.55 8.21 11.31 71.08

LBR 7.17 3.80 2.15 14.58

Configuration entropy calculations (sum of W, Y and sidechain dihedral angles)
of important a–subunit regions to the total effects of the whole a–subunit in
ligand–free (LF), ligand–bound (LB) and ligand–bound–reference (LBR) dimeric
and monomeric units.
doi:10.1371/journal.pcbi.1000994.t001

Table 2. Computed configuration entropy of important
regions in the b–subunit from different states.

Configuration entropy from dihedral degree of freedom for the b–
subunit (TS, kcal/mol)

Protein system COMM Domain b–active site Total

b–subunit in the
a/b–dimeric unit

LF 24.08 3.02 221.1

LB 22.69 20.8 235.43

LBR 216.29 212.25 253.58

Isolated b–monomer LF 22.65 21.60 240.11

LB 24.39 22.36 228.21

LBR 215.63 28.67 241.88

Configuration entropy calculations (sum of W, Y and sidechain dihedral angles)
of important b–subunit regions to the total effects of the whole b–subunit in
ligand–free (LF), ligand–bound (LB) and ligand–bound–reference (LBR) dimeric
and monomeric units.
doi:10.1371/journal.pcbi.1000994.t002
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the configuration entropy of the chemical compound, binding a

protein ligand to a protein partner may have more complex

behavior, such as gaining some flexibility in the TRPS system. A

detailed study may be required to fully characterize and

understand this behavior. As the LF monomer is more rigid,

when ligand IGP binds to the active site, the flexibility changes

between the LF monomer and the LBR monomer are also less

substantial than those in the dimeric unit. In the LBR state,

comparing the total entropy calculations shows that both a– and

b–monomers are more flexible than the dimeric unit.

In the isolated monomeric form, after ligand binding (the LBR

state), the subunit has more freedom to change its conformation

slightly to minimize the entropic penalty associated with gain of

enthalpy in ligand–protein binding. For example, Glu49, Asp60,

Gln65 and Asp130, which interact with the a–site ligand or

communicate with the b–subunit, are able to form H–bonds with

Table 3. Calculated ligand–protein interaction energy for different states.

Ligand–Protein Interaction Energy in the a–subunit (Kcal/mol)

Protein system DUVDW DUele DWPB DWnp DEtot D,Uele+WPB.

a–subunit in the
a/b–dimeric unit

LBa 233.6 (63.5) 266.6 (613.5) 87.7 (67.9) 18.8 (61.4) 6.3 (68.3) 21.3 (68.9)

LBR 243.6 (63.4) 257.9 (68.1) 71.1 (65.1) 19.5 (60.8) 210.9 (67.4) 13.1 (68.6)

Isolated a–monomer LB 238.4 (63.5) 223.6 (68.2) 57.4 (69.7) 20.1 (61.2) 15.4 (68.2) 33.8 (67.0)

LBR 239.2 (63.7) 270.2 (67.3) 83.5 (66.7) 18.2 (61.1) 27.6 (68.3) 13.3 (68.2)

Ligand–Protein Interaction Energy in the b–subunit (Kcal/mol)

Protein system DUVDW DUele DWPB DWnp DEtot D,Uele+WPB.

b–subunit in the
a/b–dimeric unit

LBa 241.9 (63.2) 289.8 (610.7) 134.3 (610.4) 23.2 (60.9) 25.8 (69.2) 45.17 (69.7)

LBR 233.9 (66.1) 2181.0 (631.2) 116.7 (618.1) 21.4 (61.1) 276.7 (614.7) 264.3 (616.7)

Isolated b–monomer LB 236.5 (63.6) 2116.5 (614.9) 153.4 (610.7) 23.9 (61.1) 24.1 (69.5) 36.8 (610.2)

LBR 236.7 (65.1) 2178.1 (621.5) 113.8 (614.7) 20.5 (60.9) 280.5 (611.6) 264.2 (611.9)

aData from published paper [47].
Calculated ligand–protein interaction energy (kcal/mol) for ligand–bound (LB) and ligand–bound–reference (LBR) complexes of tryptophan synthase (TRPS) dimeric and
monomeric units. The simulation length used for the energy calculations for the LBR monomeric and dimeric units is ,50 ns, while the ,60-ns length trajectories have
been used for the LB states.
doi:10.1371/journal.pcbi.1000994.t003

Figure 4. Plots of RMSFs. Comparative root mean square fluctuations (RMSFs) for the a–subunits in the dimeric complexes versus isolated a–
monomeric units based on Ca atoms for each residue, averaged over the total simulation time of 50 ns of the ligand–free (LF) and ligand–bound–
reference (LBR) states.
doi:10.1371/journal.pcbi.1000994.g004
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different atoms. The carboxylate or amide groups of these residues

flip along with the sidechain (See Figure 2 in Text S1), which

preserves the flexibility but forms multiple sets of H–bonds to gain

reasonable substrate–protein interactions. Similarly, the LBR state

shows a frequent flipping of carboxylate group coupled with the

sidechain rotation in Glu350 and Glu172 of the b–active site in the

isolated b–monomer. Figure 5 displays the percentage of H–bond

networks for LBR monomeric and dimeric units for residues at the

a/b–interface and active sites. Details regarding average distances

and angles of H–bond are given in the Table 1 in Text S1. We

found that in TRPS, generally, the loss of inter–subunit H–bond at

the a/b–interface in the isolated monomeric unit is partly

compensated by the formation of new H–bond networks within

the subunit (see Figure 5a), as was also reported for other

monomeric proteins [73]. We observed that the total number of

H–bonds in the LBR monomeric states increased by at least 3–4

times as compared to the dimeric units (data not shown).

Therefore, the isolated monomeric units are not less stable than

the dimeric units energetically. In contrast, the dimeric unit has

less room to adopt different protein conformations, which results

Figure 5. H–bond network in the dimeric and monomeric complexes. Quantitative comparison of the H–bond network for the dimeric and
monomeric complexes of the ligand–bound–reference (LBR) state for residues located at the interface and residues interacting with ligands in the
active sites. (a) a–subunit in the a/b–dimeric unit versus a–monomeric unit, (b) b–subunit in the a/b–dimeric unit versus b–monomeric unit. IGP and
A-A are the a– and b–site ligands and represent 3-indole-D-glycerol-39-phosphate and aminoacrylate, respectively. The x–axis is labeled with the
interacting pair of residues, with the ligands blue and the protein residues in black.
doi:10.1371/journal.pcbi.1000994.g005
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in larger entropy loss in the LBR state. However, some residues

(blue circles in Figure 6(c–d)) at the b–interface and in the b–active

site show strong correlations with other interfacial residues and

residues present in the b–active site of the LBR b–dimeric

complex. These correlations are almost diminished in the isolated

b–monomeric complex.

Overall, the effects of ligand binding and oligomerization on the

2 subunits are considerably different. The reasons may be that i)

Figure 6. Comparison of correlated motions between the dimeric and monomeric complexes. Comparison of correlated motions
between the a–subunit in the a/b–dimeric unit (a) versus the a–monomeric unit (b) and the b–subunit in the a/b–dimeric unit (c) versus the b–
monomeric unit (d) for the ligand–bound–reference (LBR) state, calculated with MutInf. Red, blue and pink rectangular boxes represent residues in a–
L2, a–L6 and b–H6 of COMM domain, respectively. The interfacial residues are underlined in green and the residues at the active sites are underlined
in cyan.
doi:10.1371/journal.pcbi.1000994.g006
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the b–subunit is larger and more rigid than the a–subunit, ii) the

b–active site is buried within the subunit, right beneath the

COMM domain and located relatively far from the interface as

compared with the a–active site, and iii) the motion of the COMM

domain in the b–active site is small as compared with the motion

of loops in the a–subunit. The correlations within the b–subunit

are minor as well (Figure 6). For example, residues involved in the

communication with the a–subunit, 165 to 181 in the b–H6 of the

COMM domain (pink rectangular box), are correlated weakly

with the b–interface (green underline) and the b–active site

residues (cyan underline) in both the monomeric and dimeric

units.

The power of two: Role of forming the dimeric complex
An increasing number of studies show that co-localization of

proteins contributes to the efficiency of cellular signaling events

and metabolic pathways [74–75]. TRPS is one of the model

systems, and the dimeric unit is the minimal function structure. To

mimic nature’s synergy, one recent strategy is to engineer proteins

that consider their spatial organization [76]. However, for

enzymes such as TRPS, which are involved in regulation and

synchronization in producing intermediate and final products,

simply assembling multiple proteins in close proximity may not be

enough. The dimeric unit forms a channel for efficient

intermediate transportation, but the a– and b–subunits also use

the inter–subunit interactions to assist in conformational transi-

tions and synchronize the reactions in both active sites.

Our studies suggest that without a protein partner, both of the

isolated a– and b–monomers form a stable and fully closed

conformation when ligands are both bound in the active sites,

which is the active form of the enzyme. However, the monomers,

in particular the isolated a–monomer, may require an extended

time to transit from an open/inactive form to a closed/active

form. Forming the dimeric unit does not rigidify TRPS to form a

pre–organized conformation for ligand access and to reduce

entropic loss upon ligand binding. However, instead, it stabilizes

the protein when the protein conformation is perturbed by the

substrates during the binding processes. As a result, the dimeric

unit has a smoother active–inactive transition. Notably, for both

the isolated monomers and dimeric unit, the proteins sample both

open and partially closed conformations, but the open (inactive)

form is favored while the ligand is unbound in the LF state.

Presumably, because the hydrophobic interface provides

alternative sidechain contacts and inter–subunit interactions, the

dimeric unit is more flexible than the isolated monomer. Although

the more flexible LF state in the dimeric TRPS results in larger

configuration entropy loss upon ligand binding, we suggest that it

also contributes to ligand recruitment. While a substrate is loosely

bound to the binding site, the active–inactive transition rates

increase, as was recently suggested by Zhou [77]. The binding sites

are moving toward the fully closed conformation, and the binding

mechanism gradually shifts from population shift (conformation

selection) to induced fit [78–80]. However, as revealed by our

simulations, the more unstable monomeric conformations in the

ligand binding processes introduce a larger transition barrier; thus

the transition rates can be decreased significantly. The dimeric

unit uses the inter–subunit interactions to make the conforma-

tional transition easier.

In the LB state, the DEtot of the isolated a–monomer is

,9 kcal/mol larger than that of the a/b–dimeric unit, while the

DEtot for the b–monomeric and the dimeric unit lies within the

standard error (see Table 3). The value suggests that the transition

rate may be decreased by several orders of magnitude in the

isolated a–monomer but reduced only a little in the isolated b–

monomer. The results are in good agreement with experiments

showing that the catalytic rate is ,100 times slower in the isolated

a–monomer but only 1.5 times slower in the isolated b–monomer

as compared with the abba tetramer [28–29]. The calculation

further supports our conjecture that one major role of oligomer-

ization in TRPS is to help the ligand binding processes.

In the LBR state, the isolated monomers show frequent flipping

of the carboxylate group in key catalytical residues, such as a–

Glu49, but the flipping rarely occurs in the dimeric unit. Multiple

sets of H–bonds are established by the flipping of a carboxylate or

an amide group and sidechain rotations, so the ligand–protein

interactions are not weakened. However, the fluctuations can

decrease the catalytic rate in the isolated monomeric units. Our

work suggests that for residues directly involved in the catalysis,

rigid sidechains are preferred for optimized protein function. A

similar point has been concluded for the homomeric BX1 protein,

whereby the protein has a rigid Glu134, the residue having the

same role as a–Glu49, to enhance the catalytic rates [34].

Figure 7. Brownian dynamics simulations in different states.
Snapshots taken from the Brownian dynamics simulations of ligand–
free (a), ligand–bound (b), and ligand–bound–reference (c) states of the
a/b–dimeric units showing the leakage, blockage and passage of the
indole intermediate, respectively, during the channeling process. Indole
is represented by one yellow bead.
doi:10.1371/journal.pcbi.1000994.g007
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Coarse-grained Brownian dynamics simulation for
intermediate channeling

One of the unique features of the TRPS dimeric unit is substrate

channeling. Conformational changes may affect the availability of

the channel, and a fully closed conformation is necessary to avoid

intermediate escape [81]. Protecting indole from diffusing away

from TRPS is crucial for producing the final product, tryptophan,

because the intermediate is relatively unstable in solution.

Considering the significance of substrate channeling and the

challenge of studying the process experimentally, we carried out

CGBD simulation to explore the indole channeling processes (See

Figure 7).

The transportation of indole in the LBR state is smooth and

rapid. Almost all, 99.6%, of indole can reach the b–active site within

4 ms, and the average travel time is 39 ns. In contrast, on the basis of

4 different LF protein conformations taken from the atomistic

simulations, only ,50% of indole can reach the b–active site in the

LF state. Note that we manually placed an indole to the a–active site

in the LF state to simulate indole diffusion when TRPS is in open

conformation. The travel time of indole towards the b–active site in

the LF state is similar to that in the LBR state, but about a half of

indole escapes the a–active site from the open a–loop6 (Figure 7a).

In the LB state, where the protein is undergoing transition from an

open to a fully closed form, indole does not always flow smoothly

into the b–active site. A simulation from a snapshot taken from a 24-

ns MD simulation showed that no indole could reach the b–active

site, because of the channel blockage (Figure 7b). Other simulations

from snapshots taken from 2- to 48-ns MD simulations revealed a

leak in the a/b–interface resulting in only 73% of indole successfully

arriving at the b–active site.

Our work suggests that the channel also has a dynamic

characteristic, which is substantially influenced by the conforma-

tional changes at the active sites. An efficient substrate channeling

with a maximal success rate is only possible when both subunits

are in fully closed conformation, which is in good agreement with

the experiments. Since both indole and the channel are mainly

non-polar, no major attraction forces that steer indole to diffuse

from the a–site to the b–site were observed. Instead, indole spends

longer time in positions that have larger cavities, as the molecule

can freely diffuse to all direction before reaching the b–active site.

The detailed channeling profile has been explored with the

CGBD, and the population of indole staying in the channel

formed by one conformation in the LBR state is shown in

Figure 8b. The peaks correspond to large space appeared in the

channel. Because our model provides fairly large space in the a–

active site, indole usually needs to diffuse around the site before

finding the right direction to move forward. Moreover, our

trajectories show that indole may diffuse back and forth a couple of

times in the channel before finally reaching the b–active site,

which may be one reason that the diffusion time is an order of

magnitude slower than indole diffusion in water. Our coarse-

grained model keeps the protein rigid, so it cannot represent

correlation between intermediate diffusion and protein conforma-

tional changes. However, as indole is a small and neutral molecule,

it is unlikely to have prominent intermediate–protein correlations

to accelerate the intermediate diffusion. For systems where protein

motions strongly correlate with ligand channeling, a fully flexible

protein system with the use of multi-bead coarse-grain models may

need to be applied to more accurately capture the role of protein

motions [82–83].

The significance of protein oligomerization in nature is widely

recognized. TRPS is a good model system revealing the crucial

role of oligomerization in assuring successful ligand binding and

enhancing the rates of chemical catalysis. This study showed that

the oligomerization of the a– and b–subunits not only provides a

direct channel for efficient intermediate transportation but also

permits allosteric cooperativity via inter–subunit communications

to assist with conformational transitions necessary to synchronize

the reactions in both a– and b–active sites.

Supporting Information

Text S1 Supporting information for ‘‘The Role of Oligomeri-

zation and Cooperative Regulation in Protein Function: The Case

of Tryptophan Synthase’’

Found at: doi:10.1371/journal.pcbi.1000994.s001 (3.10 MB

DOC)

Acknowledgments

We thank Drs. Michael F. Dunn and Dimitri Niks for valuable suggestions

and discussion and Leonard Mueller and Jinfeng Lai for discussion and for

providing the protonation state of aminoacrylate. We are grateful to Dr.

Heather Carlson and Michael Lerner for the PyPAT script and Dr. Matt

Jacobson and Chris McClendon for providing and helping with the MutInf

script.

Author Contributions

Conceived and designed the experiments: MQF CeAC. Performed the

experiments: MQF CeAC. Analyzed the data: MQF CeAC. Contributed

reagents/materials/analysis tools: CeAC. Wrote the paper: MQF CeAC.

Figure 8. Analysis of indole distribution. Analysis of indole
distribution in the channel from 360 individual coarse-grained Brownian
dynamics (CGBD) simulations. The protein conformation is taken from a
30-ns MD simulation in the LBR state. (a) The channel is divided into 72
sections through the a–active site to the b–active site. Regions that
indole spent most of the time during transportation are circled in red.
The blue vertical lines shown in the plot does not reflect the real size of
each section. (b) A histogram indicates regions of channel where indole
preferentially resides.
doi:10.1371/journal.pcbi.1000994.g008
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