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Abstract

Prediction of drug action in human cells is a major challenge in biomedical research. Additionally, there is strong interest in
finding new applications for approved drugs and identifying potential side effects. We present a computational strategy to
predict mechanisms, risks and potential new domains of drug treatment on the basis of target profiles acquired through
chemical proteomics. Functional protein-protein interaction networks that share one biological function are constructed
and their crosstalk with the drug is scored regarding function disruption. We apply this procedure to the target profile of the
second-generation BCR-ABL inhibitor bafetinib which is in development for the treatment of imatinib-resistant chronic
myeloid leukemia. Beside the well known effect on apoptosis, we propose potential treatment of lung cancer and IGF1R
expressing blast crisis.
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Introduction

Biomedical research is changing towards a systems pharmacol-

ogy view of drug action [1]. In parallel, chemical proteomics

(Figure 1), a postgenomic version of classical drug affinity

purifications which use is growing rapidly, has been developed

to measure drug target profiles in an unbiased manner [2–5]. It

usually reveals larger than expected spectra of targets which are

causing both therapeutic and adverse effects. Such unbiased target

profiles are very valuable entry points to understand which regions

of the cell machinery are perturbed by a drug. It is hence desirable

to develop new specific algorithms exploiting chemical proteomics

profiles. Generally, it is natural that protein interaction networks

are involved to characterize drug targets, action on diseases, and

potential side effects [6–11]. Existing methods are mainly based on

the network topology and on an integration of gene expression

data and phenotype similarities [12–14].

Alternatively, precise modeling of perturbations which change

the protein interaction network has the potential to predict new

drug targets and to provide a detailed mechanism of action

simultaneously [15–17]. Beside network approaches, classical gene

ontology (GO) enrichment analyses of drug targets are commonly

used which result in no detailed mechanism but identify different

processes and functions of direct involvement [11,18]. However,

one pivotal aspect is that drug targets can perturb protein

interaction networks and biological processes without being

directly part of the latter. Therefore, we present a new algorithm

which combines direct and peripheral perturbations of functional

sub-networks and exploits chemical proteomics drug target

profiles. The idea of functional sub-networks is based on the

finding that genes associated with the same disease often share

protein-protein interactions and gene ontology terms [19]. Our

algorithm estimates the drug impact on biological processes and

the detailed perturbation effects can be visualized as a network,

which facilitates interpretation. Furthermore, we introduce an

affinity score to weigh the drug target profile on the basis of

interaction strengths.

We applied our algorithm to the bafetinib (NS-187, INNO-406)

target profile. Bafetinib is a small molecule tyrosine kinase

inhibitor in development for chronic myeloid leukemia (CML)

[20]. It has been designed to potently and specifically inhibit BCR-

ABL and the SRC family kinase (SFK) LYN, but no other SFKs,

with the purpose of displaying an improved safety profile over

multi-kinase and pan-SFK inhibitors, such as dasatinib, while

retaining the advantageous dual mechanism of action. We have

recently characterized the detailed target profile of bafetinib by

chemical proteomics and to interpret the complex dataset

obtained is challenging. One of the most popular methods for

distinguishing (and potentially quantifying) specific drug targets

from non-specific background proteins is the competition of

soluble drug molecules with the affinity matrix for drug binding

proteins (Figure 1) [21–23]. Comparison of the protein eluates

from a competed and a non-competed drug pulldowns will

highlight specific binders, while non-specific binding proteins will

not be affected. However, even after correct identification and

potentially determination of quantitative interaction parameters

for distinct drug-protein pairs, a global or mechanistic under-

standing of drug effects is but a distant goal requiring some

sophisticated experimental and/or theoretical follow-up. Our

theoretical effort advances significantly our mechanistic under-

standing of the effects of bafetinib and provides others with a

computational strategy applicable to different drug profiles.
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Materials and Methods

Our computational approach to predict the impact of bafetinib

on a functional network is based on the human protein-protein

interaction network, on the annotation of its nodes and on a drug

target profile associated with an affinity measure.

Human protein interaction network
The network is constructed from protein-protein interactions

found in the public interaction databases HPRD, MINT, Intact,

DIP and BioGRID [24–28]. Furthermore, it is supplemented with

published interactions of the BCR-ABL core complex which is the

primary target of bafetinib in chronic myeloid leukemia (CML)

[29]. The resulting undirected network contains 11505 proteins

and 80363 interactions.

Uniform functional sub-network
The human network of all known protein-protein interactions is

associated with its biological processes of gene ontology (GO)

derived from UniProtKB and Entrez Gene [30–32]. All ancestors

of the GO tree are assigned in addition to achieve a complete and

consistent annotation. In total, the human interaction network

consists of 6390 different BP terms. 8939 (78%) nodes of the

human interactome are at least associated with one biological

process. A uniform functional sub-network is a connected fraction

of the interactome, in which all the proteins share the same

function, i.e., one unique GO term. The interactome can contain

multiple disjoint functional sub-networks for the same annotation.

Drug target profile
The recently published drug target profile of the kinase inhibitor

bafetinib measured in the cell line K562 is used [33]. Rix et al took

three quality criteria into account: (1) The drug target profile is

devoid of proteins in the K562 core proteome. (2) No frequent

hitters are included. (3) The proteins must be seen in replicates. In

addition, splice variants and protein fragments are excluded. The

33 proteins are listed in Table S1.

Perturbation of function
Bafetinib can impact the uniform functional sub-networks in

two ways via its targets (Figure 2):

(1) The drug inhibits directly a node of the uniform functional

sub-network.

(2) The drug target interacts with the uniform functional sub-

network at its periphery. To consider also complexes and

cascades, drug targets which are linked via other drug targets

to the functional sub-network are included.

It is difficult to predict which mode of perturbation has a higher

impact. Directly inhibiting a pivotal sub-network member can

completely disrupt a function. Nonetheless, biological signaling

networks often have multiple alternative routes and protein

isoforms to rescue the cell. Drug targets acting at the periphery

can modify significantly the function through interaction or

modulation of a modification, e.g., phosphorylation. By this

Figure 1. Chemical proteomics without (A) and with (B) soluble
drug competition. (A) The drug (blue) bound to a matrix (grey)
retains the drug targets (green) and secondary binders (orange). Most
unspecific proteins (red) are washed of but some could stick to the
matrix. The retained proteins are analyzed with MS/MS. (B) If the soluble
drug is supplemented, it blocks the binding pocket of its target yielding
a reduced amount of pulled-down proteins that are specific drug
binders. Only sticky unspecific proteins and weak drug targets are
retained.
doi:10.1371/journal.pcbi.1001001.g001

Figure 2. The perturbed functional network is a protein-
protein interaction (blue edges) network. This network includes
the uniform functional sub-network (triangular nodes) which shares one
biological function and all drug targets (grey nodes) interacting with it.
Bafetinib (Bafe) can impact nodes (red border) in the uniform functional
sub-networks in two ways: Either the drug inhibits directly a node in the
uniform functional sub-network (1) or it modulates the function
through peripherally interacting drug targets (2).
doi:10.1371/journal.pcbi.1001001.g002

Author Summary

Protein interaction data are accumulating rapidly and,
although imperfect and incomplete, they provide a
valuable global description of the complex interplay of
proteins in a human cell. In parallel, modern proteomics
technologies make it possible to measure in an unbiased
manner the protein targets of a drug. Such data reveal
multiple targets in a view that contrasts with a previously
prevalent paradigm that drugs had single – or a very
limited number of – targets. In this context of newly
available systems level data and more precise and
complete information about drug interactions, it is natural
to try to determine the global perturbation exerted by a
drug on a human cell to identify potential side effects and
additional indications. We present a computational meth-
od that aims at making such predictions and apply it to
bafetinib, a recently developed leukemia drug. We show
that meaningful predictions of additional applications to
other cancers or resistant cases and likely side effects are
obtained that are not straightforward to determine with
existing algorithms. Our method has a strong potential to
be applicable to other drugs.

Perturbation by Bafetinib
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mechanism, the inactivation of different branches and isoforms is

possible. Furthermore, functional boundaries are often loosely

defined and incompletely annotated. We thus treat both

perturbation modes equally and therefore the perturbed functional

sub-network (Figure 2) combines the uniform functional sub-

networks with all interactions to the peripheral drug targets. This

combination could result in joining otherwise disjoint uniform

functional sub-networks via a drug target as linker (see MAPK14

in Figure 3). The direct targets are already members of the

uniform functional sub-networks.

Scoring the impact of bafetinib
We define a score snet which predicts how strong functional sub-

networks are perturbed by bafetinib. For this purpose different

features of the perturbed functional sub-network are combined.

The first feature describes how frequent the annotation is

present in the sub-network. Peripheral drug targets don’t share the

functional annotation (Figure 2), hence they dilute the functional

annotation of the sub-networks. To ensure that the function is not

underrepresented in the network, a first factor of the score is the

ratio of the number nannot,net of nodes which have a specific

annotation to the total size nnet of the perturbed functional

sub-network.

The second feature puts the drug impact in relation to the sub-

network size. Generic biological functions result in very big sub-

networks, in which the drug targets play overall no important role

anymore. Furthermore, the drug should preferentially perturb a

function at several different points. Hence, the proportion of the

number ndrug,net of drug target nodes to the number nnet of all

nodes in the perturbed functional sub-network resembles a good

measure.

Lastly, the binding affinity at of bafetinib to its targets or the

potency of inhibition is important for effective perturbation. In

theory, the affinities can be measured in biochemical assays which

are not always available. However, we propose hereafter an ad hoc

affinity measure derived from chemical proteomics data directly.

Figure 3. Perturbed functional sub-network based on induction of apoptosis by intracellular signals. In the protein-protein interaction
(edges) network, the Bafetinib profile (grey nodes) perturbs the biological process (triangular nodes) which is pivotal in BCR-ABL dependent CML. The
drug affinity (at) is indicated by the node size. Kinases in the target profile have a red label. Proteins of the uniform functional sub-network interacting
with inhibited kinases are shown with a red node border. K562 cells contain ABL1 and its fusion protein BCR-ABL which is not found by the algorithm
in this sub-network. However, ABL1 pulldown is hidden by BCR-ABL and hence missed as target. Western plots proved ABL1 as a competed target
[33] and hence influences are indicated with thin red borders.
doi:10.1371/journal.pcbi.1001001.g003

Perturbation by Bafetinib
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The impact is summarized in the sum of drug affinities to its

targets in the perturbed functional sub-network Tdrug,net divided by

the overall affinity of all possible drug targets Tdurg. Combining

these factors results in a score for each disrupted functional

network:

snet~
nannot,net

nnet

|
ndrug,net

nnet

|
P

t[Tdrug,net

at

, P
t[Tdrug

at
ð1Þ

The last two factors of equation (1) have an additional role and

benefit. Mass spectrometry detection as used in chemical

proteomics does not detect direct drug interactors only; it can

also detect secondary interactors, i.e. proteins that bind to direct

drug interactors. Without prior knowledge, it is difficult to

distinguish between direct and indirect interactors but we believe

that it is advantageous to use the complete target profile of

bafetinib as it embeds the true drug targets into a specific context

and increases the crosstalk with annotated nodes of the sub-

networks (the second factor in equation (1) increases). The affinity

factor ensures that also true and strong drug targets are part of the

sub-network.

Affinity score at for chemical proteomics
The affinity of bafetinib to its targets is used to score the impact

on sub-networks in equation (1). The higher the protein amount in

mass spectrometry analysis, the higher the number of different

detected peptides covering the protein sequence [34]. Hence, the

peptide count pt of each protein is a rough estimate of the amount

of pulled-down protein. If soluble bafetinib is supplemented, the

soluble drug blocks the binding pocket of its target yielding a

reduced amount of pulled-down proteins that are specific drug

binders (Figure 1) and thus, their peptide counts pt,comp decrease.

This observation is expressed in the first factor of the affinity score.

Since in chemical proteomics the drug is always present at a large

excess of constant concentration, it is only possible to distinguish

the affinities of completely competed proteins by taking the protein

amount into account. To down weigh this parameter influence,

the logarithm is applied to pt. Thus, the affinity score can be

expressed by the following equation:

at~ 1{
pt,comp

pt

� �
| ln ptð Þ ð2Þ

Due to the reduced complexity of the competed pull-down, it can

sporadically happen that pt,comp.pt. This case is seen as no

competition and thus the affinity is set to 0.

Randomization
An empirical p-value is calculated via randomization of the

interactome. First, the interaction partners of each node are

randomly selected. It is ensured that the degree of each node remains

constant. Second, the annotation is randomly assigned to the nodes,

while the total number of each term is preserved. The presented

algorithm is applied to 500 random instances of the interactome. The

empirical p-value is calculated from the fraction of randomized

interactomes containing a sub-network with a score equal or better to

the tested score divided by the total number of random instances. The

highest score of all the random instances smax, rand is 0.124.

R-Package
The presented approach is programmed in the statis-

tical environment R/Bioconductor and available at http://

bioinformatics.cemm.oeaw.ac.at/drugDisruptNet [35,36]. The

provided R package depends on graph, RBGL, snow and GO.db

[37–39]. Parallelization is done with snow to generate and score

random instances [40]. Additionally, the above described data and

the results are stored as R data objects.

Visualization and comparison
Networks are visualized with Cytoscape [41]. For comparison,

classical GO/KEGG/Biocarta enrichment analysis of sets are

performed with DAVID [18].

Results and Discussion

We present a novel strategy to analyze the mechanisms of action

of bafetinib. The target profile is weighted with respect to its drug

affinity and its impact on protein interaction networks is scored.

Ten perturbed functional sub-networks are scored higher than any

sub-network of the 500 randomized interactomes (smax, rand =

0.124), see Table 1 and Figure 3, 4 and supplementary Figure S1,

S2. The sub-networks do not necessarily contain all the

components of a specific function since several disjoint functional

sub-networks can be constructed. Bafetinib is designed to treat

BCR-ABL dependent chronic myeloid leukemia (CML). Consti-

tutively active BCR-ABL interferes strongly with apoptosis in

malignant cells. We catch this process in our significantly

perturbed sub-networks at rank 6 (Table 1). Furthermore, MAP

kinase signaling can also be brought together with pathogenesis

and treatment of CML. The top ranked perturbation of

‘‘Epidermal growth factor receptor (EGFR) signaling pathways’’

and ‘‘Insulin receptor signaling pathway’’ suggest potential novel

domains of treatment for bafetinib and ‘‘heart development’’

indicates a putative side effect. The hit signaling pathways further

play important roles in the general perturbed processes of aging,

extracelluar structure organization and cell cycle. Finally,

phosphorylation is an obvious process to be perturbed by a kinase

inhibitor. We discuss pathogenesis, potential new domains of drug

treatment and putative side effects of bafetinib in more details.

Inactivated apoptosis signaling plays a pivotal role in BCR-ABL

dependent CML pathogenesis [42] and is well represented in the

significant sub-networks. The perturbed functional sub-network of

apoptosis (Figure 3) is disrupted by inhibition of ABL2, MLTK,

LYN and MAPK14 (p38a). These kinases are not annotated

themselves as ‘‘induction of apoptosis by intracellular signals’’ but

act at the periphery of the uniform functional sub-network. K562

cells express ABL1, a central node of the network, and its fusion

protein BCR-ABL. High amounts of BCR-ABL hide specific

ABL1 detection with mass spectrometry. However, western blots

proved ABL1 as a competed target of bafetinib in K562 [33].

Hence, the score of perturbation underestimates the impact of

bafetinib on apoptosis in CML.

The impact of bafetinib on apoptosis in CML is manifested with

5 targeted kinases at the periphery (Figure 3). The method strongly

prefers networks which are attacked by several high affinity drug

targets. In theory, a single perturbation might be enough to

significantly interfere with a biological function. However,

biological signaling networks are often highly redundant thus

requiring perturbation at several points in order to observe an

effect [43]. Hence, promiscuous drugs like dasatinib are very

successful in CML and other cancers and the multi-targeted

networks are likely to be of high relevance in drug treatment.

Even if we know that the drug has an inhibitory effect on the

target kinases, we cannot predict without additional knowledge

whether missing phosphorylation has an enhancing or decreasing

effect on the biological process. The constitutively active kinase

Perturbation by Bafetinib
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BCR-ABL results in a strong anti-apoptotic phenotype. Inhibition

counteracts this behavior [44]. Inhibition of LYN has a similar

effect in this context [45]. Contrary to this, MAPK14 inhibition

rescues cells from apoptosis [46]. Only through the complex

interplay of different signals, the malignant cells die upon

treatment as desired. Hence, visualization of the network together

with its disturbers strongly aids in interpreting their influence. This

is a great advantage compared to simple GO enrichment analysis

which does not display the relationship of the proteins to each

other.

The top ranked perturbed functional sub-network is based on

the epidermal growth factor receptor (EGFR) signaling pathway

(Figure 4). It is peripherally interacting with six kinases of the drug

profile. Three additional kinases are directly interacting with

EGFR but also interfering with 7 further proteins of the signaling

cascade. Additionally, the crosstalk between the pulled down non-

kinase members and the functional network is very high. In total

13 out of 33 EGFR signaling components (39%) are interacting

with the drug profile.

EGFR is not expressed in hematopoietic cells (such as K562) but

this sub-network strongly suggests that bafetinib has the potential

to interfere with EGFR signaling for instance in lung cancer cells.

Recently, it was shown through the combination of chemical

proteomics, phosphoproteomics and functional genomics that

dasatinib, a broad-spectrum kinase inhibitor, leads to apoptosis in

lung cancer cells via inhibition of SRC, EGFR, FYN and, notably,

LYN [47]. Therefore, it is possible that also bafetinib might have a

pro-apoptotic effect on these cells as it is also a potent inhibitor of

LYN. While expression of dasatinib-insensitive gatekeeper mutants

of DDR1 (or ABL1) did not rescue the H292 lung cancer cell line

from dasatinib action, the role of DDR1 might be quite different in

primary lung cancer cells as several recent reports described this

receptor tyrosine kinase to be one of the most highly expressed and

phosphorylated kinases in primary lung tumor specimens [48,49].

Thus, it is conceivable that bafetinib might exert pro-apoptotic

effects on lung cancer cells, and it might do so through

simultaneous inhibition of LYN and DDR1.

Second highest is the perturbation of insulin receptor signaling

pathway. It was suggested that bafetinib, CGP76030 and nilotinib

might overcome imatinib resistance in blast crisis patients which

feature BCR-ABL gene amplification [50]. Phase 1 studies could

not verify this yet [51]. However, we propose to treat only the

subgroup of CML blast crisis patients which expresses IGF1R with

bafetinib. The drug targets are strongly interacting with the insulin

receptor signaling pathway which maintains survival of hemato-

poietic cells through IGF1R (supplementary Figure S1). The

IGF1R expression frequency is strongly increased in blast crisis

patients (73%). Inhibition of IGF1R was shown in imatinib-

resistant CML to induce apoptosis [52]. IGF1R is not a known

direct target of bafetinib but attacking several downstream

components simultaneously might show a similar effect as a direct

IGF1R inhibition.

A potential side effect of several tyrosine kinase inhibitors, like

sunitinib and dasatinib, is an increased risk for cardiotoxicity [53].

Observed toxicity in rats can be a result of higher concentration

than used in patients [54]. Nevertheless, perturbation of the ‘‘heart

development’’ network (Figure S2) indicates some possible risks

which should be closely monitored during clinical trials.

We validated the robustness of the algorithm by following the

rank of the biological process upon leaving-one-out (supplemen-

tary Figure S3). The ranks of the first five sub-networks (Table 1)

are generally stable upon loss of a node. High affinity targets are

essential to the phenotype which results in increased sensitivity of

highly ranked terms to high affinity targets. On the contrary,

weaker binders, which are not competed away with free drug,

have only a modest effect on the rank.

Furthermore, we investigated the effect of hubs on the sub-

network ranks, which might exert an influence on the phenotype

upon inhibition. It is not clear whether hubs are, in the context of

our analysis, highly important or ‘‘general signal diluters’’.

Therefore, we weighted up and then down the affinity of the

targets by log10 of their node degree. Multiply by this factor, i.e.

increasing hubs importance, the top 6 sub-networks remain

unchanged and ‘‘cell cycle arrest’’ even improved its rank by one.

The others sub-networks were substituted by ‘‘response to insulin

stimulus’’, ‘‘response to peptide hormone stimulus’’ and ‘‘cellular

response to hormone stimulus’’, which are in line with insulin

receptor signaling. Upon down-weighting by division, the top 4

sub-networks still remained unchanged. We conclude for robust-

ness and reasonable independence of local topology. In other

words, the function of the sub-network at hand seems to play a

strong role in scoring, which is appropriate.

To show the general interest of our method we applied the

algorithm to data we published recently analyzing lung cancer

(HCC297) treatment with dasatinib [47], another kinase inhibitor.

Interestingly, dasatinib is highly promiscuous and pulls down 176

proteins (33 kinases) compared to the 33 proteins of bafetinib. In

addition, free compound competition data were not available in

Table 1. Significantly perturbed functional sub-networks named by their basic function.

Perturbed functional sub-networks Nodes Targets (competed) Score snet

Epidermal growth factor receptor signaling pathway 57 25 (7) 0.213

Insulin receptor signaling pathway 68 26 (7) 0.198

Aging 96 29 (7) 0.185

Regulation of MAP kinase activity 94 22 (7) 0.162

Induction of apoptosis by intracellular signals 53 19 (5) 0.135

Extracellular structure organization and biogenesis 81 21 (6) 0.135

MAPKKK cascade 188 29 (8) 0.131

Heart development 104 21 (7) 0.127

Protein amino acid autophosphorylation 71 21 (5) 0.126

Cell cycle arrest 73 21 (5) 0.125

(Randomization: N = 500; p-value,0.002).
doi:10.1371/journal.pcbi.1001001.t001

Perturbation by Bafetinib
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this case; we thus exploited IC50s of autophosphorylation, which

were available instead (Table S2A of Ref. [47]). The log10 of the

IC50s (in the nM range) were used to weight the effect of dasatinib

on the kinases. Analysis results in 681 significantly hit sub-

networks due to the huge kinase profile (P-value,0.002, Table

S2). Even though more than 5% of the human kinases are targeted

by dasatinib and, subsequently, many sub-networks are signifi-

cantly impacted, the top disrupted sub-networks are insightful. For

instance, the top 10 ranked biological processes are centered on

cell cycle arrest, cell growth and apoptosis. In the highest ranked

sub-networks, SRC, LYN and EGFR play a pivotal role, which is

absolutely consistent with our experimental data where these three

proteins were shown with dasatinib gate-keeper mutants to

strongly contribute to cell viability of HCC297 [47]. These results

show that the algorithm can provide informative data even in very

challenging situations.

In comparison to our approach, classical GO enrichment

analysis (p-value,0.01) of the 33 bafetinib drug targets result in 33

significant biological processes with high redundancy in the GO

tree (supplementary Table S3). Basically, they represent 3 GO

terms: cytoskeleton organization (especially actin filament),

phosphorylation and regulation of stress-activated protein kinase

signaling pathway. Except phosphorylation which is obvious in a

target profile of a kinase inhibitor there is no overlap with the

Figure 4. The bafetinib targets (grey nodes) perturb EGFR signaling which suggests a new application in lung cancer. The drug profile
interferes with many nodes of the uniform function sub-network (triangular nodes). The drug affinity is indicated by the node size (a large node
means high affinity). Kinases in the target profile have a red label. Proteins of the uniform functional sub-network interacting with inhibited kinases
are shown with a red node border. EGFR expressing cells are not known to carry the fusion protein BCR-ABL which diminishes the influence of BCR-
ABL on the network (dashed lines).
doi:10.1371/journal.pcbi.1001001.g004

Perturbation by Bafetinib
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perturbed functional sub-networks. The GO term of cytoskeleton

organization contains competed and non-competed members of

the target profile. The combined attack power of few competed

kinases is too low to see perturbation of the large uniform

functional sub-network (387 members) which is based on

cytoskeleton organization. Enrichment analysis with KEGG and

Biocarta pathways (p-value,0.01) yielded no hit.

In contrast to GO enrichment analysis, the presented method

does not as much rely on accurate annotations. Possible missing

annotations of drug targets interacting at the periphery with a

functional sub-network have only a minor effect on the score.

However, we would like to point out that boundaries of pathways

and biological processes are very diffuse. Crosstalk between

different signaling cascades and metabolic pathways is essential

for a living cell. Integrating protein interactions to peripheral drug

targets provides a way out of this dilemma and can catch therefore

more relevant processes than GO enrichment. Alternatively,

augmenting the drug target profile with their direct interactors,

results in a set of 831 proteins. GO enrichment analysis

(p-value,0.01) of this set results in 676 biological processes (Table

S4). Again the first hits are related to general phosphorylation

which is obvious for a kinase inhibitor profile. At the ninth rank

‘‘regulation of programmed cell death’’ which is related to

perturbed apoptosis is presented with 127 proteins of the

augmented set. The highest scored perturbed sub-network of

EGFR signaling is only found at position 368. Even though the

disrupted processes are detected with the augmented GO analysis,

their ranks are so bad that they would not be considered as

relevant. Our approach thus picks the most relevant perturbed

functional networks and allows for insights beyond traditional GO

enrichment analysis.

Competition experiments in chemical proteomics provide an

additional layer of security to the drug target profile. Secondary

and unspecific binders are difficult to distinguish from true drug

targets. They are often similar in the range of peptide counts and

other properties. The competition with a soluble drug and our

affinity score helps in identifying biological target proteins.

Interestingly, unspecific binders influence the perturbation algo-

rithm only marginally since the proteins are dispersed all-over the

interactome and have no affinity to a specific uniform functional

sub-network. Furthermore, their binding affinity score is 0. On the

contrary, secondary binders of true drug targets increase the

crosstalk to the functional sub-network which is attacked by the

true target. Hence they can be used advantageously embedding

the true targets in a specific context.

In conclusion, we identified successfully known mechanisms in

CML as well as potential new applications and possible side-

effects. We believe that the proposed computational approach can

shed light in mechanisms of other drugs including highly

promiscuous compounds and when soluble compound competi-

tion data are lacking. Hence, we provide an R package at http://

bioinformatics.cemm.oeaw.ac.at/drugDisruptNet.

Supporting Information

Figure S1 The bafetinib targets (grey nodes) disrupt the insulin

receptor signaling pathway. The drug profile interferes with many

nodes of the uniform function sub-network (triangular nodes). The

drug affinity is indicated by the node size (large node equals high

affinity). Kinases in the target profile have a red label. Proteins of

the uniform functional sub-network interacting with inhibited

kinases are shown with a red node border.

Found at: doi:10.1371/journal.pcbi.1001001.s001 (0.47 MB TIF)

Figure S2 The bafetinib targets (grey nodes) disrupt the heart

development suggesting putative risk factors. The drug profile

interferes with many nodes of the uniform function sub-network

(triangular nodes). The drug affinity is indicated by the node size

(large node equals high affinity). Kinases in the target profile have

a red label. Proteins of the uniform functional sub-network

interacting with inhibited kinases are shown with a red node

border.

Found at: doi:10.1371/journal.pcbi.1001001.s002 (0.49 MB TIF)

Figure S3 Leave-one-out analysis. The ranks of the first five

subnetworks (Table 1) are generally stable upon loss of a node.

High affinity targets (left) are essential to the phenotype which

results in increased sensitivity of highly ranked terms to high

affinity targets. On the contrary, weaker binders (right) have only a

modest effect on the rank.

Found at: doi:10.1371/journal.pcbi.1001001.s003 (0.11 MB PDF)

Table S1 Bafetinib (INNO-406) drug target profile.

Found at: doi:10.1371/journal.pcbi.1001001.s004 (0.06 MB

DOC)

Table S2 Significantly hit sub-network by the highly promiscu-

ous drug dasatinib.

Found at: doi:10.1371/journal.pcbi.1001001.s005 (0.12 MB XLS)

Table S3 Classical gene ontology (GO) enrichment analysis

(p-value,0.01). The secondary and unspecific binders have a large

influence on GO enrichment analysis.

Found at: doi:10.1371/journal.pcbi.1001001.s006 (0.04 MB

DOC)

Table S4 Classical gene ontology (GO) enrichment analysis on

all direct interactors of the drug profile (p-value,0.01).

Found at: doi:10.1371/journal.pcbi.1001001.s007 (0.40 MB XLS)
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