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Abstract

Identifying when past exposure to an infectious disease will protect against newly emerging strains is central to
understanding the spread and the severity of epidemics, but the prediction of viral cross-protection remains an important
unsolved problem. For foot-and-mouth disease virus (FMDV) research in particular, improved methods for predicting this
cross-protection are critical for predicting the severity of outbreaks within endemic settings where multiple serotypes and
subtypes commonly co-circulate, as well as for deciding whether appropriate vaccine(s) exist and how much they could
mitigate the effects of any outbreak. To identify antigenic relationships and their predictors, we used linear mixed effects
models to account for variation in pairwise cross-neutralization titres using only viral sequences and structural data. We
identified those substitutions in surface-exposed structural proteins that are correlates of loss of cross-reactivity. These
allowed prediction of both the best vaccine match for any single virus and the breadth of coverage of new vaccine
candidates from their capsid sequences as effectively as or better than serology. Sub-sequences chosen by the model-
building process all contained sites that are known epitopes on other serotypes. Furthermore, for the SAT1 serotype, for
which epitopes have never previously been identified, we provide strong evidence – by controlling for phylogenetic
structure – for the presence of three epitopes across a panel of viruses and quantify the relative significance of some
individual residues in determining cross-neutralization. Identifying and quantifying the importance of sites that predict viral
strain cross-reactivity not just for single viruses but across entire serotypes can help in the design of vaccines with better
targeting and broader coverage. These techniques can be generalized to any infectious agents where cross-reactivity assays
have been carried out. As the parameterization uses pre-existing datasets, this approach quickly and cheaply increases both
our understanding of antigenic relationships and our power to control disease.
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Introduction

The genetically highly variable nature of RNA viruses [1] has

been extensively documented in pathogens such as foot-and-

mouth disease virus (FMDV) and influenza virus. A direct

consequence of this phenomenon is that inactivated or attenuated

vaccines derived from some such highly variable viruses confer

protection only against closely related field strains [2], as has been

amply demonstrated during the 2009 influenza A (H1N1)

pandemic [3]. This feature of the viruses makes it particularly

important to estimate the cross-reactivity, and therefore the likely

cross-protection, between sera derived from the vaccine strain and

field viruses [4,5].

The emergence of antigenically novel viruses, against which

existing vaccines do not provide adequate protection, may require

the selection of new vaccine seed strains. Currently, where no

appropriate vaccine exists, field isolates are, when possible,

adapted for vaccine production, amplified and then processed
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into vaccines [6]. Only at this stage can the new vaccines be

inoculated into animals and tested for efficacy in vitro and

subsequently in vivo. Due to the time and expense required, there

is a limit to the number of isolates that can be submitted to

undergo this procedure, and a sub-optimal choice of vaccine strain

may therefore be made. An in silico predictor that identifies those

strains likely to provide the broadest cross-protection could

therefore substantially enhance capacity to develop appropriate

vaccines rapidly and effectively, whilst minimising the cost and the

need for animal experimentation.

FMDV is ideal for such an approach to vaccine strain selection.

It is a positive-sense, single-stranded RNA virus, the prototype

member of the genus Apthovirus of the family Picornaviridae. It

exhibits great genomic variability, with 32–33% and 53% amino

acid variability in our data, within and between serotypes

respectively, in the immunogenically important structural proteins,

VP1-VP3 (similar variability has previously been observed in VP1

across all serotypes [7]). Its seven serotypes are not cross-reactive,

but individual vaccines can often protect against large groups of

genetically diverse viruses within a serotype. Nevertheless there are

also antigenically distinct subtypes within each serotype, and this

should allow the discrimination of antigenically important changes

from other substitutions. The virus is endemic in sub-Saharan

Africa where six of the seven serotypes occur, and the South

African Territories (SAT) types 1, 2 and 3 display appreciably

greater intratypic genomic variation than the traditional ‘‘Euro-

Asian’’ types [8–13]. Indeed, distinct genetic variants exist within

these serotypes, with the serotypes being divided into topotypes

based on genetic differences [7].

The variability of all SAT FMDV serotypes requires both a

range of vaccines to provide protection within serotypes and

accurate cross-reactivity testing to guide vaccine selection, with

implications for the control of the disease by vaccination if either

of these is not available. Despite similar genomic variability, SAT2

exhibits significantly higher intratypic antigenic variability than

SAT1 [11]. Such a pair of serotypes with similar genetic but

different antigenic characteristics provide an excellent testing

ground for studies of the genetic basis of antigenic variability.

Furthermore, SAT2 viruses are the causative agent in most

outbreaks of FMDV in cattle in sub-Saharan Africa, and SAT1 is

also widely dispersed, though mostly maintained through persis-

tent infections of African buffalo. This makes them the most

important serotypes to study in the region.

The outer capsid proteins – VP1, VP2 and VP3 – are directly

involved in antigenicity and a large proportion of residues are

exposed on the virion surface (40% in the structure used in this

paper). Amongst the exposed residues are epitopes recognised by

the host immune system. All serotypes are believed to share the

major antigenic site on the flexible G-H loop of the VP1 protein,

which is highly variable between even closely related strains. This

is the only site to have been identified with monoclonal antibody

(MAb) escape mutants for a single SAT2 virus [14], and none have

been for SAT1. However, this and at least four additional sites

have been implicated as neutralising epitopes for serotype O [15–

17], and further epitopes have been mapped for viruses from

serotypes A, O and C using MAbs [15–24].

This antigenic variability is reflected in the virus neutralisation

(VN) titres [25], which provide an in vitro measure of whether the

sites that contribute to the neutralization of the virus remain

sufficiently similar to cross-react. Virus neutralisation is not the

only important determinant of protection [26]; nevertheless the

VN test (VNT) is one of the standard tests for cross-reactivity and

it is considered to provide the most definitive serological results

[6]. Specifically, the current approach uses VNTs to quantify

antigenic relationships through ‘‘r1-values’’ – the ratio of the

heterologous to homologous titres, with a ratio close to 1

indicating the viruses are antigenically similar. Generally r1-values

in the range of 0.4–1.0 are considered to be indicative of

reasonable levels of cross-protection, whilst all values being below

0.2 for a given isolate indicate the need for new vaccine strain

development [27], with 0.3 also proposed as a single threshold

[28]. Many sources of variation are known to influence the

neutralisation titres. However, standard approaches to obtaining

r1-values do not fully account for these different sources of

variability [29]. In order to maximise information available from

neutralisation tests we developed a simple statistical methodology

using multiple data sources, combining data from multiple

experiments conducted at different times.

The availability of sequence data and related titres from VN

testing provides the opportunity to directly relate cross-reactivity to

sequence variation. This relationship would allow prediction of an

important component of vaccine efficacy for candidate vaccine

seed strains, and rapid identification of vaccine match without the

need for new serology work for existing vaccines.

The aim of the current study is to develop an in silico tool to

predict vaccine efficacy using sequence data, neutralising titres and

structural information, and use this tool to identify and quantify

the significance of epitopes of the viruses. We have obtained a

broad spectrum of SAT1 and SAT2 isolates which were

sequenced, and have generated sera from representative viruses.

An extensive serological dataset was generated from VNTs. We

have also used a novel, and currently the only, crystallographic

structure for any SAT serotype to identify surface-exposed residues

on the capsid. Specific objectives were to (i) generate improved

statistical methods of estimating r1-values that maximise the

efficient use of available experimental data, (ii) relate these

estimated antigenic differences to sequence variation, (iii) use this

relationship to predict vaccine match for viruses from sequence

information, and to predict neutralisation titres, cross-reactivity

and hence coverage for vaccine strains, and then (iv) to identify

areas of the capsid containing epitopes.

Results

Virus isolates, sequencing and VNTs
Twenty SAT1 and twenty-two SAT2 viruses (Table 1) repre-

sentative of different topotypes were selected, and full capsid

sequences were generated where not already available. This

collection constitutes fully two thirds of all isolates for which full

capsid sequences exist. Cattle sera were prepared against three

SAT1 and four SAT2 strains. VNTs were carried out with 138

Author Summary

New strains of viruses arise continually. Consequently,
predicting when past exposure to closely related strains
will protect against infection by novel strains is central to
understanding the dynamics of a broad range of the
world’s most important infectious diseases. While previous
research has developed valuable tools for describing the
observed antigenic landscapes, our ability to predict cross-
protection between different viral strains depends almost
entirely on cumbersome and expensive live animal work,
often restricted to model species rather than the natural
host. The development of computer-based approaches to
the estimation of cross-protection from viral sequence
data would be hugely valuable, and our study represents a
significant step towards this research goal.

Antigenic Variability in Foot-and-Mouth Disease
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different pairs of protective strain and challenge virus, 59 of the 60

possible SAT1-SAT1 pairs and 83 of the 88 SAT2-SAT2, with

between 1 and 11 repeats of each, giving a total of 246 SAT1 and

320 SAT2 titres. This included replicates within individual

experiments, and repeats with different sera and in different

batches (see Materials and Methods for an explanation of the

terminology), in order to determine the significant sources of

variability.

Improving estimates for r1-values
A key feature of our analysis was to develop a formal approach

for including data from multiple sera, experiments and batches.

Table 1. FMDV isolates used in this study.

Serotype Virus strain Topotype Passage history Country of origin GenBank Accession No.

SAT1 KNP/196/91* 1 PK1RS1 South Africa AF283429

SAT1 KNP/148/91 1 PK1 RS5 South Africa GU194495

SAT1 ZIM/HV/3/90 1 BTY1 RS3 Zimbabwe GU194496

SAT1 ZIM/GN/13/90 1 BTY1 PK1 RS3 Zimbabwe GU194497

SAT1 KNP/41/95 1 PK1 RS4 South Africa GU194498

SAT1 SAR/9/81* 1 Epithelium South Africa DQ009715

SAT1 NAM/307/98 2 PK1 RS4 Namibia AY770519

SAT1 ZIM/6/94 2 PK1 RS3 Zimbabwe GU194500

SAT1 TAN/37/99 3 BTY1 RS4 Tanzania DQ009718

SAT1 ZAM/2/93 3 PK1 RS3 Zambia DQ009719

SAT1 ZIM/25/90 3 BTY2 RS4 Zimbabwe GU194499

SAT1 MOZ/3/02 3 PK1 RS5 Mozambique DQ009720

SAT1 KEN/5/98 3 BTY1 RS3 Kenya DQ009721

SAT1 UGA/3/99 4 BTY1 RS4 Uganda DQ009722

SAT1 UGA/1/97 5 PK1 RS4 Uganda AY043300

SAT1 NIG/5/81* 7 BTY2 RS2 Nigeria DQ009723

SAT1 SUD/3/76 7 BTY1 RS3 Sudan DQ009725

SAT1 NIG/15/75 8 BTY1 RS3 Nigeria DQ009724

SAT1 NIG/8/76 8 BTY1 RS5 Nigeria GU194503

SAT1 NIG/6/76 8 BTY1 RS5 Nigeria GU194502

SAT2 KNP/19/89* I BHK4 South Africa DQ009735

SAT2 KNP/2/89 I CFK2 RS2 BHK4 South Africa GU194488

SAT2 KNP/51/93 I PK1 RS6 South Africa GU194489

SAT2 ZIM/1/88 I CFK1 RS4 Zimbabwe GU194491

SAT2 SAR/16/83 I B1 BHK8 South Africa DQ009734

SAT2 ZIM/14/90 II BTY1 RS3 Zimbabwe DQ009728

SAT2 ZIM/17/91 II BTY2 RS4 Zimbabwe DQ009727

SAT2 ZIM/GN/10/91 II BTY2 PK1 RS3 Zimbabwe GU194493

SAT2 RHO/1/48 II BTY2 RS2 Zambia AJ251475

SAT2 ZIM/7/83* II B1 BHK5 B1 Zimbabwe AF540910

SAT2 ZIM/34/90 II BTY3 RS4 Zimbabwe GU194490

SAT2 ZIM/8/94 II BTY1 RS3 Zimbabwe GU194492

SAT2 KEN/8/99 IV BTY2 RS4 Kenya AY254730

SAT2 GHA/8/91 V BTY1 RS3 Ghana DQ009732

SAT2 SEN/5/75 V BTY1 RS1 BHK5 Liberia DQ009738

SAT2 SEN/7/83 VI CK1 RS1 Senegal DQ009733

SAT2 SAU/6/00 VII BTY1 RS1 Saudi Arabia AY297948

SAT2 ERI/12/89* VII BTY2 PK1 RS5 Eritrea GU194494

SAT2 RWA/2/01* VIII PK1 RS1 Rwanda DQ009730

SAT2 ANG/4/74 XI BTY3 RS3 Angola DQ009736

SAT2 UGA/2/02 XII PK1 RS1 Uganda DQ009731

SAT2 ZAI/1/74 XII BTY2 RS4 Zaire DQ009737

Protective strains are starred.
doi:10.1371/journal.pcbi.1001027.t001
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The use of homologous and heterologous titres from the same

serum to calculate an r1-value controls for between-serum

variability [25], and in order to control for between-experiment

variation, at least three repetitions are officially advised [6] – when

more than one of either the homologous or heterologous VNT is

carried out, then the results are usually averaged [30]. Our aim

was to go beyond this, and combine all available titres measured in

all batches for every pair of protective strain and challenge virus to

produce a coherent set of best estimates for all of the true

underlying r1-values simultaneously.

This was achieved by first determining the presence or absence

of and then estimating the magnitude of any consistent inter-

experiment, inter-batch or other variability in the data. We built a

linear mixed-effects model with log titre of the challenge virus

versus protective strain as the response variable. The challenge

virus (p = 10244), protective strain (p = 10212) and their interaction

(p = 10227) were significant fixed effects, but neither serotype nor

whether sera were prepared by vaccination or infection was found

to be significant. We would not have expected to see this latter

effect since it was confounded with protective strain as all sera for

each strain were generated by only one of vaccination or infection.

A random effect at the level of experiment accounted for the inter-

experiment variability. By comparing models with random effects

to allow for other sources of variability, we determined that there

was consistent variability between sera (p = 10215), but not

between batches (see Materials and Methods). Apart from the

one identified above, other interactions between these effects

(protective strain, challenge virus, serum and experiment) were not

found to be significant. This ‘‘best consensus estimate’’ model

could thus be written as:

log(tp,c)~mp,czeSzeEzeR

where ei*N(0,s2
i )

ð1Þ

where tp,c is the titre for a neutralisation test for protective strain p

and challenge virus c, mp,c is the mean log titre, eS and sS
2 are the

best linear unbiased predictor and associated variance for the

random effect of serum, eE and sE
2 are the equivalent measures for

experiment, and eR and sR
2 are the model residuals and associated

variance.

Estimates of these variances were used to examine the expected

uncertainties associated with standard methods of estimating r1-

values. The between-serum variance was 0.072, which gives a

95% confidence interval around the estimate of +/20.53 log titres

due to inter-serum variability; as was noted earlier, this is

eliminated by always using homologous and heterologous titres

from the same serum to calculate an r1-value. However, the

remaining (between-experiment and residual) variances sum to

0.287, which gives a 95% confidence interval around the estimate

of an individual serological r1-value (i.e. using 1 homologous titre and 1

heterologous titre from the same serum in the same batch, as is

usually the case) of +/21.49 log titres. With test variability this

high it is clear that an improved method of estimating r1-values

that makes use of all available data would be valuable.

Estimates of mp,c had 95% confidence intervals ranging between

+/20.50 to +/21.17 log titres, depending on the number of titres

available (the greatest uncertainty being associated with r1-values

estimated from only a single homologous and heterologous titre).

These narrower confidence intervals show that our new techniques

for estimating mp,c provide a substantial improvement on existing

methods for the same number of titres. These best consensus

estimates of the true means were therefore used as our gold

standard for subsequent analyses (Figure 1 and Dataset S1).

Relating antigenic differences to sequence variation
Structural data were used to identify candidate areas of the

capsid that might be antigenically significant (29 and 28 areas for

SAT1 and SAT2 respectively – see Materials and Methods for

details). These provide the starting point for a related linear mixed-

effects approach used to predict r1-values from the sequence data

and, ultimately, to identify antigenically significant areas of the

capsid. The mean log titre, m – the fixed effect term in the

estimating model (Equation 1) – was replaced with a predictive

term based on differences between capsid-coding sequences of the

protective and challenge strains. Removing this fixed effect also

necessitated the inclusion of the additional random effect of

challenge virus (eC*N(0,s2
C), p,10210), and the final model took

the form:

log(tp,c)~k0z
XN

i~1

ki|di(p,c)zeSzeEzeCzeR ð2Þ

where k0 is the average titre and di is a raw count of the number of

amino acid changes between the protective strain and challenge

virus in a single candidate area identified from the structural

modelling (the ith out of a total of N areas identified as potentially

antigenically significant – see Materials and Methods for the

model selection process), with ki the regression coefficients.

Predictive model requirements: Vaccine selection and
vaccine coverage

Two different predictions are of interest: first, in an outbreak,

the vaccine that best matches a given challenge virus, and second,

to judge breadth of coverage of a candidate vaccine strain – the

range of r1-values that it will produce for selected challenge

viruses. Correspondingly, models were validated using two

measures of quality of a predictor of antigenic distance: (i) the

number of times the protective strain with the predicted highest r1-

value for a given challenge virus matches the strain that would be

selected using the serology data; and (ii) the difference between the

predicted r1-values for specific pairs of protective strains and

challenge viruses and our best consensus estimate r1-values for

those pairs. In the former case only those challenge viruses that

might have appropriate protective strains are considered (we chose

those with an estimated r1$0.2) since we are not interested in

whether the model correctly chooses the least worst vaccine when

none could possibly be effective.

Specifically, candidate models selected by the model-building

process were cross-validated by estimating parameters in two

different ways, corresponding to our two different requirements: (i)

using datasets missing all data for each challenge virus in turn, and

comparing the vaccine choice with that obtained using our gold

standard estimates; or (ii) using datasets missing all data for each

protective strain in turn, and comparing the r1-values generated

for that missing protective strain compared with our gold standard

estimates. The best models for each serotype are reported below.

Vaccine match prediction for new virus isolates
Eighteen out of the 20 SAT1 viruses but only 9 out of the 22

SAT2 viruses had protective strains close enough to offer some

cross-reactivity (r1$0.2), and so were included in the cross-

validation. For SAT1 the best model after cross-validation

contained two terms, the number of amino acid changes in the

VP1 G-H loop and beyond (residues 132–174, which contains the

major antigenic site for FMDV as well as sites in the H-I loop), and

in the VP3 H-I loop (residues 191–202, which contains amino

acids identified by MAb escape mutant studies as part of the

Antigenic Variability in Foot-and-Mouth Disease
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epitope labelled Site 3 on A10 [24]) – see Figure 2, blue, for

visualization. The formula for the r1-value predictor is:

r1(p,c)~0:933d1GHz(p,c)|0:753d3HI (p,c)|e{eC (p) ð3Þ

where the eC are the best linear unbiased predictors from Equation

2. For SAT2 the best model contained three terms: the number of

amino acid changes in the VP1 C terminus (residues 200–224,

which contains Site 1b on O, Sites C and D on serotype C, Site 2

for A10, Sites 3 and 4 for A12 and Site 2 for A5 – [21], and

references therein), in the VP2 B-C loop (residues 70–82, which

contains Site 2 on O, Site 3 on A10, Site 1 on A5 and another part

of Site D on C – [21], and references therein), and residue 178 in

the VP1 H-I loop (the H-I loop as a whole contains Site 1 for A12

Figure 1. Heatmap and clustering analysis of virus neutralisation titres. Two-dimensional hierarchical clustering of viruses and antisera for
SAT1 (left) and SAT2 (right). Viruses were clustered according to their neutralization profiles along the vertical axis. Simultaneously, the antisera were
arranged according to their abilities to neutralise the panel of viruses along the horizontal axis. Dendrogram patterns are shown to the left (for
viruses) and top (for antisera). The color key for neutralization data points is shown in the histogram in the top left of each plot along with the count
of viruses with each titre.6indicates the absence of data.
doi:10.1371/journal.pcbi.1001027.g001

Antigenic Variability in Foot-and-Mouth Disease
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and Site 4 for A10 – [21], and references therein)– see Figure 2,

red, for visualization. The formula is:

r1(p,c)~0:748d1CT (p,c)|0:709d2BC (p,c)|0:770d1HI (p,c)|e{eC (p) ð4Þ

The predictive models successfully identified 13 SAT1 matches

(72%) and all 9 SAT2 matches (100%) (Figure 3). This accuracy is

comparable with that obtained using the individual serological

measurements, which, by bootstrapping the raw titres to generate

individual serological r1-values, we estimated would correctly

identify the best strain 70% of the time for SAT1 and 83% for

SAT2 (a multinomial test on these values shows that there is no

significant difference between the serological and predicted

values). Though additional serological and sequence data would

ultimately improve the predictive model, it currently performs at

least as well as standard serological approaches.

r1-value prediction for new vaccine candidates
A small bias was observed for all of the candidate models in

their predictions for heterologous titres relative to homologous

titres. This does not affect the vaccine match experiments where

the aim is to reduce relative error (in the differences between r1-

values for different protective strains using the same challenge

virus) potentially at the expense of absolute error (in the r1-values

themselves). In this case, however, for accurate r1-value prediction

the aim is to reduce this absolute error. Adding a term to the

models that explicitly distinguished homologous and heterologous

titres removed this bias, and so it was included in all of the

candidate models.

The best predictive model of r1-values following cross-validation

for SAT1 contained the same two terms as before (the number of

amino acid changes in the VP1 G-H loop and beyond, and the

number in the VP3 H-I loop), together with a term that is present

when titres are heterologous. The formula is:

r1(p,c)~0:964d1GHz(p,c)|0:743d3HI (p,c)|0:434½p=c�

|eeC (c){eC (p)
ð5Þ

Ninety eight percent of the predictions (Figure 4, SAT1, black

crosses) are within the 95% confidence limits of the gold standard

estimates (dashed lines), which is significantly better than achieved

by individual serological r1-values (grey dots) at 87% (Fisher’s

exact test, p,0.01). The variance around the gold standard

estimates is significantly lower for the predictions than the

individual serological r1-values (0.09 rather than 0.18, Bartlett

test, p,0.01).

The best predictor of r1-values for SAT2 also contained the

same three terms as before (the VP1 C terminus, the VP2 B-C

loop, and a single residue in the VP1 H-I loop), again together

with a term for heterologous titres. The formula is:

r1(p,c)~0:906d1CT (p,c)|0:801d2BC (p,c)|0:847d1HI (p,c)

|0:284½p=c�|eeC (c){eC (p)
ð6Þ

For SAT2, 77% of the predicted r1-values were within the

confidence limits of the gold standard estimates (Figure 4, SAT2,

black crosses), which is not significantly different from 66% for

individual serological r1-values (grey dots). Variances were also not

significantly different (0.40 compared to than 0.43). Both

predictions and serological measurements are less accurate than

those for SAT1 due to the lower repeatability of SAT2 serology

(Figure 4, grey dots).

Identifying epitopes by controlling for phylogenetic
structure

The above predictive models identify those areas that are

correlated with loss of cross-reactivity. To identify those areas that

are directly responsible for antigenic variability it is necessary to

develop models that additionally control for the phylogenetic

relationships between virus strains. The phylogenetic control

extends Equation 1 in an analogous manner to the predictive

model (Equation 2):

log(tp,c)~k0z
XN

i~1

mi|di(p,c)zeSzeEzeR ð7Þ

where di is a delta function which is 1 if p and c are separated by

branch i of the phylogenetic tree and 0 otherwise. Loss of cross-

reactivity is caused by amino acid substitutions in the capsid

proteins, and any individual substitution must occur in a specific

branch of the phylogenetic tree (though we may not be able to

determine which). Each branch partitions the tree into two groups,

and where a branch effect represents changes that impact

significantly on cross-reactivities, they will be higher between

viruses within the groups than those between groups (after

controlling for other effects). For instance, where a terminal

branch is identified, the fixed effect of that branch specifies an

amount by which the virus to which it leads (the first group) is

Figure 2. Antigenically significant areas of the SAT1 and SAT2
capsids. The image shows the area around one of the five-fold axes of
symmetry of the capsid (centre). Changes to blue areas were used as
predictors of loss of cross-reactivity for SAT1, while changes to red areas
were used for SAT2. The two residues identified as parts of an epitope –
residue 138 on the VP3 E-F loop and residue 198 on the VP2 H-I loop –
are coloured white. Note that these two residues and the other areas
are repeated multiple times in the image due to structural symmetries
in the capsid.
doi:10.1371/journal.pcbi.1001027.g002
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antigenically distant from all other viruses (the second group). A

significant internal branch, similarly, identifies a clade that is

antigenically distant from the rest of the tree. By building a model

containing all of the branches in the tree, and then using a stepwise

elimination procedure to remove branches which do not

significantly improve the model fit (p.0.05), we are left with the

set of branches that, when traversed, significantly account for

reductions in antigenic cross-reactivity.

Twelve phylogenetic branches are significant in SAT1 and

twenty-one in SAT2 (black lines, Figure 5). For SAT1 these are six

branches that each partition individual topotypes from the rest of

the tree, and five terminal branches that lead to viruses for which

large numbers of titres have been obtained (including the three

protective strains) as well as one that is antigenically very distant

from the protective strains (ZAM/2/93, which has no r1-value

above 0.2). For SAT2, there are six internal branches throughout

Figure 3. Vaccine matching using sequence data. Charts show the number of times that the best protective strain estimated using the full
serological dataset (header) agrees with the predicted best strain using the sequence data (black bars) or the estimated strains using bootstrap
samples of individual serological r1-values (grey bars). White bars are errors, where the predicted/individual r1-values gave a different protective
strain.
doi:10.1371/journal.pcbi.1001027.g003

Figure 4. Predicting cross-reactivity using sequence data. Bootstrap samples of individual serological r1-values (grey dots), predictions (black
crosses) and matching best consensus estimates – our gold standard – and their confidence limits (black dots and dotted lines) against best
consensus estimates for SAT1 and SAT2 r1-values. Because of the log-normally distributed variance structure of the r1-values, data are plotted on a log
scale.
doi:10.1371/journal.pcbi.1001027.g004

Antigenic Variability in Foot-and-Mouth Disease

PLoS Computational Biology | www.ploscompbiol.org 7 December 2010 | Volume 6 | Issue 12 | e1001027



the tree and fifteen terminal branches leading to ten of the thirteen

viruses that are antigenically distinct (again, all r1-values are below

0.2) and five other viruses (including the four protective strains).

Any model containing these terms controls as completely for the

phylogeny as is possible with the data available, and should a

model have a significantly better fit than the phylogenetic model

on its own, it must achieve this by some mechanism other than

phylogenetic correlation. A simple combination of Equations 2

and 7 provides a potential model, with an additional term for the

raw count of the number of amino acid changes between the

protective strain and challenge virus in a single candidate area:

log(tp,c)~k0zk1|d1(p,c)z
XN

i~1

mi|di(p,c)zeSzeEzeR ð8Þ

where d1 is the count of substitutions at a specific site, and k1 the

associated regression coefficient. The phylogenetic control terms

account for repeated measurement of all significant shared

phylogenetic history. However, in doing so, they remove all

significant direct effects of substitutions at individual branches of

the tree, but are not designed to capture the interactions involved in

multiple and/or convergent substitutions at the same sites in

different branches. Consequently, the substitution count in any area

significantly improves the model if it corresponds to this substitution

structure. Parallel and/or back-mutations, relatively frequent in

such highly variable viruses, are therefore strong signals used by the

model to determine antigenically significant areas. The phyloge-

netic control is therefore conservative in that significant sites with

substitutions at only one branch in the tree will not be identified, as

the different substitutions in that branch cannot be readily

disambiguated. Nevertheless, after controlling for phylogeny, the

twenty-nine SAT1 areas tested with the model were collectively

significant predictors (p,0.05 [31]), but the twenty-eight areas for

SAT2 were not significant (collectively or individually).

Because substitutions are ultimately responsible for the loss of

cross-reactivity, the substitutions contributing to counts in these

SAT1 areas must be responsible for this loss unless they are co-

occurring with causative substitutions. Any such causative

substitutions should, however, be identifiable because substitution

counts in areas containing them will improve the model fit.

Comparing the individually best SAT1 areas from above with

bootstrapped random sequences of the same length from other

parts of the capsid, however, fails to identify other causative

substitutions, and eight areas were instead found to be significant

after a Holm-Bonferroni correction for the number of terms [32]

(p,10212 collectively). Of these eight terms, seven were

individually significant in the previous test (p,0.05). These seven

terms consisted of five that corresponded exactly to the five areas

identified as the constituent parts of the Site 3 conformational

epitope for A10 [24] (p,1028 collectively), one was the VP1 G-H

loop (p,0.001), and the last was the VP3 G-H loop, previously

identified as Site 3 on A12 [18] (p,0.01).

To identify the specific residues responsible for these drops in

antigenic cross-reactivity, Equation 8 is trivially modified to test

substitutions to the 62 individually variable residues in the seven

areas identified (instead of the 29 candidate areas). Again, this is a

conservative test, as it will only identify residues where multiple/

convergent substitutions occur at different branches in the

phylogeny. Collectively, changes to the residues are significant

after controlling for phylogeny (p,0.005), but only two residues

are individually significant (p,0.05). Bootstrap comparisons with

other residues showed these to be the two most significant

predictors of loss of cross-reactivity out of all the residues in the

capsid, and both are adjacent to residues identified by MAb escape

mutant studies on A10 as part of Site 3 [24]. These were residue

138 on the VP3 E-F loop and residue 198 on the VP2 H-I loop –

see Dataset S2 for alignment, and Figure 2, white, for visualization

– and the expected effects of substitutions at those residues are a

reduction in cross-reactivity of 25% (95% CI 8%–40%) and 16%

(95% CI 0%–30%) respectively.

To test whether areas and individual residues vary in their

significance across the whole serotype or are conserved, a random

effect (k(r) in Equation 9) that allows the count (k1 in Equation 8)

to vary in significance for different protective strains, challenge

viruses or sera (r) can be added to the model:

log(tp,c)~k0zk(r)|d1(p,c)z
XN

i~1

mi|di(p,c)zeSzeEzeR

where k(r)*N(0,s2
k)

ð9Þ

Figure 5. Phylogenetic trees indicating the branches controlled for in the analysis. SAT1 and SAT2 phylogenetic trees, showing protective
strains (red, starred) and branches associated with significant drops in antigenic cross-reactivity (black lines, p,0.05). Topotypes are shown for SAT1.
The origin and passage history of each virus is described in Table 1.
doi:10.1371/journal.pcbi.1001027.g005
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For SAT1 none of these effects improve the model (p.0.1 for

all areas and individual residues). For SAT2, however, although no

areas or residues are significant individually, thirty-one of them

have significant interactions (p,0.05) with at least one of these ‘r’

terms, which suggests that there may be some variability in the

significance of parts of the capsid for loss of cross-reactivity within

the serotype.

Discussion

The identification of antigenic sites on individual FMDV

isolates is time consuming, with the consequence that data are not

available for all serotypes, much less for all isolates. Indeed, very

little is known about the important epitopes for SAT1 and SAT2

viruses, impacting on the potential to both design vaccines with

broader or better targeted antigenic cover and predict the efficacy

of a particular vaccine strain against circulating viruses in the field.

We have identified seven areas containing what we believe to be

three epitopes for SAT1, and we provide evidence that these are

conserved across our whole sample. We have further quantified

the effect of substitutions at two specific residues in one of these

epitopes. The conservative phylogenetic control employed

throughout the analysis means that this may not be an exhaustive

list of antigenically significant areas of the capsid, and is almost

certainly not for residues, as it will only identify ones where

multiple/convergent substitutions occur at different branches in

the phylogeny. The areas that are identified do, however,

correspond to epitopes identified by MAb escape mutants for

other serotypes, and both of the specific residues found are (after

alignment) adjacent to ones which are part of Site 3 on A10 [24].

Confirmatory evidence that the phylogenetic control is acting as

expected is provided by the fact that for SAT1 all of the internal

branches that are identified as antigenically significant correspond

to previously identified antigenically important events, that is to

say branches that partition individual topotypes from the rest of

the tree. For SAT2, we have identified variability in the

significance of different sites for different protective and challenge

strains, and even different sera, that may indicate epitopes are

present on some viruses but not on others. This may help to

explain the much greater observed antigenic variability in SAT2

compared to SAT1 despite their similar genomic variability [11],

as well as the absence from our analyses of identifiable epitopes

that are conserved across the serotype.

We have also used cross-reactivity data generated for SAT1 and

SAT2 FMDV to develop a linear mixed-effects model that uses

replicates and repeated experiments to more accurately account

for variability in measurement and so generate better estimates of

cross-reactivity for FMDV. We have enhanced this model with

sequence and structural data to identify surface-exposed residues

that correlate with loss of cross-reactivity and then built models

using counts of amino acid substitutions in selected areas to predict

cross-reactivity. We note that all of the areas used in these models

are associated with epitopes identified by MAb escape mutants for

other serotypes. Furthermore, for SAT1 they also correspond to

parts of the new epitopes identified above.

These predictive models were used to successfully identify the

efficacy of novel candidate vaccines against the virus isolates, with

98% of SAT1 predictions within the 95% confidence intervals for

our gold standard estimator of true r1-values, and 77% of SAT2

predictions. For SAT1 this was significantly better than individual

serological r1-values despite the predictions being made without

the use of any sera from the protective strains. Related models

were also used to predict the best vaccine match for novel virus

isolates. For the 9 SAT2 virus isolates for which any match existed

in the data (r1$0.2), the model correctly predicted all 9, and for

the 18 SAT1 isolates, the model predicted 13. In both cases there

is no significant difference between the model predictions and the

serological results. The uncertainty inherent in the VNT and the

variability between different experiments balance any inaccuracies

in the predictive model, making it at least as effective a measure of

r1-value and vaccine match as serology itself unless the latter is

repeated multiple times. Improving the serological tests is an area

of active research [33], and we anticipate being able to improve

the predictive models further by exploiting such improved

serological datasets.

The accuracy of the r1-value predictions and the inaccuracy of

the matching for SAT1 (relative to SAT2) may have the same

cause – two of the anti-sera were raised against viruses of the same

topotype (topotype 1 – constituting 70% of the titres), producing a

good model for that topotype, but with little power to generalise

and predict cross-reactivity for significantly different viruses

clustering in other topotypes. Consequently, it identified 8 out of

10 correctly when the answer was a topotype 1 vaccine, but only 5

out of 8 for the other topotype. Conversely, the relative inaccuracy

of the r1-values but the accuracy of the matching for SAT2 may

share the opposite cause – 4 anti-sera were raised against 4

different topotypes, giving a better estimate of which areas were

antigenically significant in general and thereby allowing better

vaccine matching. However, because of the relative sparsity of

data from any individual topotype (there were at most 92 titres for

any individual topotype for SAT2, against 170 for SAT1), we

obtained a poorer estimate of the relative importance of each area,

and therefore a less accurate r1-value prediction. The greater

inherent variability in SAT2 titres also necessitated more data to

acquire an accurate estimate. These complementary results

suggest that to refine the model further more data from different

topotypes will improve the vaccine matching in SAT1, and more

from the same topotypes will improve the estimates of cross-

reactivity in SAT2.

The VP1 G-H loop is known to contain major epitopes in all

serotypes of FMDV where MAb studies have been conducted;

substitutions in it are therefore considered to be a significant

determinant of loss of cross-reactivity. Our SAT1 epitope analysis

identified this loop and the model used it to predict cross-

reactivity. However, our SAT2 model did not find the number of

amino acid substitutions in the candidate area containing the loop

to be in general a good correlate. There are three potential

explanations. First, the G-H loop has a high substitution rate, so

high indeed that we suggest that the epitope(s) may very often not

cross-react even between closely related strains, giving the model

little data with cross-reacting epitopes from which to identify a

pattern. Second, the candidate area is much bigger than just the

G-H loop, therefore including many residues that are not

antigenically significant. Finally saturation can occur, causing the

actual count even inside the G-H loop to cease to be meaningful.

The combination of these effects makes it very difficult to detect

the signal of epitope loss from the noise of other substitutions.

Better predictors might be obtained by selecting smaller

candidate areas. However, there is a risk of ‘‘fishing’’ until an

appropriate sub-sequence is discovered, leaving the generality of

the technique uncertain. Related work on influenza A [34,35],

which was the first to attempt this kind of prediction, examined

101 residues (chosen based on previous laboratory identification of

antigenic sites) and built models containing up to 19 terms, testing

orders of magnitude more models than our 2-/3-term out of 28-/

29-area models. The advantage of the approach taken here is that

the areas to be examined were determined by a single a priori

criterion, the strategy for choosing models to test was fixed in
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advance, and the relatively small number of models examined in

the model-building process was easily controlled for by a simple

statistical correction.

A further strength of our approach is that it identifies

antigenically significant areas. These can be validated entirely

independently through comparison with MAb escape mutant-

derived epitope information. Of the 5 areas identified here, all

have been identified by previous MAb work in other serotypes.

Furthermore, the two SAT1 areas are specifically identified in

separate analyses as containing epitopes for this serotype, which

provides further strong evidence that the model is indeed

predictive rather than merely correlative. For SAT2 the evidence

is weaker since the epitopes have only been identified on other

serotypes, and the evidence that there may be epitopic variability

within the serotype suggests that more caution should be applied

in using them to predict the cross-reactivity of distantly related

isolates.

This work could be further validated by a reverse-genetics

approach targeting the specific SAT1 residues identified as

antigenically significant. Our methodology could be used to

evaluate the effect of amino acid substitutions by predicting

coverage against a panel of circulating viruses, allowing potential

vaccine candidates that are expected to better match the panel to

be easily identified. Interestingly, because of the high substitution

rate obscuring any signal in the VP1 G-H loop, identified

substitutions would probably not be located in the major antigenic

site of FMDV but instead be found in other antigenically

important areas.

The technique developed here can be used directly for any

FMDV serotype and potentially for any similar virus where cross-

reactivity, sequencing and structural studies have been carried out,

both to identify epitopes, and to predict vaccine match for new

isolates and estimate efficacy of new candidate seed strains. This

can be done by exploiting historical datasets, and is therefore a

quick, low cost and valuable method for better understanding

antigenic relationships. In summary, the use of sequence data to

predict antigenic relationships is a powerful tool that has the

potential to be applied to a variety of different infectious agents.

Materials and Methods

Ethics statement
All procedures were approved by the Onderstepoort Veterinary

Institute Animal Ethics Committee according to national animal

welfare standards.

Virus isolates, RT-PCR and nucleotide sequencing
The viruses were either supplied by the World Reference

Laboratory for FMD at the Institute for Animal Health, Pirbright

(United Kingdom) or form part of the virus databank at the

Transboundary Animal Diseases Programme (TADP), Onderste-

poort Veterinary Institute (South Africa). Viral RNA was extracted

from cell-culture-adapted isolates and cDNA synthesised [36]. The

sequences for the P1-2A-coding regions were obtained via RT-

PCR of viral genomic RNA using existing primers [36–39]. Direct

DNA sequencing of the P1-2A region derived from a given FMDV

isolate yielded a master sequence representing the most probable

nucleotide for each position of the sequence. Due to the

quasispecies nature of FMDV populations, polymorphisms were

detected in some nucleotide positions. Nevertheless, all positions

could be unambiguously assigned to a single nucleotide due to the

high degree of redundancy generated by a genome-walking

approach. Contigs for the ca. 2.2kb region were compiled using

SequencherTM vs4.7 (Gene Codes Corporation). Since these are

protein-coding regions, the amino-acid sequences were aligned

with ClustalW (v.1.83) and this alignment was then used to align

the nucleic-acid sequences.

Animal sera and virus neutralisation test
The antigenic diversity of the field isolates was determined using

virus neutralisation assays in micro-titre plates using IB-RS-2 cells

as the indicator system [25]. Cattle sera against reference SAT1

and SAT2 viruses were prepared by two consecutive vaccinations

(vaccinated at day 0, boosted at day 28 and bled at day 38) using

the following vaccine strains: SAT1: SAR/9/81 and KNP/196/

91 (both topotype 1, see Table 1); SAT2: ZIM/7/83 (topotype II)

and KNP/19/89 (topotype I) or convalescent sera obtained from

21 days post-infected cattle for SAT1: NIG/5/81 (topotype 7);

SAT2: RWA/2/01 (topotype VIII) and ERI/12/89 (topotype

VII). Cattle were housed in the isolation facility at TADP and all

procedures were approved by the Onderstepoort Veterinary

Institute Animal Ethics Committee. The neutralisation assays

were performed against viruses from the various topotypes as

indicated in Table 1 after their adaptation on IBRS-2 cells. The

end point titre of the serum against homologous and heterologous

viruses was calculated as the reciprocal of the last dilution of serum

to neutralise 100 TCID50 in 50% of the wells(ibid.).

Structure
The crystal structure of the SAT1 BOT/1/68 capsid was solved

at a resolution of 3Å (Fry et al., unpublished) (Protein Data Bank

ID: 2wzr, r2wrsf). This is the only structure in existence for any

SAT1 or SAT2 virus. SAT1 amino-acid sequence alignments were

compiled with ClustalW. Structures were visualised and the

surface-exposed residues identified with the PyMol Molecular

Graphics System v1.2r0 (DeLano Scientific LLC). Exposed

regions of SAT2 were approximated by alignment with the

SAT1 structure.

The aligned SAT sequences were classified according to

whether they coded for surface-exposed residues or not as

determined from the above structure. Those that did were

grouped into the longest possible contiguous sub-sequences where

all of the residues were surface exposed. Forty-three such sub-

sequences were found, which broadly corresponded to the loops

and termini of the VP1, VP2 and VP3 proteins, though some

loops were not exposed, and some divided into more than one sub-

sequence separated by hidden sections. This division was chosen as

the simplest way of breaking the full sequence down into a number

of candidate areas each of which might be implicated in one or more

antigenic site(s). Of these, 14 of the sub-sequences were invariant

in SAT1, as were 15 of the areas in SAT2, leaving 29 and 28 areas

respectively in the two serotypes to test as possible predictors (see

Dataset S2 for the areas identified).

Although the areas identified for SAT2 were only an

approximation to the true surface exposed areas for that serotype,

residues from every known epitope of FMDV were contained

within these regions [14–24], and so the areas are likely to be

sufficient.

Phylogenetic analysis
A phylogenetic tree was generated from the nucleotide sequence

data using a relaxed uncorrelated exponential clock, and a

GTR+CP112+C112+I nucleotide model [40]. This was identified as

the best model using Bayes Factor analysis [41], although all

similar models produced the same tree topology. All of these

models and analyses are included in BEAST version 1.5.3 and

Tracer version 1.5.0 [42].
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Data
The experimental variables used in this study are described

below.

N Protective strain: the virus strain against which each animal

has been previously vaccinated or with which it has been

infected;

N Vaccination status: whether the animal acquired protection

through vaccination (1) or infection (0);

N Serum: each serum is drawn from a single animal, so serum

labels correspond to individual donor animals;

N Challenge virus: virus isolate used in neutralisation

experiment;

N Serotype: serotype of the protective (and challenge) strain;

The neutralisation tests were grouped into experiments where the

same serum was used at the same time with the same challenge

virus (tests within an experiment are replicates); different experi-

ments were grouped into batches by the time at which they were

performed. Possible variability at these levels was investigated

when building the model. Our gold standard best consensus

estimates of r1-values are available in Dataset S1; raw serological

data is available on request.

Statistical modelling and model selection
There were five stages to the statistical modelling:

1. First, a linear mixed-effects model [43] was built with log titre

of the VNTs as the response variable (which are normally

distributed – Lilliefors normality test, p.0.5) – using raw titres

gave us neither normally-distributed (p,10215) nor homosce-

dastic residuals [30] – using the R statistical software [44] and

the modelling package lme4. This model allowed accurate

estimation of r1-values from serological data.

2. The fixed effects in this model (Equation 1) were then replaced

with sequence-based predictors (a selection of counts in

candidate areas and the count of total amino acid substitutions

were used to test the model), and the model selection approach

outlined below used to generate a model that predicted cross-

reactivity directly from sequence data (Equations 2–6).

3. These were replaced in turn with phylogeny-based effects (see

below) to control for the phylogenetic structure of the data

(Equation 7).

4. Individual areas and residues were added to this model to

identify epitopes (Equation 8).

5. Finally, within-serotype variability in epitopes was investigated

(Equation 9).

Model selection. The predictive models (Equation 2) were

generated by sequentially adding the count of non-synonymous

changes in each of the candidate antigenic areas as a fixed effect in

a standard stepwise regression which continued for a variable

number of steps until no further terms could be added.

Specifically, the probability that each model was a significantly

better predictor than its precursor was assessed by a likelihood

ratio test since the models were nested. For multiple tests each with

p-values pi, the statistic 22 S log pi is expected to be x2 distributed

with twice as many degrees of freedom as tests under the null

hypotheses [31]. When this was not the case (p,0.05), then the

best predictors that were individually significant (after a Holm-

Bonferroni correction for the number of terms [32]) were used as

bases for the next step of the regression. The stepwise regression

technique was repeated until no more terms could be added to

form a small set of candidate models. The best of the final models

were then cross-validated. Details of the best models are found in

the results (Equations 3–6).

Controlling for phylogeny. Amino acid substitutions on the

capsid (including those identified above) are correlated with

antigenic distance; this could be a direct relationship or may arise

indirectly via relationships between substitutions, phylogenetic

history and antigenic drift, as is found in influenza A [45].

Neglecting to control for evolutionary history has caused false

positive rates of between 20 and 40% in similar analyses [46];

these arise because substitutions that constitute the shared history

of virus pairs have only occurred once and therefore constitute

only a single independent piece of evidence that these substitutions

are important. To account for these repeated measures it is

necessary for us to implement phylogenetic control.

However, existing mechanisms for controlling for phylogeny

focus on properties (or traits) of the leaves of tree and not the

relationships between them [47]. Indeed it is these relationships

(the contrasts) that are used to control for the evolutionary history,

whereas for us these are the signal – the cross-reactivity. We wish

instead to identify the causes of the changes in cross-reactivity

while controlling for the common evolutionary history.

In practice, each branch on the phylogenetic tree (see above)

represents a set of common substitutions by which any pair of

viruses either side of the branch differ (unless multiple and/or

convergent substitutions have occurred). Any comparison of

antigenicity between two viruses either side of the branch will be

affected by those changes. A fixed effect is therefore added to the

model for each branch (di, Equation 7); this is non-zero if the

branch is travelled (and thus these changes have occurred) in the

traversal of the tree between the protective strain from which the

serum is derived and the virus isolate in a cross-reactivity test.

Including these terms in the analysis controls for repeated

measures of this traversal.

Because of the necessarily limited number of protective strains

we do not explore every path through the tree, and so there is

some ambiguity in the allocation of weights to branches (essentially

we have more unknowns than equations). These ambiguities mean

that the models cannot be used predictively, but this does not

prevent their use for phylogenetic control.

Model development begins by constructing a model with the

maximal set of fixed effects; these are then removed using stepwise

regression until all of those left significantly improve the model fit

(p,0.05). In this manner we have controlled for repeated

measures of every significant piece of shared phylogenetic history.

Because the phylogenetic trees are different for the two serotypes

the serotypes are modelled separately.

Identifying epitopes. The phylogenetic control terms

account for repeated measurement of all significant shared

phylogenetic history. However, in doing so they remove all

significant direct effects of substitutions at individual branches of

the tree. Consequently, the substitution count in any area can only

significantly improve the model if it corresponds to multiple and/

or convergent substitutions at the same sites in different branches.

Modelling phylogenetic control in this way therefore provides a

conservative estimate of the number of areas that directly affect

antigenicity.

Sequence-based predictors were added to the models – again,

substitution counts for each of the candidate areas identified in the

structural analysis – to determine which sub-sequences were the

best predictors after controlling for phylogeny (d1, Equation 8), and

these were then compared to bootstrapped samples from the

remaining capsid surface (randomly assembled sub-sequences of

the same length as each candidate). Since changes to the capsid
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proteins must be responsible for loss of cross-reactivity, comparing

specified sub-sequences to the rest of the capsid after controlling

for phylogenetic structure directly determines whether these areas

contain true predictors or whether they contain correlates, with

the true epitopes being found elsewhere. To identify the individual

constituent residues of epitopes, exactly the same mechanism is

used on individual residues instead of areas.
Detecting within-serotype variability. In order to

determine whether there was variability in the effects of

substitutions at specific sites within a serotype, we added a

random effect that allows the effect of the count to vary for

different protective strains, challenge viruses or sera (Equation 9).

Should one of these terms be found to improve model fit, this

would provide evidence that there is variability across the

phylogeny as to the importance of different sites.

Supporting Information

Dataset S1 Best consensus estimates of all r1-values used in the

study.

Found at: doi:10.1371/journal.pcbi.1001027.s001 (0.03 MB XLS)

Dataset S2 Reference alignment of the protective strains to the

study isolates. The dataset shows the VP2, VP3 and VP1 proteins

of the protective strains after alignment to all of the SAT1 and

SAT2 isolates used in the study. The 43 contiguous surface-

exposed areas identified by the capsid structural analysis are

highlighted. Areas with no amino-acid variability are in grey, and

areas with variability are in red for the serotypes for which there is

variation.

Found at: doi:10.1371/journal.pcbi.1001027.s002 (0.14 MB

DOC)
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