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Abstract

Infectious diseases often spread as spatial epidemic outbreak waves. A number of model studies have shown that such spatial
pattern formation can have important consequences for the evolution of pathogens. Here, we show that such spatial patterns
can cause cyclic evolutionary dynamics in selection for the length of the infectious period. The necessary reversal in the
direction of selection is enabled by a qualitative change in the spatial pattern from epidemic waves to irregular local outbreaks.
The spatial patterns are an emergent property of the epidemic system, and they are robust against changes in specific model
assumptions. Our results indicate that emergent spatial patterns can act as a rich source for complexity in pathogen evolution.
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Introduction

Recent studies show that in spatial models, evolutionary

dynamics of infectious diseases change with respect to predictions

from non-spatial model, which implicitly assume complete mixing

of individuals [1–5]. Spatial epidemic waves have been observed

for several diseases [6–9]. Starting with Rand et al. [10], a number

of authors have analyzed a spatial pathogen-host model in which a

host population with local reproduction is infected by a lethal

pathogen that is transmitted through direct local contact [4,11–

13]. In this class of models, local extinction of host populations

caused by the pathogen is balanced by re-colonization of empty

space by reproduction of uninfected hosts. Evolution towards

increased transmissibility is limited, because pathogens that are too

infectious exhaust their local host population before enough new

hosts are born for the pathogen to persist.

Spatial pattern formation can also act to limit the duration of

the infectious period. We recently examined a spatial epidemic

model in which infection of hosts leads to waning immunity

instead of host death [14], and we found that, after the system self-

organizes into epidemic waves, natural selection is directed toward

increasing outbreak frequency. Outbreak frequency is optimal for

infections of relatively short duration so that pathogens evolve

towards short lasting infections. The mechanistic explanation for

competition for frequency between waves is that, when two

infection waves collide, this typically is followed by local extinction

of the pathogen. Subsequently, the pathogen with the higher

outbreak frequency will be the first to reinvade the susceptible host

population. Frequency selection also occurs in spatial competition

in chemical reactions [15], autocatalytic hypercycles [16] and

parasitoid-host systems [1,17].

Our previous analysis [14] adopted a standard evolutionary

approach in that ecological dynamics were operating on a faster

timescale than mutation and evolution. However, for many

pathogens, in particular viruses and bacteria, this assumption

need not be true, as even within a single host the pathogen can

accumulate many mutants as a by-product of the large mutation

rate, large copy numbers, and short generation time [18,19]. In

this paper we investigate the effects of increasing mutation rate in

our spatial disease model (see Model section for a description of

the model). It will turn out that co-occurrence of pathogens with a

substantial difference in infection period can trigger a novel type of

spatial patterns, which can temporarily reverse the selection

pressure in the system. As a result, the model exhibits so-called

evolutionary cycling in the length of the infection period.

Model

In our spatial epidemic model, hosts are situated in a regular

square contact network. Hosts can be in three states: susceptible

(S), infected (I), or resistant to infection (R). There are three

possible state transitions, namely infection, acquiring resistance,

and loss of resistance. Infection is a local contact process, where

each infected host can infect its eight direct neighbors, and this

occurs at rate b. Acquiring resistance occurs after a fixed time ti

since infection (i.e. ti can be interpreted as the duration of the

infectious period). Loss of resistance occurs after a fixed duration

tr. Note that only infection is a spatial process. Because the total

population size of hosts is constant, infection is both density and

frequency dependent. All time units are relative to the resistant

period (which is set at tr = 1). In this paper, we investigate

evolution of the length of the infectious period. Upon each new

infection, the infectious period can, with equal probability,

increase or decrease with a fixed mutation size step 6Dti with

mutation probability m. As a consequence, strains with different

infectious period will co-occur and compete for susceptible hosts.
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We assume full cross-resistance, and no co-infection or super-

infection between strains, so that after infection by a particular

strain a host cannot be infected by any other strain.

In our earlier paper [14], we used a probabilistic cellular

automaton model with a small fixed time step. We tested

decreasing the time step until the behavior approached a

continuous time process. However, such a method requires quite

small time steps, which implies a large waste of computational

power, as most time is used for updating hosts that do nothing

within the time step. Instead, here we adopt a much faster

continuous time method by using an event based updating

procedure. For each infected individual, we schedule a next

infection event, using an exponential distribution with rate

parameter b. A scheduled infection event will only cause a new

infection if, at the time of the event, the individual is still infectious,

and if a randomly chosen neighbor individual is susceptible to

infection. Acquiring resistance and loss of resistance of individuals

are also scheduled as events. All events are efficiently managed in a

binary heap data structure [20]. The next scheduled event is

always located at the top of the binary tree, and updating the tree

is an efficient process (scaling with the logarithm of the number of

events). The method is vey flexible, as e.g. other probability

distributions for the infectious period, such as lognormal or

gamma distributions, can be implemented without loss of

computational speed. Furthermore, using larger neighborhoods

for the infection process does not substantially increase the

computation time, as the neighborhood is only evaluated at the

time of a potential infection. A non-spatial analogue of the model

can be investigated by implementing infection at a global scale,

that is, an infected individual can infect any other individual in the

system with equal probability, thus effectively removing the spatial

component from the model. A deterministic continuous approx-

imation of the mean field dynamics [21] would consist of a set of

three (SIR type) delay differential equations. Typical single run

simulations of the spatial model, as reported in this paper, take

around one hour to run on a Pentium computer. For large

simulations several nodes of the Dutch national computer cluster

LISA were used overnight. A C-code for the updating procedure

can be obtained from the corresponding author upon request.

Results

Rock-Scissor-Paper Dynamics
In Fig. 1A through 1C (for movies see supplemental Videos S1,

S2, S3), we investigate pair-wise competition between three

pathogen genotypes that differ in infection period, with infection

periods of tI = 0.4, tI = 0.6 and tI = 0.8, respectively. We observe

that these three pathogen types have a cyclical dominance

structure, where each infection period can outcompete exactly

one other infection period, resulting in a so-called ‘‘rock-scissor-

paper’’ dynamics. In each pair-wise competition two distinct

genotypes are initialized each on one side of a 2016100 field.

Infection and resistance is randomly initialized in large blocks, in

order to speed up the pattern formation. The middle vertical row

is kept susceptible for the first 10 time units, so that the patterns

can fully develop before the competition is started. Fig. 1A, tI = 0.4

against tI = 0.6, and Fig. 1B, tI = 0.6 against tI = 0.8, both show

that the genotype with the shorter infection period wins the

competition. This outcome is surprising, as a shorter infection

period is a disadvantage at an individual level, as it generates fewer

secondary infections. This selection for shorter infection period

was also reported in our previous paper [14], and it can be

explained by selection for higher outbreak frequency. At the

spatial location where the two genotypes co-occur, the disease

locally goes extinct after each wave of infection. The genotype that

subsequently can cause the next disease outbreak faster will

reinvade the area more quickly and it will gradually increase its

domain of dominance. This selection for shorter infection period

depends on the spatial pattern formation, and particularly on the

epidemic waves that cause local extinction of the disease. In the

non-spatial analogue of our model a shorter infection period is

always a competitive disadvantage, as it locally generates less

secondary infections per infected individual (i.e. it has a reduced

reproduction number R0; see ref. [22]). The spatial patterns cancel

this selection at the local individual level, because after each

epidemic wave both disease genotypes locally will go extinct.

However, in Fig. 1C, for a two-fold difference in infection

period of tI = 0.4 against tI = 0.8, the genotype with the longer

infection period wins. This reversal of selection is accompanied by

a local change in the spatial pattern; that is, at the interface

between the two genotypes the dynamics now switches to a fine-

scaled irregular outbreak pattern instead of regular epidemic

waves. Here, the epidemic waves from the fast genotype run into

remaining resistance fragments of the slow genotype. As a

consequence, the waves break up and become irregular, and,

most importantly, the disease no longer locally goes extinct

(Fig. 1D). In the absence of local extinction, selection will favor the

disease genotype with the longer infection period, because it

locally generates more secondary infections (i.e. it has a larger R0,

see ref. [20]).

Summing up, we have two opposite directions of selection in our

system, depending on the spatial pattern at the competition

interface. When the difference between infection periods is

relatively small, the spatial pattern consists of epidemic waves,

and both genotypes will go extinct in between successive epidemic

waves. In this spatial regime, selection is for increased outbreak

frequency, because the higher frequency genotype will be able to

reinvade the area more quickly. In contrast, when the difference

between infection periods is large, the spatial pattern at the

competition interface will be irregular (i.e. turbulent), and local

extinction of both genotypes between successive epidemic waves

does no longer occur. In this spatial regime, selection is for

increased infection period, because the genotype with longer

infection period will be able to locally cause more secondary

infections. In a way, the situation is reminiscent of a life history

trade-off, or in particular ‘‘r’’ versus ‘‘K’’ selection theory [23,24].

Here, the epidemic waves create an unstable ‘‘r’’ strategy

environment, selecting for fast regeneration and growth, whereas

the local irregular outbreak pattern creates a (relatively) stable ‘‘K’’

strategy environment, selecting for increased local competition

strength. In the next paragraph we will quantify the exact

Author Summary

Parasites are commonly believed to evolve to make as
many infections as possible. In large scale simulations of
disease spread, however, natural selection can instead act
to maximize outbreak frequency. Here, pathogens that
cause short infections can be rewarded for their prudence
by a rapid subsequent outbreak. Very surprisingly, in a
simple spatial model for disease spread so-called evolu-
tionary cycling can be observed, that is, the infection
period indefinitely keeps evolving up and down. The
reversal in the direction of selection is triggered by a
switch in the spatial patterns from epidemic waves to
irregular local outbreaks. This finding offers an alternative
mechanism to explain why infectious diseases show so
much variation in the lengths of their infectious periods.

Cyclic Evolution in Spatial Epidemics
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boundaries for these two modes of selection, depending on the

infection periods of both competitors.

Evolutionary Cycling
In Fig. 2A, a pair-wise competition plot is shown for infection

periods up to tI = 1.0. For small differences in infection period,

there is selection for increased outbreak frequency, leading to an

evolutionary stable attractor (ESS) around ti = 0.2 (i.e. in the ESS,

R0 = tI b = 6.4). However, if the difference in infection period is

large, the fine-scaled local irregular outbreak pattern develops, and

selection favors the genotype with the longer infection period. As a

consequence, for a small mutation rate of m = 0.01, an evolving

Figure 1. Rock-scissor-paper cyclic dominance. A: After 50 time units, infection period tI = 0.4 (green) is winning against tI = 0.6 (yellow); black
indicates susceptible individuals and blue is resistance. B: After 50 time units, tI = 0.6 (yellow) is winning against tI = 0.8 (orange). C: After 250 time
units, tI = 0.8 (orange) is winning against tI = 0.4 (green). D: Local extinction of pathogens in Fig. 1C. Here, cells are colored red if they persistently
have been in direct contact with the disease during the last 10 time units; black cells indicate local extinction. All simulations are on a 2016100 field
size with empty boundary conditions. Infectivity is set at b = 32, and resistant period tR = 1. For initial conditions a susceptible field is seeded with 100
randomly located 10610 blocks of infected individuals and subsequently with 100 random (overlapping) 10610 blocks of resistant individuals. Each
competitor is introduced exclusively on one side of the field, and the middle vertical row is kept susceptible for the first 10 time units, in order to let
the spatial patterns develop before the competition is started. For movies see supporting Videos S1, S2 and S3.
doi:10.1371/journal.pcbi.1001030.g001

Figure 2. Evolutionary cycling in the length of infection period. A: Pair wise competition plot for infection periods. All competitions between
infection periods from tI = 0.01 up to tI = 1 with 0.01 increment are performed using the procedure of Fig. 1 (using a 5016100 field size). Blue
indicates that infection period X wins and red indicates that Y wins. Black cells indicate that the competition is not decided after 500 time units, and
cells are dark shaded in blue or red if after this period there is one type that has a large majority. The figure is, as expected, almost completely
symmetric along the diagonal. B: Attractor dynamics with small mutation rate m = 0.01 (dashed line) and large mutation rate m = 0.05 (solid line). Initial
dynamics are omitted and only the attractor dynamics are shown for 1,000 time units. The small mutation rate converges to an attractor around
tI = 0.2, whereas the large mutation rate shows sustained large amplitude cycles in the length of the infection period. The average length of the
infection period is plotted for a 40640 subfield of a total field size of 3006300 cells with periodic boundary conditions. Mutation step size is
Dti = 0.01. Other parameters and settings are as in Fig. 1.
doi:10.1371/journal.pcbi.1001030.g002
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population will converge to the ESS, because at any time the

difference between competing genotypes will be small (Fig. 2B,

dotted line). However, for a larger mutation rate of m = 0.05, the

evolutionary dynamics are qualitatively different, and they

converge to large amplitude cycling of the infection period

(Fig. 2B, solid line). In the spatial pattern of the cyclic evolutionary

attractor (Fig. 3A) it appears that distinct areas differ substantially

in infection period. In Fig. 3B, after 20 time units, the areas of

irregular outbreaks have invaded the nearby epidemic wave areas,

whereas the other areas have decreased in infection period (see

supplemental Video S4). In Fig. 3C the local direction of selection

for this 20 time unit period is plotted, showing a strong

dependence of the direction of selection on the local spatial

pattern. In areas of irregular outbreaks the infection period

increases whereas in areas of epidemic waves it decreases over

time.

Phase Transition and Hysteresis
When the mutation rate is slowly increased, the evolutionary

dynamics show a sudden shift from the ESS to the cyclic

evolutionary attractor (Fig. 4A). For increasing mutation rate, the

distribution of mutants around the ESS gradually widens (due to

quasispecies dynamics, see ref. [19]), until the first local irregular

outbreaks can develop when neighboring genotypes differ enough

in infection period. Hereafter, the dynamics quickly shifts to the

cyclic attractor. If we now gradually reduce the mutation rate

(Fig. 4B), it turns out that the cyclic evolutionary attractor can be

maintained for quite small mutation rates, before the system falls

back to the ESS. There is thus a considerable region, for

0.027#m#0.036, where the system displays bi-stability between

the ESS and the cyclic evolutionary attractor. This bi-stability can

be explained by the fact that the cyclic evolutionary attractor

reinforces itself, as it is associated with large differences in infection

period across the field which induces the irregular outbreak

pattern. It should be noted that, due to the stochastic nature of the

model, the hysteresis is only a transient phenomenon; that is,

allowing long enough simulation time, within the bi-stable region

the dynamics will spend time in both alternative attractors.

Increasing the system size will, within the bi-stable region,

promote the cyclic evolutionary attractor, as the first irregular

outbreaks can develop anywhere in the spatial domain, and

increasing the size of the domain will thus increase the chance of

the irregular outbreak pattern to develop. Once the irregular

outbreak pattern has developed somewhere in the field, it will

expand to the rest of the system. Also, on a small spatial domain,

the cyclic evolutionary attractor is more easily lost, because

persistence of the attractor depends on different spatial regions

being in different phases of the attractor. On a small field global

synchronization occurs more easily, and this will result in the

system falling back to the ESS (i.e. ti = 0.2) attractor.

How Robust is the Evolutionary Cycling?
In the previous section, the first local irregular outbreak pattern

is generated by increasing the mutation rate. One could argue that

Figure 3. Spatial distribution in the cyclic evolutionary attractor. A: Spatial pattern of length of infection period after 380 time units. B:
Spatial pattern after 400 time units; C: Difference in infection period between A and B. Depending on the local pattern, the infection period evolves
up or down. Field size is 3006300 with periodic boundary conditions; mutation rate is m = 0.05, with Dti = 0.01. Other parameters and settings are as
in Fig. 1. For a movie see supporting Video S4.
doi:10.1371/journal.pcbi.1001030.g003
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the mutation rate that is necessary to generate this pattern is quite

large, and hence the evolutionary cycling might be considered

unlikely to play a role in real epidemics. However, it turns out that

the irregular outbreak pattern can also originate from various

other sources. For instance, cyclic evolutionary dynamics can be

observed for a small mutation rate of m = 0.001 (or even smaller) if

only a small region of the field has some variance in the length of

the resistant period. In Fig. 5 such a small inhomogeneous area is

introduced in the middle of the field. Within this inhomogeneous

region, the disease will develop a small scale spatial pattern in

which there is no local extinction. As a consequence, within this

region, the disease will evolve to maximum length of the infection

period (Fig. 5, dotted line). Subsequently, the long infection

periods in middle of the field will seed the irregular outbreak

pattern and the resulting evolutionary cyclic dynamics in the rest

of the field (Fig. 5, solid line). The mutation rate in this case will set

the timescale of the evolutionary cycle, but even at very small

mutation rates the evolutionary cycling dynamics persist. The

evolutionary cycling here is much more regular than in Fig. 2B,

because now the maximal infection period remains continuously

present in the system, whereas before it occasionally was lost and

had to reemerge from de novo mutation.

The cyclic evolutionary attractor can also be induced for small

mutation rates if some local movement of individuals is included in

the model, or if occasional large effect mutations are considered

(results not shown). Furthermore, the occurrence of the cyclic

evolutionary attractor does not depend on the specific assumptions

of the model. We imposed a maximum to the length of the

infection period, but such an upper limit could also be obtained

implicitly by e.g. implementing a trade-off between the length of

the infection period and the infectivity of a genotype. We

extensively tested robustness of our results against various model

assumptions, for instance by changing the contact network

topology (using 4 or 6 infection neighbors), changing the boundary

conditions (reflecting boundaries and empty boundary conditions),

and testing various statistical distributions for the duration of the

infectious period and the resistant period (e.g. log-normal and

gamma distributions). The key property that is necessary for the

selection for shorter infection periods to occur is recurrent local

extinction of the disease. This coincides with a local dynamics that

is unstable (i.e. the mean field dynamics converges to large

amplitude oscillations or even extinction), inducing the spatio-

temporal pattern of epidemic waves. If instead, the local (and

mean field) dynamics of the disease converges to a stable endemic

equilibrium, selection will favor genotypes with maximal infection

period.

Discussion

In the spatial epidemic model we present here, the local

oscillating dynamics give rise to epidemic waves and recurrent

local extinction of the disease. These spatial patterns enable

selection for a reduced infection period, as this will increase the

outbreak frequency. However, the system can switch to a local

fine-scaled irregular outbreak pattern, which emerges at the

interface between pathogens with large enough difference in

infection period. Here, local extinction of the disease no longer

occurs, and selection is in the direction of increased infection

period. These opposite directions of selection can lead to large

amplitude cyclic evolutionary dynamics.

Cyclic evolution was reported before for non-spatial systems

[25–27]. It can result from co-evolution between species or traits.

In contrast, in the model we present here, we observe cyclic

dynamics in a single evolving trait, namely the length of the

infection period. In our system, a change in the spatial pattern acts

as a switch for the direction of selection. Interestingly, both

alternative spatial patterns cause selection in a direction that

promotes the switch to the other pattern, resulting in a continual

cycling between the two patterns and directions of selection.

Alternative spatial patterns can also act to induce bi-stability, in

the case that each of the two patterns causes a direction of

selection that enforces the current pattern [4,17]. Note that the

observed cyclic evolutionary dynamics cannot be explained with

currently popular spatial analytic tools, such as spatial adaptive

Figure 4. Phase transition and hysteresis in evolutionary dynamics as a function of mutation rate. A: Mutation rate is slowly increased
starting with m = 0.001 and incrementing 0.001 after each 1,000 time units. B: Mutation rate is slowly decreased starting with m = 0.05 and
decrementing 0.001 after each 1,000 time units. For each mutation rate, the average distribution of infection period is plotted for the last 200 time
units. Field size is 3006300 with periodic boundary conditions. Other parameters and settings are as in Fig. 1.
doi:10.1371/journal.pcbi.1001030.g004
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dynamics [28], spatial moment approximation techniques [29] or

spatial inclusive fitness measurements [30]. The fine-scaled

irregular outbreak pattern is only a transient pattern that occurs

at the interface between genotypes, and the local selection always

favors the disease genotype with longer infection period. However,

as we demonstrated, this local selection can be overruled by local

extinction and recolonization, which can cause selection to act in

an opposite direction. In this paper, we use numerical computa-

tional methods, such as constructing the pair-wise competition plot

of Fig. 2A. We feel that the current emphasis on spatial

approximation techniques acts to underestimate the potential

(non-linear) effects of spatial patterns on disease dynamics. In

particular, spatial patterns can undergo sudden changes, such as

the transition from epidemic waves to local irregular outbreaks

that is observed in this paper, and such transitions are often hard

(or even impossible) to predict with the current approximation

techniques. Maybe these analytic tools can be improved to

include, or at least predict, such transitions; for instance by

developing ‘early warning signals’ for these shifts in spatial pattern

[31], but this is not easy. In the meantime, we want to advocate

the complementary use of numerical computational methods that

incorporate the full non-linearity of the system, as such methods

can increase both our qualitative and quantitative understanding

of the impact of spatial pattern formation on disease dynamics.

Spatial epidemic waves have been reported for many infectious

diseases [6–9], and recurrent local extinction is occurring for many

epidemic diseases [32]. We have shown that these spatio-temporal

patterns can have profound effects on selection for disease

properties. Most notably, epidemic waves and recurrent local

extinction can induce selection for a short infection period, which

is a property of many diseases, and which is otherwise hard to

explain without invoking strong trade-off assumptions [33–35].

We want to emphasize that the spatial patterns can induce

selection for properties that emerge at a scale beyond that of the

individual or the direct neighborhood of individuals [36]. Selection

for increased outbreak frequency in epidemic waves is an

intriguing example where a property that appears at a scale of

outbreak centers overrides the local individual selection for

maximizing secondary infections.

Supporting Information

Video S1 This video shows competition between two pathogen

types which differ in infection period. Infection period 0.4 (green)

is winning against period 0.6 (yellow) because it causes a higher

outbreak frequency. The video corresponds to Fig. 1A in the main

text and has a total duration of 90 time units.

Found at: doi:10.1371/journal.pcbi.1001030.s001 (8.70 MB

AVI)

Video S2 This video shows competition between infection

period 0.6 (yellow) and period 0.8 (orange). Again, the pathogen

with the shorter infection period and higher outbreak frequency

wins. The video corresponds to Fig. 1B and has a total duration of

100 time units.

Found at: doi:10.1371/journal.pcbi.1001030.s002 (9.29 MB AVI)

Video S3 This video shows competition between infection

period 0.8 (orange) and period 0.4 (green). Here, turbulence

develops at the interface between the two types, and the type with

the longer infection period slowly wins. Note that green is

increasing initially, before the turbulence has developed. The

video corresponds to Fig. 1C and has a total duration of 360 time

units.

Found at: doi:10.1371/journal.pcbi.1001030.s003 (10.01 MB

AVI)

Video S4 This video shows cyclic evolution in the length of the

infection period. The direction of selection depends on the local

spatial pattern. In some areas the infection period is increasing and

in other areas it is decreasing, depending on the local spatial

pattern. The video corresponds to the period between Figs. 3A

and 3B.

Found at: doi:10.1371/journal.pcbi.1001030.s004 (6.00 MB AVI)

Figure 5. Evolutionary cycling induced by a small heterogeneous region. A: Pattern after 9950 time steps. The large infection periods (red)
spread from a 40640 cell heterogeneous center of the field and replace the short infection periods (green) in the periphery (for color legend see Fig. 3B).
B: The evolutionary dynamics in the center of the field slowly evolve to maximal infection period (dotted line), and induce sustained large amplitude
evolutionary cycling in the rest of the field (solid line). Field size is 3006300 cells with periodic boundary conditions. Infectivity is set at b = 32, and
resistant period is fixed at tR = 1. In the middle of the field, in a 40640 cell region, the resistant period is normally distributed with mean tR = 1 and
standard deviation = 0.3. For initial conditions a susceptible field is seeded with 100 randomly located 10610 blocks of infected individuals with tI = 0.2
and subsequently with 100 random 10610 blocks of resistant individuals. The average infection period is plotted for the 40640 cells in the middle of the
field (dotted line), and for 40640 cells in the left upper corner (solid line). Mutation step size is Dti = 0.01, and mutation rate is m = 0.001.
doi:10.1371/journal.pcbi.1001030.g005
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