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Abstract

Embryonic stem cells (ESC) have the potential to self-renew indefinitely and to differentiate into any of the three germ
layers. The molecular mechanisms for self-renewal, maintenance of pluripotency and lineage specification are poorly
understood, but recent results point to a key role for epigenetic mechanisms. In this study, we focus on quantifying the
impact of histone 3 acetylation (H3K9,14ac) on gene expression in murine embryonic stem cells. We analyze genome-wide
histone acetylation patterns and gene expression profiles measured over the first five days of cell differentiation triggered
by silencing Nanog, a key transcription factor in ESC regulation. We explore the temporal and spatial dynamics of histone
acetylation data and its correlation with gene expression using supervised and unsupervised statistical models. On a
genome-wide scale, changes in acetylation are significantly correlated to changes in mRNA expression and, surprisingly, this
coherence increases over time. We quantify the predictive power of histone acetylation for gene expression changes in a
balanced cross-validation procedure. In an in-depth study we focus on genes central to the regulatory network of Mouse
ESC, including those identified in a recent genome-wide RNAi screen and in the PluriNet, a computationally derived stem
cell signature. We find that compared to the rest of the genome, ESC-specific genes show significantly more acetylation
signal and a much stronger decrease in acetylation over time, which is often not reflected in a concordant expression
change. These results shed light on the complexity of the relationship between histone acetylation and gene expression
and are a step toward dissecting the multilayer regulatory mechanisms that determine stem cell fate.
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Introduction

Embryonic stem cells (ESC) are pluripotent cells that have the

potential to self-renew indefinitely and to differentiate into any of

the three germ layers. Molecular regulation of embryonic stem cell

fate is implemented by a coordinated interaction between

epigenetic [1–5], transcriptional [6–11] and translational [12,13]

mechanisms.

The molecular mechanisms for self-renewal, maintenance of

pluripotency and lineage specification are poorly understood [14],

but recent results point to key roles for a network of transcription

factors [9,15,16] and a wide range of epigenetic mechanisms

[2,17–19]. For example, recent work showed the importance of

chromatin remodeling factors like polycomb proteins [20,21] and

the SWI/SNF complex [22] for ES cell regulation. ES cells are

richer in less compact euchromatin and, as differentiation

progresses, accumulate highly condensed, transcriptionaly inactive

heterochromatin regions [23]. Major architectural chromatin

proteins are hyper-dynamic and bind loosely to chromatin in ES

cells. Upon differentiation, the hyperdynamic proteins become

immobilized on chromatin [24]. Bivalent domains – consisting of

large regions of H3 lysine 27 methylation harboring smaller

regions of H3 lysine 4 methylation– silence developmental genes in

ES cells while keeping them poised for action [1,3].

Multi-layered time-course data in Nanog-depleted
mouse ESC

The number of data sets in ESC linking epigenetic mechanisms

to other molecular regulatory mechanisms and following that

relationship over time is very limited. Recently, however, Lu and

coworkers [25] presented a dynamic systems-level study to assess

how different molecular regulatory mechanisms interact in stem

cell fate decisions in mouse ESC. Lu et al initiated cell

differentiation by experimentally down-regulating Nanog, a key

pluripotency regulator. Over the following five days they measured

changes on four different molecular levels: histone acetylation

(H3K9,14ac), chromatin-bound RNA polymerase II, messenger

RNA (mRNA) expression and nuclear protein abundance. This
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data set provides a rich resource to untangle the complexity of the

multi-layer regulatory mechanism responsible for stem cell fate. Lu

et al anchored their analyses on changes in nuclear protein

expression and found that many lacked concordant changes in

mRNA expression, pointing to important roles for translational

and post-translational regulation of ESC fate. Here, we comple-

ment theses analyses with an in-depth study of the relation

between histone acetylation and gene expression in the same data

set.

Histone acetylation and gene expression
The acetylation of lysine residues is among the best character-

ized histone modifications. It has long been correlated with

transcriptional activation [26,27]. This observation has been

verified in many recent high-throughput studies [28–30]. For

example, histone acetylation was found to be positively correlated

with expression in yeast [31,32] and human T cells [33,34]. The

last study also suggests that acetylation sites often cluster together

in so called ‘acetylation islands’ [34].

Several models have been suggested to explain how histone

acetylation and other modifications regulate gene expression [35],

including charge neutralization [36] and a signalling pathway

model [37]. However, the detailed mechanism is still poorly

understood. This problem is highlighted by two recent studies, one

experimental and one statistical. Günther et al. [38] stress the

importance of additional regulatory events by showing that

acetylated and methylated nucleosomes, as well as RNA

polymerase II, occupy the promoters of most protein-coding genes

in human ES cells, even those that are not expressed. Yuan et al.

[39] assessed the global regulatory role of histone acetylation in

Saccharomyces cerevisiae by controlling for confounding effects like

transcription factor binding sites and nucleosome occupancy.

They find a clear effect of histone 3 acetylation, but no significant

direct impact of histone 4 acetylation or combinatorial effects,

even though they correlate with expression.

These results indicate that further experimental results and

statistical analyses are required to untangle the regulatory role of

histone acetylation and the mechanism by which it acts. The need

for a better understanding of histone acetylation is especially

urgent in ES cells, where many key regulatory mechanisms are

epigenetic and act by chromatin modifications and remodeling.

For example, embryonic stem cells in which histone de-acetylation

is inhibited, undergo morphological and gene expression changes

indicative of differentiation [40].

Overview of results
In the following, we first start by analyzing the internal structure

of the histone acetylation profiles and their change during

differentiation. We investigate the dynamics of acetylation over

time and find that the location of acetylation islands remain stable.

We find that differentially down-regulated genes are accompanied

by a much stronger loss of acetylation than up-regulated genes are

by a gain of acetylation. In a next step we assess the dynamics of

the correlation between mean acetylation levels and expression

and find that coordination increases over time. Using statistical

classification methods we then quantify the predictive power of

acetylation profiles for gene expression changes. Finally, we focus

on genes playing key roles in the regulatory networks governing

fate decisions in embryonic stem cells. We show that these genes

show highly increased acetylation profiles. Over time the high

levels of acetylation get reduced more strongly than in other, not

ESC specific genes. This behaviour is far less pronounced in the

gene expression data, pointing to a key role in non-transcriptional

regulation of pluripotency for important ESC genes.

Results

Our central questions are how changes in gene expression are

reflected in histone acetylation, how predictive histone acetylation

is for gene expression changes, and how this relationship changes

over time. To answer them, in the following we employ different

statistical approaches to describe the internal structure of histone

acetylation profiles and to map them to changes in gene

expression.

Histone acetylation changes in differentially expressed
genes

Location of acetylation islands is stable over time. As

examples of the data we work with, Figure 1A shows acetylation

profiles of Pou5f1/Oct4 and Klf4. The plots show acetylation

levels at four time points: before silencing Nanog (day 0) and at

days 1, 3, and 5 afterwards. The plots show large internal variation

of acetylation signal for each gene. As a first preparatory step in

our analysis we investigated if there is evidence that the location of

acetylation signal changes over time. If the signal location does not

change, then only the quantitative level of acetylation are

important when mapping it to gene expression in the next steps

of our study.

We identified acetylation islands [34] by comparing probe

signal to background distribution of control probes on the array

(see Materials and Methods). Figure 1A depicts the background

distribution as a grey area, all probes above it are counted as

‘acetylated’, all probes inside as ‘unacetylated’. (This is a slight

abuse of terminology since technically it is not the probe that is

acetylated but the histone protein bound to a piece of DNA

complementary to the probe.) With these results, we investigated

dynamical changes on the probe level and asked for each gene:

Are the same probes acetylated over time, or does the position of

acetylation signal change over time? To answer this question, we

represented each gene by two numbers: the percentage of probes

staying un-acetylated and the percentage of probes staying

acetylated between time-points. Figure 1B shows that the

distribution of these values is concentrated in the upper right

Author Summary

Stem cell differentiation and the maintenance of self-
renewal are intrinsically complex processes that require
coordinated regulation on many different cellular levels.
Here we focus on the relationship between two important
layers and follow it over the first five days of differentia-
tion. The first layer – measured by acetylation of one of the
histone proteins – describes which parts of the DNA are
tightly wrapped up and which lie open. The second layer
describes the activity of genes measured by their mRNA
expression. Using a wide array of statistical approaches we
show that changes in histone acetylation are very
predictive for gene expression and that the concordance
between the two levels increases over time. Concentrating
on genes central to the regulatory networks in embryonic
stem cells we find that key genes show very high
acetylation signal in the beginning that decreases quickly
over time, indicating that they lie in initially open regions
that are rapidly closing down. These results are a step
forward to a better understanding of the complexities of
the relationship between histone acetylation and gene
expression, which will help to dissect the multilayer
regulatory mechanisms that determine stem cell fate.

Mapping Histone Acetylation to Gene Expression
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corner of the plot which corresponds to perfect conservation of

acetylation location over time. Probes that are acetylated at any

time-point stay acetylated and un-acetylated probes stay un-

acetylated. In a second step we investigated if regions of peak

signal in the binned profiles change over time. We defined a peak

as those bins that include the maximum of the profile and together

carry §30% of the signal. Figure 1C shows that not only

acetylated probes but also peaks stay stable over time.

Thus, in summary, in our data we find no evidence that the

location of acetylation signal changes over time. This simple

analysis plays only a preparatory role in our study: it allows us to

focus on quantitative changes in signal intensity in the next steps of

our analysis. The data we work with from now is exemplified by

the blue heatmaps underneath the profiles in Figure 1A. For each

gene, our data captures the quantitative acetylation signal in a

region of +3:5kb around the transcription start site (TSS).

Loss of acetylation is more pronounced than gain of

acetylation. We find clear correlations between histone

acetylation and gene expression. For example, Figure 2A shows

all genes differentially expressed on day 5. In this plot, genes

transcriptionally up-regulated also show increased levels of

acetylation, while down-regulated genes show a decrease.

However, these plots also indicate that the loss of acetylation for

down-regulated genes is much stronger pronounced than the gain

of acetylation for up-regulated genes. This is particularly visible in

Figure 2B, which plots the acetylation distributions separately for

up-regulated, down-regulated and stable genes. The down-

regulated genes show a very strong loss over the whole width of

the profile, while the up-regulated genes show a much weaker

signal and only close to the TSS. Genes without significant

expression changes show a strong bias towards loss of acetylation,

but the size of the effect is much smaller than in the down-

regulated genes.

Partial correlation analysis resolves spatial and temporal

dependencies in acetylation profiles. We were interested in

the internal correlation structure of the histone acetylation profiles

and used partial correlation analysis (see Materials and Methods) to

measure the direct relations between regions around TSS (i.e. the

bins in the profile). Figure 3A shows partial correlation matrices

combining data from day 1, 3 and 5. We computed one matrix for

Figure 1. Acetylation profiles over time. A Histone acetylation profiles of Pou5f1/Oct4 and Klf4 before Nanog-knockdown (day 0) and on days 1,
3, and 5 afterwards. All plots are centered at the transcription start site (TSS; red dashed line). The gray area shows the background signal, circles
indicate replicate measurements, dots averages. The blue heatmap underneath each plot shows quantitative data averaged over 5 kb intervals to
make it comparable between genes with different numbers and positions of probes. B To test for evidence of location changes, we counted probes
as ‘acetylated’ if they were above the noise (gray area in panel A). The smoothed scatterplot shows for each gene the percentages of probes staying
acetylated (x-axis) or un-acetylated (y-axis) over time. The mass of the distribution lies in the upper right corner indicating high stability of acetylation
islands. This is independent of particular gene sets of days as the inlay exemplifies by plotting only the changes between day 3 and 5 for genes
differential on day 5. C We defined a peak in the acetylation profile as the smallest region covering 30% of the total signal. Peaks stay very stable over
time. The plot shows that for example between days 3 and 5 ca. 70% of peaks are at exactly the same position and for almost 80% of peaks the
location on day 5 overlapped the location on day 3 completely. If we allow one mismatch between peak locations the numbers go up to 80% and
95% respectively.
doi:10.1371/journal.pcbi.1001034.g001

Mapping Histone Acetylation to Gene Expression
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genes differentially expressed on day 5 and a second one for genes

with stable expression. Both matrices show a strong stripe-pattern

indicating high correlation for neighboring bins and for the same

bin at different days. The differences between the two matrices are

minimal, as can be seen in the right-most matrix of Figure 3A.

Only between day 3 and 5 do the acetylation profiles in differential

genes show a little bit more correlation than those in the non-

differential genes.

The significant entries of the partial correlation matrix can be

depicted by the graph structure shown in Figure 3B. The three

layers of the graph correspond to the three days and each edge

indicates a significant partial correlation coefficient. We show the

graph for the non-differential genes since their larger number

results in higher power. The graph shows that the spatial and

temporal dependencies between variables very clearly show in the

correlation structure of the data, for example almost all

neighboring bins at the same time-point are connected. However,

close to the TSS the graph is much less connected than in more

distant regions. This possible reflects the presence of nucleosome

free regions around the TSS in many active genes [41].

Coordination of histone acetylation and gene expression
increases over time

We assessed the correlation between histone acetylation changes

and gene expression changes versus day 0 for all pairings of days.

This analysis is anchored on the ESC state (day 0) and assesses the

coordination of cumulative changes away from it. In a first step, we

summarized each acetylation profile by the mean and computed

the standard Pearson correlation between the resulting acetylation

vector and expression vector (Figure 4A, left matrix). The results

show that changes in acetylation demonstrate significant correla-

tion to changes in mRNA expression. Correlations with acetyla-

tion changes on day 1 are generally small (in general v0:1), but

correlations between changes on days 3 and 5 show very

significant values, e.g. on day 5 Pearson correlation is 0.344.

Even though this value is small, the level of coherence is very

surprising given the large number of genes (w17 000). The

correlation table shows coherence between histone acetylation and

gene expression increases over time and is biggest on day 5.

Correlation results are statistically significant. We

assessed the significance of observed correlations in two ways.

First, we used the analytic Null-distributions known for the

correlation measures we used [42]. Significance is a function of

sample size and with w17 000 genes we find all correlations

between days 3 and 5 to be significant with p-values smaller than

10{100. Correlations with day 1 (first row or column in Figure 4A

left matrix) are much weaker, but still almost always significant on

a level of 10{4. One reason for these extremely small p-values is

that the analytic Null-distributions assume independence between

genes, which is an unreasonable assumption for genomic data. To

correct for this bias, we used a permutation approach that keeps

the correlation structure of genes intact for a second assessment of

significance. We compared the correlations measured in the actual

data with the distribution of 104 correlation values computed on

permuted versions of the data. However, qualitatively the results

were identical to the first approach: correlations between days 3

and 5 are very significant (no permutation yielded a correlation

exceeding the value on the actual data) and correlations to day 1

are much weaker.

Correlation results are robust to gene selection and

correlation measures. In the next step we assessed the

robustness of the observed correlation pattern by using different

types of correlation measures, different ways to average the

acetylation changes and different subsets of the data (right matrix

of Figure 4A). In particular, we used the Spearman rank

correlation between the median (instead of mean) acetylation

change and expression, as well as the correlations computed by

Canonical Correlation Analysis, a statistical method to find

directions of maximal correlation between datasets (see Materials

and Methods). For each of these different ways to compute

Figure 2. Acetylation profiles for differential genes. A A heatmap of acetylation changes between days 0 and 5 for all genes with significantly
differential mRNA levels on day 5. Transcriptionally up-regulated genes show an increase in acetylation signal, while down-regulated genes show a
decrease. B Visualization of the distributions of changes in acetylation signal from day 0 to day 5 for genes transcriptionally up-regulated, down-
regulated or non-changing on day 5. Each plot shows four lines corresponding to the 10%, 25%, 75%, and 90% quantiles of the distributions in each
bin. The hatched area emphasizes the inter-quartile range between the 25% and 75% quantile. Up-regulated genes show elevated acetylation levels
close to TSS, while down-regulated genes show a broad decrease in acetylation across several kb around TSS.
doi:10.1371/journal.pcbi.1001034.g002

Mapping Histone Acetylation to Gene Expression
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correlations, we asked whether the results are global or driven by a

small subset of genes, e.g. the differentially expressed genes.

Figure 4A summarizes our finding that the pattern of increased

correlation over time was preserved for all subsets of genes and

definitions of correlation. This indicates that our results are

reproducible and describe a global event not limited to a specific

subset of genes or a particular correlation estimate.

Acetylation changes are highly predictive for gene
expression changes

Correlation analysis showed global coherence between averaged

acetylation profiles and gene expression. Next, we analyzed the

predictive power of the complete profile using a wide array of

statistical classification methods. We investigate the predictive

power of histone acetylation for gene expression by asking: Can

changes in histone acetylation patterns project changes in gene

expression? If acetylation is a marker for open chromatin, does it

predict expression change in general, and how well can it

distinguish up- from down-regulation?

Setup of classification analysis. To address these questions

we applied a comprehensive collection of classification methods in

an unbiased repeated 10-fold cross-validation study (see Materials

and Methods) to four different classification problems: (i) Dis-

tinguishing transcriptionally up- from down-regulated genes, (ii)

distinguishing down-regulated genes from un-responsive genes, (iii)

distinguishing up-regulated genes from un-responsive genes, or (iv)

distinguishing differential genes (up or down) from un-responsive

genes. On each of these four problems we used (a.) Support Vector

Machines with different kernel functions; (b.) versions of Gaussian

discriminant analysis; (c.) several classification tree methods; (d.) k-

nearest neighbor classification with varying numbers of neighbors;

as well as (e.) naive Bayes classification, neural networks and

logistic regression (see Materials and Methods).

Different classifiers may respond to different signal in the data.

For example, naive Bayes classifiers assume independence of

features (here: the bins in the acetylation profiles), while SVM and

other non-linear classifiers can make use of interactions between

features. Our selection of classification methods offers a compre-

hensive overview of current state-of-the-art methodology and

makes our results independent of an arbitrary choice of some

particular classification method.

Results of classification analysis. Figure 4B shows the

results of the cross validation study. In all problems all classifiers

clearly beat the baseline of 50% accuracy, but there are obvious

differences in performance: Distinguishing up- from down-

regulated genes is the easiest problem with performances

reaching 80% and above. This margin of improvement over

baseline is quite large given that predicting expression from

sequence information is a notoriously hard problem (see the

discussion of [43] in [44]) and that the acetylation marks we are

using ranked far behind others in predictive power for expression

in a recent comparison [30].

Figure 3. Partial correlation analysis of acetylation profiles. We analyzed spatial and temporal dependencies between regions around TSS by
partial correlation coefficients. A Matrices of partial correlation coefficients for histone acetylation profiles on days 1 (green), 3 (red) and 5 (blue)
computed on non-differential genes only (left) and differential genes only (middle). The right matrix shows the difference of the other two. B A graph
representation of significant partial correlations (multiple testing corrected p-value v0:05). We show the graph computed on non-differential genes
only. Partial correlations on differential genes are very similar, as panel A shows, but since there are many more non-differential than differential
genes we gain in power to detect significant correlations. We find that spatial and temporal relationships are largely preserved in the partial
correlation structure. However, regions closer to TSS [ƒ1.5 kb] are less densely connected than the regions further away and in particular show gaps
at positions right next to TSS on days 3 and 5.
doi:10.1371/journal.pcbi.1001034.g003

Mapping Histone Acetylation to Gene Expression
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The other three classification problems are harder, especially for

distinguishing differential from unresponsive genes classifier

performances only reach a level of around 60% accuracy. This

can be explained by the set of differential genes containing two

opposing signals, which makes it hard to clearly separate it.

The other two curves in Figure 4B show that down-regulated

genes can be better distinguished from un-responsive genes than

up-regulated genes can. This might be surprising since we saw in

Figure 2B that the acetylation profile distributions for down-

regulated genes overlapped more with the un-responsive genes

than the profiles for up-regulated genes did. However, it can be

explained by the fact that loss of acetylation affects wider regions

than gain of acetylation signal as can be seen in Figure 2B.

For all classification problems, more highly regularized and

constrained methods beat less regularized ones; for example, a

larger number of neighbors improves k-nearest neighbor classifi-

cation, quadratic Gaussian discriminant analysis performs worse

than the three linear versions, and the higher degree polynomial

SVMs are in most cases out-performed by the linear SVM.

ESC genes show very strong acetylation changes, which
are not all reflected in gene expression

Our results so far investigated the general relationship between

histone acetylation and gene expression. Now we focus on sets of

genes central to the regulatory network governing ES cell state.

We will call them ESC genes for short. We used several freely

Figure 4. Predictive power of acetylation changes for gene expression changes. A The left matrix shows the correlation between genome-
wide mean acetylation changes and gene expression changes using Pearson correlation. Correlation values are small, but highly significant (see
discussion in the main text). The right matrix shows correlation results when using other gene sets defined by differential expression on day 5
(columns of the matrix) or other measures of correlation (rows of the matrix). B Cross-validation results for a wide array of statistical classifiers
predicting gene expression change from histone acetylation change. For each classifier four boxplots show the results of 10-fold cross-validation
repeated 20 times sampling balanced data sets. The color of the boxplots corresponds to one of four classification problems: Up- versus down-
regulation (Orange), Down-regulation versus no-change (Purple), Up-regulation versus no-change (Green) and any change (up or down) versus no
change (Blue).
doi:10.1371/journal.pcbi.1001034.g004

Mapping Histone Acetylation to Gene Expression
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available data sources, which complement each other in describing

ESC from different perspectives including transcriptional, proteo-

mic and functional. In particular, we used five different

descriptions of key ESC genes given by (1) the PluriNet [45], a

computationally derived stem cell signature; (2) hits of a recent

RNAi screen for self-renewal [46]; (3) gene ontology [47] term

GO:0019827 ‘stem cell maintenance’; (4) members of an ESC-

specific protein-interaction network [15]; (5) key transcriptional

regulators of ESC [8].

Average histone acetylation signal is very high in ESC

genes. The left panel in Figure 5A plots the sorted mean

acetylation signal on day 0, before Nanog-silencing triggers

differentiation, and underneath the ranks where the five ESC

gene lists fall in this ordering. In all five gene lists we observe a

strong trend for ESC genes to have a very high average acetylation

signal, i.e. the bars representing the gene sets all cluster on the

right-hand side of the plot. The trends are strong and easily visible

by eye; we quantify their significance by Gene Set Enrichment

Analysis (GSEA [48], see Materials and Methods) and observe p-

values ƒ10{4 for four gene sets and pv10{3 for the fifth one.

Decrease in histone acetylation signal is not accompanied

by similarly strong decrease in gene expression. Over time

the acetylation signal generally diminishes, but this trend is

especially pronounced in ESC genes (Figure 5A, middle panel).

All five gene sets have p-values ƒ10{2 and three of them even

ƒ10{4. This shows that compared to all other genes, ESC genes

are predominantly affected by de-acetylation during the first days of

differentiation. If we take histone acetylation as a marker of open

chromatin, this result could indicate that the chromatin regions, at

which the ESC genes are located, are closing down over time.

We were then interested in seeing how this strong de-acetylation

is reflected in gene expression (right-most panel in Figure 5A).

Qualitatively, the correlation results of Figure. 4A also hold for the

sets of ESC genes. However, when comparing expression changes

in ESC genes to other genes, we only found a strong trend to

negative expression changes in the set of transcriptional regulators

[8] (pƒ10{4) but only much less in the other gene sets. Members

of the protein interaction network [15] show moderate down-

regulation, but in particular the PluriNet genes [45] and the RNAi

hits [46] are uniformly spread out over the spectrum. One way to

interpret this observation are other major regulatory influences on

key ESC genes that can not be explained by accumulation of

condensed and transcriptionally inactive heterochromatin regions

(as far as these are indicted by histone de-acetylation).

Figure 5. ESC genes show distinct histone acetylation patterns. We compare five sets of ESC specific genes to all other genes in terms of their
histone acetylation and gene expression changes: (1) members of the PluriNet [45]; (2) hits of a recent RNAi screen [46]; (3) gene ontology term
GO:0019827 ‘stem cell maintenance’; (4) members of an ESC-specific protein-interaction network [15]; (5) key transcriptional regulators [8]. A All
genes are ordered by their mean acetylation signal on day 0, their acetylation change on day 5 and their expression change on day 5. The positions of
the five ES specific gene sets in this ordering are then indicated by bars. The dots and circles indicate statistical significance of observed trends
evaluted by GSEA: three dots for pƒ10{4 , two for pƒ10{3 and one for pƒ10{2 , while a circle represents pƒ0:05. B Here we compare ES genes to
all others over the whole acetylation profile. The blue areas indicate quantiles of the genome-wide distribution of acetylation signal. The ES specific
gene sets (white boxplots) show overall very high acetylation levels, in particular the transcriptional regulators (red dots) show surprisingly high
histone acetylation levels before TSS.
doi:10.1371/journal.pcbi.1001034.g005

Mapping Histone Acetylation to Gene Expression
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ESC genes show overall very strong histone acetylation

profiles. The high acetylation signal of ESC genes is not only

found in the mean value, but over the whole profile. Figure 5B

compares the distribution of acetylation signal between ESC genes

and all other genes for each bin individually. Quantiles for the

global acetylation distribution across all genes are shown in blue

and white boxplots represent the distributions for the union of

ESC gene sets described above. Because of their important

regulatory function, the set of transcriptional regulators [8] are

additionally highlighted in red. We see a significant upwards shift

for ESC genes in over the whole range of the profile. This shift is

especially pronounced for stem cell transcriptional regulators

directly before the TSS.

Discussion

In this paper we have addressed several questions central to an

understanding of the relationship between histone acetylation and

gene expression. Using a wide array of methods we have

investigated how changes in gene expression are reflected in

histone acetylation, how predictive histone acetylation is for gene

expression changes, and how this relationship changes over time.

In the following we will give a short discussion of our main results.

Gain and loss of acetylation over time
While there are less genes transcriptionally down-regulated than

up-regulated (Figure. 2A) we find that the accompanying de-

acetylation events are much more pronounced than the acetyla-

tion events. The wider impact of de-acetylation could be seen in

the heatmap (Figure 2A) and the distribution plots (Figure 2B). Its

effects could be seen in the results of correlation analysis (Figure 3)

and classification analysis (Figure 4).

While Roh et al [34] observe main changes in a region of +1kb

around TSS, we observe wider changes especially for down-

regulated genes. In particular for ESC genes we find strong

acetylation changes over time (Figure 5A) and for several

transcriptional regulators we see that acetylation is extremely

high before TSS (Figure 5B). These differences in acetylation

signal could point to mechanistic differences in how acetyatlion

acts and which transcriptional co-factors it recruits in activated

and repressed genes.

Predictive power of acetylation changes for gene
expression changes

We have seen from the classification results (Figure 4B) that

histone acetylation changes are highly predictive of gene

expression changes. We have also found that the coordination

between histone acetylation measurements and gene expression

increases over time. This pattern is stable to varying correlation

measures and selecting subsets of genes (Figure 4A).

One way to interpret this trend is a time-lag before changes in

chromatin structure (as far as these are indicated by histone

acetylation) result in coordinated changes in gene expression. In

this scenario, chromatin changes induce gene expression changes,

which only become visible at a later time-point and thus increase

correlation over time. However, the time-delay in our case would

span several days and it is not clear which mechanism causes it,

since (de-)acetylation dynamics –at least in yeast– are known to

work in the order of minutes [29]. Another question we can not

answer from predictive models alone is whether chromatin

structure changes are causative for gene expression changes or

whether it is the other way round: chromatin changes could be

induced by expression changes and activation of chromatin

modelling proteins.

Distinct acetylation patterns in key ESC genes
It is known that ES cells in general are rich in less compact

euchromatin [23] and high histone acetylation levels are one of the

indicators for these open chromatin regions. Thus, the strong

acetylation signal of ESC genes we observed could indicate that

they are located at open chromatin and thus easily accessible to

transcription factors. Our results show that ESC genes are

enriched for strong de-aceylation (Figure 5A; middle panel). This

observation could point to the fact that in early development, as

soon as the cell commits to a certain lineage, ESC are located in

genomic regions that are de-acetylated and compacted much

faster than other regions of the genome. Our interpretation

depends on how close the link between histone acetylation and

chromatin structure actually is. Not all chromatin changes will be

reflected in histone acetylation and in future work it will be

important to also probe other markers of chromatin organization,

like e.g. histone methylation, in ESC over time. Integrated analyses

of different markers will give a much richer picture of epi-genetic

gene regulation than any individual marker can [30].

The stability of acetylation islands we observe and the strong de-

acetylation over time agree with a global accessibility model of lineage

commitment [17] in which ES cells are subject to global active

histone modifications that get lost in a lineage-specific way during

differentiation. In contrast, our observations do not agree with a

localised marking model [17] in which short regions of accessible

chromatin are expanded during development. This expansion

would be visible as location changes in acetylation islands which

we did not observe. However, the situation could change if the

time-course was repeated using ChIP-seq instead of ChIP-chip

technology which offers a higher resolution of acetylation changes.

Our results have two important implications: First, the pattern

in Figure 5A shows that the expressions of some of the key ESC

genes, especially PluriNet and the RNAi hits, are not regulated

completely by chromatin accessibility (as far as it is visible in

histone acetylation patterns). Second, the uniform distribution of

gene expression changes in many ESC genes shows that they do

not regulate pluripotency on a transcriptional level.

The differences in behaviour we see between transcriptional

regulators on the one hand and the PluriNet genes and RNAi hits

on the other hand could possibly be attributed to differences in

how specific these genes actually are for ES cells. The

transcriptional regulators are all well-known and very specific,

while the computational and functional predictions from PluriNet

or RNAi screens can also capture many non-specific genes. For

example, the MATISSE algorithm [49] used to derive the

PluriNet signature uses protein-interactions and gene expression

to find genes connected to key ESC markers. The genes ‘pulled in’

by the algorithm can help to better understand the mechanisms

behind the known marker genes, without being specific regulators

themselves. Similar considerations hold for RNAi screens. Many

genes contributing to basic cellular functions can potentially be

found to be essential for self-renewal, without being stem-cell

specific.

In summary
Our results are a step forward to a better understanding of the

complexities of the relationship between histone acetylation and

gene expression, which will help to dissect the multilayer

regulatory mechanisms that determine stem cell fate. The data

of Lu et al [25] is an example of a very rich and complex dynamic

phenotype of a single-gene perturbation. Future work will need to

integrate this data with similar phenotypes of other genes and then

use statistical methods [50] to uncover the cellular networks

underlying the observed phenotypes.
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Materials and Methods

Software
The complete analysis was performed in the statistical

computing language R [51] using packages available from the

Bioconductor website at http://www.bioconductor.org [52]. In

addition to the basic distribution we mainly used the packages

limma [53,54], GeneNet [55], CCA [56], MLInterfaces [57], and

all packages implied by these. All code is available from the first

author upon request.

Data preprocessing
Data generation, pre-processing and mapping of genes between

datasets is done in exactly the same way as in [25]. Per day we use

for each gene the average of three replicates of gene expression

measurements and the average of two replicates of H3K9,14ac

ChIP-chip. We apply simple quality filters to the histone

acetylation data: 19, 413 genes are represented by probes on the

chip. For each gene, the probes are concentrated in a +3:5 kb

region around transcription start. Out of the 19, 413 genes, we

select the 17,268 that have more than 10 probes within 3.5 kb of

transcription start. On average, we find *30 probes per gene,

which typically have a distance of *248 bases pairs. For all of

these genes the data set also contains gene expression measure-

ments.

Identification of acetylation islands
To find acetylation islands [34], we compared the measurement

for each probe against the distribution of measurements of the

control probes on the array. The control probes are designed to be

un-acetylated and thus constitute a negative control. Comparing

the probe values against the Null distribution yields a p-value for

every probe. Using a hierarchical model and an empirical

Bayesian estimation strategy [58] we computed day-to-day

variability of the acetylation profiles. We used the day-specific

variability estimates to compare the probe values against the Null

distribution, which yields a (model-based) p-value for every probe.

We use an FDR cutoff of a~0:1 on the p-value distribution to

decide which probes to call acetylated and which not.

Frequency of acetylation changes
We computed for each gene the conditional distribution of

probe acetylation states given the previous time-point. The

distribution table can be represented by two numbers: the

percentage a of probes staying un-acetylated and the percentage

b of probes staying acetylated. In this way, each gene can be

mapped to a point in ½0,100�|½0,100�. Genes with too few (ƒ3)

acetylated or un-acetylated probes ( = 3510 genes) were discarded

because their estimates would be unstable. Results for the

remaining 13758 genes are shown in Figure 2A. Plotted are the

frequencies computed by assuming that the change distribution is

the same for all time points; results don’t change qualitatively if we

compute individual changes between days (see inlay in Figure 2A

for genes differential on day 5).

Step-wise linear approximation of acetylation profiles
Genes are represented by different number of probes with

varying distances between each other and to the transcription start

site. To make acetylation profiles comparable between genes we

map them onto vectors of equal length by averaging all probes in

equi-distant bins around transcription start. We chose a binning of

0:5kb, thus covering the +3:5kb region with 14 bins and mapping

each acetylation profile into R14. We only considered the signal

above background, bins with no probes above background were

set to zero. Examples of raw and binned profiles can be seen in

Figure 1A. This binning and averaging makes the data

comparable between genes, while preserving most of the

quantitative variation in the data.

Partial-correlation analysis
To delineate the correlation structure of the data we used partial

correlation analysis, also called a Gaussian graphical model

[42,59]. In contrast to regular correlation, partial correlation

corrects for the influence of all other variables in the model:

Vanishing partial correlation (under a Gaussian assumption)

means that two variables are independent given all other variables

(genomic regions in our case). Thus, partial correlation coefficients

measure the direct relationship between two variables, while

regular correlation coefficients also measure indirect effects. We

used a shrinkage approach [60] for robust estimation of partial

correlations. The results can be depicted in a graph, where each

node corresponds to a variable (a genomic region) and each edge a

partial correlation that is different from zero. Missing edges

indicate vanishing partial correlation and thus conditional

independence. We select the network containing only edges with

probability w0:9 corresponding to a local FDR cutoff of 0:1 [55].

Canonical correlation analysis
Canonical correlation analysis (CCA, see [42]) is a way of

measuring the linear relationship between two multidimensional

variables. In general, CCA finds vectors a and b such that the

random variables a’X and b’Y maximize the correlation

r~cor(a’X ,b’Y ). Vectors a and b are unique up to scalar

multiplication. The random variables U~a’X and V~b’Y are

the first pair of canonical variables and r is called the canonical

correlation. In our application X corresponds to the histone

acetylation data (a 14 dimensional random variable) and Y to the

RNA data per day (a one dimensional random variable). Thus, we

only need to find vector a to maximize the correlation between the

two data sets. Computing the correlation between mean

acetylation profiles and expression is closely related to CCA, since

it corresponds to the choice of amean~
1

14
(1, . . . ,1), but it is not

guaranteed to find the maximal correlation.

Classification methods
(a.) Support Vector Machines (SVM, [61]) construct the

hyperplane with maximal margin of separation between the

positive and negative training examples. Using non-linear distance

measures, so-called kernel functions, this approach can be

extended to non-linear classification. We use a linear kernel, a

radial basis function kernel and polynomial kernels of degrees 2

and 3. (b.) Gaussian Discriminant Analysis [62] assumes that the

positive and negative examples follow a multivariate normal

distribution. Versions of Discriminant Analysis differ by the

constraints they put on the covariance matrices: no constraints

(Quadratic DA); or the same covariance matrix for both classes

(Linear DA); or the same diagonal covariance matrix (Diagonal

Linear DA). Stabilized Linear DA is linear discriminant analysis

based on left-spherically distributed linear scores. (c.) Classification

trees [63] recursively partition the dataset by splitting along most-

informative single features. Bagging [64] (short for ‘bootstrap

aggregating’) aggregates many classification trees built on

resampled versions of the training data. Similar to bagging, a

Random Forest [65] is an aggregation of many classification trees

built on resampled versions of the data and on a randomly chosen

subset of features. (d.) k-nearest neighbors predicts a gene into the

class represented by the majority of the k genes closest to it. We
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use k = 1, 5, 10, and 15. (e.) Naive Bayes classification assumes

independence of features (hence naive) and classifies according to

the class posterior probability. The neural network [66] is a single-

hidden-layer network. Logistic Regression [62] combines a linear

model of the data together with a logistic function to model class

probabilities. All classifiers were used via the R-package

MLInterfaces [57] and with the default parameters defined there.

Balanced evaluation of prediction accuracy
The datasets we use for classification can be very unbalanced,

for example only *5% of all genes show a significant expression

change. Thus, the baseline for classification is already at 95%

accuracy (when we predict all genes as ‘unchanged’). To be able to

compare between methods and different classification scenarios,

we resorted to a random sampling strategy: We sampled from the

larger part of the training set 20 times sets of the size of the smaller

part. This created 20 instances of balanced training sets with a

baseline of 50%. On each training set we computed the 10-fold

cross-validation (CV) accuracy. The variance we see in the CV

results is thus a sum of the variance introduced by sampling the

training set and the variance from randomly splitting the data into

10 subsets inside CV procedure. It is reassuring that Figure 4B

overall shows very consistent results, only individual boxplots are

spread out widely.

Gene Set Enrichment Analysis (GSEA)
The goal of GSEA [48] is to determine whether members of a

gene set (for example ES genes) tend to occur toward the top (or

bottom) of a list of phenotypes (in our case: mean acetylation or

expression). GSEA is especially suited to find coherent changes in

a group of genes, even if the individual changes are small. GSEA

calculates an enrichment score for a given gene set using rank of

genes and infers statistical significance of each ES against ES

background distribution calculated by permutation of the original

data set. We report the empirical p-value after 2:104 permutations,

i.e. in how many permutations did we observe a result more

extreme than the one on real data. We did no multiple-testing

correction, since with only 15 tests altogether even the most

conservative correction ( p’~15:p) would not qualitatively change

our results.
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56. González I, Déjean S, Martin PGP, Baccini A (2007) CCA: An R package to

extend canonical correlation analysis. J Stat Softw 23: 1–14.

57. Mar J, Gentleman R, Carey V (2008) MLInterfaces: Uniform interfaces to R

machine learning procedures for data in Bioconductor containers. R package

version 1.24.0. Available: http://www.bioconductor.org.

58. Airoldi EM (2007) Getting started in probabilistic graphical models. PLoS Comp

Biol 3: e252.

59. Lauritzen SL (1996) Graphical Models. Oxford: Clarendon Press.
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