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Abstract

The computational detection of regulatory elements in DNA is a difficult but important problem impacting our progress in
understanding the complex nature of eukaryotic gene regulation. Attempts to utilize cross-species conservation for this task
have been hampered both by evolutionary changes of functional sites and poor performance of general-purpose alignment
programs when applied to non-coding sequence. We describe a new and flexible framework for modeling binding site
evolution in multiple related genomes, based on phylogenetic pair hidden Markov models which explicitly model the gain
and loss of binding sites along a phylogeny. We demonstrate the value of this framework for both the alignment of
regulatory regions and the inference of precise binding-site locations within those regions. As the underlying formalism is a
stochastic, generative model, it can also be used to simulate the evolution of regulatory elements. Our implementation is
scalable in terms of numbers of species and sequence lengths and can produce alignments and binding-site predictions
with accuracy rivaling or exceeding current systems that specialize in only alignment or only binding-site prediction. We
demonstrate the validity and power of various model components on extensive simulations of realistic sequence data and
apply a specific model to study Drosophila enhancers in as many as ten related genomes and in the presence of gain and
loss of binding sites. Different models and modeling assumptions can be easily specified, thus providing an invaluable tool
for the exploration of biological hypotheses that can drive improvements in our understanding of the mechanisms and
evolution of gene regulation.
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Introduction

A detailed understanding of the mechanisms underlying gene

regulation, including precisely how these mechanisms are encoded

in an individual’s genomic DNA, is of prime importance both to

biomedicine and to our knowledge of molecular biology and

evolution. Given the wealth of genomic sequence data currently

available, computational methods for the modeling and predictive

identification of regulatory binding sites play an important role in

regulatory genomics. Transcriptional regulation in particular is

currently understood in terms of solitary or cooperative binding of

enhancer or repressor molecules to key locations in and around

target loci. The precise rules governing these binding events and

their combinatorial effects on gene expression have been examined

in detail for small case studies, but it is currently unknown whether

there exists a ‘‘regulatory code’’ or ‘‘grammar’’ that dictates the

combination of binding sites, such as number, orientation,

distance, and relative spacing.

The use of cross-species conservation in inferring binding-site

locations, so-called phylogenetic footprinting [1], has become increas-

ingly popular with the greater availability of genomic sequences

from related organisms. A major impediment to the use of

conservation evidence is the potential for complex evolutionary

changes to obscure selection patterns. Though strong purifying

selection at the whole-site level is presumed to apply to critical

functional sites, the ability for sites to arise, disappear, or be

translocated locally within a cis-regulatory module (e.g., via

genomic rearrangements or compensatory site turnover, where

the loss of binding affinity at one site is accompanied by a

compensatory gain of affinity somewhere nearby) renders precise

homology relations between sites difficult to establish. In the case

of protein-coding genes, the use of pre-computed alignments

between syntenic genomic regions often suffices for inference of

coding exon boundaries, since the homology of orthologous coding

segments is often easily discernible by general-purpose alignment

programs. For regulatory binding sites, it becomes necessary to

distinguish between molecular homology, i.e., common molecular

ancestry as defined through DNA replication events, and so-called

functional homology, i.e., conserved functionality of sites within larger

regulatory regions regardless of the precise location.

Effective utilization of cross-species conservation evidence for

binding-site identification therefore requires more sophisticated

modeling techniques that take into account the potential for

incomplete molecular homology. Sites may be present in one

group of species but appear at a different location or be lost

PLoS Computational Biology | www.ploscompbiol.org 1 December 2010 | Volume 6 | Issue 12 | e1001037



altogether in a different clade. In addition, because general-

purpose alignment programs have been found to perform

relatively poorly in aligning noncoding DNA [2,3], specialized

alignment techniques applicable to regulatory elements are

desired. We therefore set out to develop a new and flexible

framework which integrates the modeling of binding-site

evolutionary dynamics directly into the alignment process,

resulting in a significant advance in our ability to identify

evolutionarily conserved binding sites—even those exhibiting

only partial homology. A number of previous works have

addressed individual parts of this problem in isolation. For

example, Satija et al. [4] incorporated the notion of ‘‘fast’’ versus

‘‘slow’’ evolution into the alignment process, but did not

explicitly model positional composition biases in binding sites.

He et al. [5] explicitly modeled binding sites and their

evolutionary ‘‘gain’’ and ‘‘loss’’, but addressed only the two-

species case, in which actual gain and loss patterns cannot be

fully disambiguated due to lack of an outgroup. Moses et al. [6]

addressed the problem of modeling more than two species, but

did not allow for evolutionary gain or loss. Ray et al. [7] modeled

gain and loss among multiple species, but utilized precomputed

alignments.

Here we describe the first framework which combines all of

these tasks into one process: the modeling of binding site evolution,

the modeling of nucleotide substitution (including insertion and

deletion), and the modeling of binding site residue preferences

(positional composition bias), allowing us to simultaneously

produce a multiple-species alignment and a set of binding-site

predictions informed by conservation patterns. We use this

formalism within MAFIA, a new software system for the inference

of functional binding sites. We use simulated genomes to precisely

benchmark and validate various model assumptions. We show that

MAFIA rivals or exceeds the predictive accuracy of current

binding-site prediction programs, as well as the alignment

accuracy of state-of-the-art alignment programs, and thus

combines the best of both worlds within a flexible and integrated

system. Applying the system to known Drosophila enhancers

showcases specific scenarios in which current existing approaches

are misled by the complex arrangement of partially conserved

binding sites.

Results

Overview of Our Modeling Framework
Our models simultaneously capture information about binding

propensities of individual transcription factors, rates of evolution-

ary gain and loss of binding sites, phylogenetic distances and

branching patterns between species, nucleotide insertion and

deletion propensities, and the substitution biases within each of the

various types of genomic elements that may occur in the input

sequences. All of this information is utilized for the purpose of

simultaneously aligning and annotating orthologous DNA se-

quences. In the following, we provide a high-level overview of the

general layout and salient features of our approach; a detailed

description is provided in the Methods section, and algorithms are

given in Text S1.

The underlying framework in our system is based on

phylogenetic pair hidden Markov models. Hidden Markov models

(HMMs) capture nucleotide composition biases and spatial

organization patterns within a single sequence (see, e.g., [8,9]).

Pair HMMs (PHMMs) perform this modeling simultaneously for

two sequences, and also provide a probabilistic model of the

precise nucleotide homology relation between the two sequenc-

es. Phylogenetic pair HMMs (PPHMMs) generalize PHMMs

further by marginalizing over ancestral sequences, thereby

allowing them to be used to align multiple sequences related by

a phylogenetic tree.

A PPHMM consists of a set of states, which singly or in

combination model specific types of genomic elements (such as

binding sites for a particular factor), and a set of permissible

transitions between states, effectively defining a ‘‘grammar’’

governing genomic elements and their preferred spatial relations.

Within each state is a full probabilistic model of the genomic

element it represents, including: (1) a probability distribution over

the nucleotides that can occur at the modeled position, (2) an

evolution model describing nucleotide substitution biases, and (3)

an insertion-deletion, or ‘‘indel’’ model specifying the propensity

for individual nucleotides to be gained or lost along a lineage. All

of these probability distributions are automatically scaled accord-

ing to phylogenetic distances, as denoted by the branch lengths in

a phylogeny. Figure 1 shows a state diagram for a simple PPHMM

to be used for aligning background sequence; as shown in the

figure, the transition probabilities are all functions of branch

length t.

To allow for modeling of evolutionary change at the level of site

function, we define the notion of a cross-functional state. Associated

with each state are two functional classes, one for the ancestral

residue, and one for the descendant; each functional class

corresponds to a distinct selection regime (i.e., a substitution rate

matrix). When the ancestral and descendent classes differ, we say

that the state is cross-functional, and we model substitution

propensities using a mixture model which integrates over all

unobservable time points at which the class could have changed

along the lineage:

1

t

ðt

0

PB sð ÞPb t{sð Þds ð1Þ

for ancestral class B and descendent class b, where P(t) is a

substitution matrix scaled to divergence time t. PPHMM state

diagrams for gain and loss submodels are shown in Figure 2; the

Author Summary

The computational detection of regulatory elements in
DNA is a difficult but important problem for decoding
eukaryotic gene regulation. Increasing sequence data has
made it possible to utilize related genomes, but this is not
as straightforward as it may seem, as the evolution of
noncoding regulatory regions is relatively poorly under-
stood. In this work we describe a modeling framework and
software implementation for aligning multiple DNA
sequences to each other while simultaneously predicting
functional regions in that DNA (such as the locations
where proteins bind to the DNA for the purpose of
regulating genes). Those functional regions may or may
not be evolutionarily conserved across the sequences. Our
framework allows for explicit modeling of evolutionary
change across sequences in both the individual nucleo-
tides making up the sequences and in the functional
significance of the sequences (functional versus nonfunc-
tional). While most competing frameworks and implemen-
tations are limited to a maximum number of sequences
and their lengths, ours is scalable. We demonstrate the
value of our system by using it to align a set of complex
regulatory regions across ten Drosophila species and to
predict protein-binding sites in those sequences.

Phylogenetic Pair HMMs
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ancestral and descendent functional classes are shown in the top

and bottom portions of each state, respectively.

Probabilities for entering a cross-functional state are model-

dependent (i.e., specified via our model-description language,

SEAL), but generally correspond to rates of gain and loss of

function. For the experiments described below, in which we

account for evolutionary gain and loss of functional binding sites in

regulatory regions, we utilized a birth-death process on binding

sites for estimating transition probabilities into cross-functional

states. Defining b(t), p(t), and q(t) as the probabilities of a functional

binding site being born within an interval of length t, surviving

over such an interval, or dying over such an interval, respectively,

we derive a system of differential equations describing the time

evolution of these quantities:

db tð Þ
dt

~l 1{b tð Þð Þ{mb tð Þ

dp tð Þ
dt

~{mp tð Þzl 1{p tð Þð Þ

dq tð Þ
dt

~mp tð Þ{lq tð Þ

ð2Þ

for birth rate l and death rate m. From the solution to these

equations we derive transition probabilities for a PPHMM

modeling functional binding sites of multiple transcription factors

occurring on either strand and subject to stochastic turnover

(gain/loss); an example of such a model, for seven transcription

factors, is shown in Figure 3.

Performing simultaneous alignment and annotation with a

PPHMM such as the one shown in Figure 3 can be accomplished

via progressive alignment, optionally followed by some form of

refinement and/or sampling. Progressive alignment begins with

alignment of siblings at the leaves of the phylogenetic tree, and

progresses upward. Sibling taxa T1 and T2 having sequences S1

and S2 can be aligned by finding the most probable state path

(ordered sequence of states) w* conditional on the input sequences:

w�~ argmax
w

P w S1,S2jð Þ ð3Þ

Gaps in the alignment are modeled using the standard insertion/

deletion state types as in traditional pair HMMs [8]. Emission

probabilities for sibling taxa Y and Z sharing parent taxon X are

computed via standard methods used in phylogenetic HMMs [10]:

Pe xY ,xZ qjð Þ~
X

x[
A,C,G,Tf g

LX xð ÞPeq X~xð Þ ð4Þ

for state q and equilibrium distribution Peq; LX is a recursive

likelihood function which marginalizes over unobservables in the

clade rooted at taxon X.

Figure 2. PPHMMs for loss (top) and gain (bottom) of function
in a binding site. Ovals are emitting states. The top half of an emitting
state denotes the functional class in the parent, while the bottom half
denotes the functional class in the child. Dash denotes a gap. bg
denotes the background functional class. Wi denotes the functional
class corresponding to the ith column in a positional weight matrix
(PWM). Transition probabilities are derived from the background indel
model. Emission probabilities are derived via a substitution mixture
model.
doi:10.1371/journal.pcbi.1001037.g002

Figure 3. An example CRM evolution model that can be
implemented in our framework. Parallelograms denote groups of
states in the PPHMM; small parallelograms denote states implementing
a binding site profile (positional weight matrix). b(t): gain probability.
q(t): loss probability. p(t): retention probability. b‘: limit of b(t) as tR‘.
t: branch length. s: 1-(1-b‘)(1-b(t)). e: 0.00001. Plus and minus denote
strand. See Materials and Methods for additional details.
doi:10.1371/journal.pcbi.1001037.g003

Figure 1. State-transition diagram for a PPHMM implementing
a reversible and affine background indel model for a
phylogeny branch of length t. Ovals denote emitting states; arrows
denote transitions. Start and stop are special non-emitting states. This
model can be implemented in 33 lines of SEAL code. Parameter s = 1-
(1-b‘)(1-b(t)) gives the probability of leaving the background model,
for gain-of-function probability b(t), b‘ = limtR‘b(t). Parameters a and b
influence indel rates.
doi:10.1371/journal.pcbi.1001037.g001

Phylogenetic Pair HMMs
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In summary, we have augmented standard pair HMMs by both

rendering them applicable to unobservable ancestral sequences

and by attributing states with type information. The latter is

achieved by parameterizing state types with distinct substitution

models, and by permitting states to employ type-mixture models in

the case of evolutionary change-of-function events, as described

above. Because standard progressive alignment algorithms are

agnostic to specific functional elements and their respective

evolutionary propensities, we also devised a novel, two-pass

strategy for progressive alignment which takes functional classes

into consideration. The aligner first performs a liberal ‘‘up-pass’’

intended to favor sensitivity, followed by a conservative ‘‘down-

pass’’ intended to favor specificity. Because functional classes

dictate substitution rates and potentially indel propensities during

pairwise alignment, this class information can have a potentially

large influence on the resulting alignment. To our knowledge, no

other multiple-sequence aligner explicitly incorporates such ‘‘type’’

information at a global scale. In the case of cis-regulatory modules,

this feature has the potential to reduce the incidence of

misalignment between conserved functional elements, including

elements that have undergone a gain or loss of function but that

still retain at least some degree of identifiable molecular homology.

Assessing Importance of Different Modeling Features
Our system is implemented as a configurable modeling

framework that enables end-users to investigate alternative models

for alignment, binding site prediction, and evolutionary recon-

struction. As a proof-of-principle, we implemented the model

shown in Figure 3 within the context of our modeling framework

and applied it to an array of real and simulated data sets to assess

the ability of the model to produce both accurate alignments and

accurate binding-site predictions. To properly evaluate all aspects,

we need to perform such an assessment in the context of sequences

in which the ‘‘correct’’ alignment and binding-site annotations are

known with certainty. Unfortunately, this is impossible with

currently available data sets from real biological systems. Although

experimental techniques are available for identifying regions in

genomic DNA bound by specific transcription factors, these

experiments are typically carried out in only one species, and at

this point still suffer from low resolution (i.e., insufficient for

precisely delineating the binding sites). As such, predicted binding

sites not known a priori to be true functional sites cannot with

certainty be labeled as false positives. Fine-scaled evolutionary

simulations parameterized via measurements taken from real

biological data can provide a reasonable approximation to

biological reality, while also providing access to the precise

nucleotide homology relations and functional elements (e.g.,

binding sites) produced during the simulation. Currently the most

practical approach is thus to supplement real biological data sets

with simulations, which allows one to assess sensitivity of site

inference on known binding sites, and to assess both sensitivity and

specificity in simulated sequences. The utility of simulations for

validating models of genome evolution has become increasingly

apparent of late [11–14].

To compare alignment and annotation performance under

various model assumptions, we first employed two different

simulators, both of which allowed binding sites to evolve both at

the nucleotide level (via accepted point mutations) and also at the

whole-site level (via the gain and loss of site function). The first

simulator, EVOS, is based on the same evolutionary model as our

aligner; we use it only to explore the impact of changes to the

model structure in order to assess the importance of various

features in the model. For these simulations we utilized a 10-

species Drosophila phylogeny: ((((((melanogaster, simulans), (yakuba,

erecta)), ananassae), pseudoobscura), willistoni), ((mojavensis, virilis),

grimshawi)); the model incorporated seven factors: bicoid (bcd), caudal

(cad), giant (gt), hunchback (hb), knirps (kni), kruppel (kr), and tailless (tll).

The first modification was to remove gain and loss states from the

model, producing what we call the ‘‘complete orthology’’ model.

The next modification (called ‘‘Phylo-HMM’’) employed a simple,

three-state PPHMM for alignment, and then performed binding-

site prediction by applying the full model (minus gain and loss

states) to the root sequence. Note that both of these latter models

assume complete orthology during annotation, but only the

‘‘complete orthology’’ model includes states for binding sites

during alignment. Prediction accuracy was drastically higher for

the full model than for the complete-orthology model when gain

and loss events were common, supporting the need for flexible

evolutionary models for non-coding sequence analysis. The

differences in accuracy between the complete-orthology model

and the Phylo-HMM were moderate but consistent, suggesting

that the complete-orthology model does derive some advantage

from its use of binding-site knowledge during alignment. Figure 4

shows that incorporating additional species did permit the full

PPHMM to monotonically increase in accuracy, though the rate

of gain decreases starting at nine species. We also applied a ‘‘single

factors’’ model which utilized the full PPHMM with gain and loss

states but only one of the seven factors used in the simulation; this

was repeated for each factor. The single-factors model suffered

from low specificity while enjoying high sensitivity, as expected

(since this model utilized several runs of the predictor and was

therefore less constrained, resulting in an ability to predict

overlapping binding sites for different factors). Detailed results

obtained with this simulator are given in Text S1.

Comparing Our System to Earlier Approaches
We now compare the accuracy of our system’s binding site

predictions to those produced via earlier systems based on simpler

models than ours. We first test prediction accuracy on sequences

generated by another simulator, PSPE [2], that was developed

independently of our aligner and which utilizes different modeling

assumptions. PSPE allows binding sites to be lost, but only when

another site of the same type is gained nearby, thereby modeling

strict compensatory turnover of functional sites. For the PSPE

simulations, we generated 300 root sequences, each 500 bp in

length, and then evolved these sequences over a five-species

phylogeny: (((human, baboon), mouse), (dog, cow)); branch lengths were

the same as those used by Huang et al. [2]. Each sequence was

Figure 4. Site-level prediction accuracy as a function of number
of species in EVOS simulation runs (the simulator and
predictor modeled the same number of species).
doi:10.1371/journal.pcbi.1001037.g004

Phylogenetic Pair HMMs
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seeded with a single instance of each of six binding sites (factors:

MafB, SOX9, IRF1, E2F1, SP1, Sox5); factor weight matrices

were obtained from JASPAR [15]. The sequences at the leaves of

the phylogeny were then provided to our program, MAFIA, for

alignment and annotation of binding sites; an additional ten

sequences were evolved and set aside for parameter estimation of

the predictor (see Materials and Methods). The average rate of

turnover for these simulations was 11.3%; additional statistics are

available in Text S1.

To assess relative alignment accuracy, we separately aligned the

same sequences using two general-purpose aligners: MUSCLE

[16], a relatively recent tool which has been reported to achieve

high accuracy on non-coding sequences [2], and CLUSTALW

[17], a classic progressive aligner. The alignments produced by the

three aligners were compared to the known, correct alignment

recorded internally by the simulator during sequence evolution.

Alignment accuracy was measured by interpreting an alignment as

an undirected graph of homology relations and then comparing

the graphs for the correct and predicted alignments; sensitivity (Sn)

and specificity (Sp) of edge prediction were computed and

combined into an F-score: F = 26Sn6Sp/(Sn+Sp). As shown in

Table 1, MAFIA’s average alignment accuracy was roughly

identical to MUSCLE’s, while both were noticeably higher than

that of CLUSTALW. Note that for this data set, the correct

alignments had very few gaps, likely limiting the difficulty of the

alignment task; we address this issue in a second set of simulation

runs below (see also section 5.1 in Text S1).

To assess relative binding-site prediction accuracy, we com-

pared our program to a well-known comparative binding-site

predictor, rMONKEY [6]. Because rMONKEY assumes complete

orthology of binding sites (i.e., sites do not gain or lose function over

evolutionary time), we expected our gain/loss/retention model to

produce more accurate predictions on average, since PSPE has the

ability to generate gain and loss events. Binding-site predictions

were evaluated at both the nucleotide and whole-site levels. At the

nucleotide level, individual residues were classified as foreground

(part of any binding site) or background (not part of any binding site),

and these classifications were scored via the F-score. At the whole-

site level, an actual binding site was deemed to be found by the

predictor if at least half of its nucleotides overlapped a predicted

site for the same factor. Note that factor identity was ignored when

assessing nucleotide accuracy (e.g., a nucleotide predicted as part

of an E2F1 site but that was actually part of an SP1 site was still

scored as a success). Nucleotide accuracy thus evaluates the ability

of a predictor to detect regions of elevated purifying selection,

while the site-level score assesses the ability of the predictor to also

identify the correct factor involved.

When scoring the human binding sites only (i.e., ignoring the

ability of the programs to identify binding sites in other leaf

species), MAFIA outperformed rMONKEY by ,2.2% at the

nucleotide level and ,2% at the whole-site level (Table 2, F-scores

only). However, when scoring the programs on all sites in all leaf

species, MAFIA’s accuracy remained nearly as high as on human

only, while rMONKEY’s accuracy dropped substantially: 14

percentage points at the nucleotide level and 16 percentage points

at the site level. This demonstrates the clear advantage of an

integrated approach which is able to reconcile potential conflicts

between alignments and binding sites across many species.

For a second comparison, we utilized 142 sequences originating

from the RedFly database [18], which is derived primarily from

DNAse I footprinting experiments. Only D. melanogaster sites are

annotated in this set of ‘‘known’’ sites. Benchmark evaluations

such as this can only assess annotation accuracy on one ‘‘target’’

species, which addresses only one (and not the crucial) aspect of

our modeling approach. Nevertheless, this exercise will serve to

show that our model extends the possibilities to predictions in

multiple genomes, while achieving competitive performance on

the simpler single-genome task. We chose to address the simple

scenario of predicting individual sites within a CRM. In previous

investigations [5] authors have typically constructed a ‘‘gold

standard’’ set of sites by identifying the highest-scoring positional

weight matrix (‘‘PWM’’) position in each footprinting region and

taking that as the ‘‘known’’ site for each footprint. This is doubly

problematic and has the potential for circularity: for one, the

PWMs are often created from the very footprinting sites used as

the gold standard, and secondly, the same PWM parameters are

usually employed within the model itself. We therefore evaluated

sensitivity of predictions by observing whether each predicted site

overlapped a DNAse I footprint for the same factor, and then

separately evaluated false positive rate by counting predictions in

‘‘decoy’’ CRMs as false positives. In these experiments MAFIA

was found to have similar performance improvements compared

to rMONKEY as we observed above; details are given in Text S1.

Assessing Predictions in Complex Regulatory Regions
To evaluate the value of our approach for the analysis of real,

complex, and well-studied CRMs, we ran MAFIA on a set of

developmental enhancers from the early embryo segmentation

network, which has been frequently utilized as a benchmark. We

used seventeen enhancers as annotated by He et al. [5], and used

the binding site models provided by those authors. Because the

footprints in RedFly are often larger than the actual binding sites,

annotations were based on scanning the footprints with a PWM to

identify precise boundaries for the putative binding site. As

mentioned above, this process likely induces some biases.

We evaluated our program MAFIA running the same model

described above, as well as the programs rMONKEY, EMMA [5],

Table 1. Alignment accuracy for PSPE simulation runs,
averaged across runs (CRMs).

program F SD

MAFIA 93.2% 1.7

MUSCLE 93.4% 1.9

CLUSTALW 91.0% 2.6

Mean and SD values are given for the 300 sequences used in the simulation.
F = 26Sn6Sp/(Sn+Sp); Sn = sensitivity, Sp = specificity. SD = standard deviation.
doi:10.1371/journal.pcbi.1001037.t001

Table 2. Binding-site prediction accuracy for PSPE simulation
runs.

predict human only predict all species

nucleotide whole site nucleotide whole site

program F Sn Sp F Sn Sp F Sn Sp F Sn Sp

MAFIA 84.7 82.9 86.6 83.5 81.1 86.2 83.0 79.5 86.9 81.4 77.1 86.3

rMONKEY 82.5 89.0 76.9 81.5 86.5 77.0 68.8 74.5 64.0 65.2 69.1 61.6

Left half of table: accuracy of predictions in human. Right half of table: pooled
accuracy over all leaf species. For site-level accuracy, a known site must overlap
a predicted site of the same factor by at least half its nucleotides to be counted
correct. All numbers are percentages, averaged over 300 simulation runs.
doi:10.1371/journal.pcbi.1001037.t002

Phylogenetic Pair HMMs
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and PhyloGibbs-MP [19], as to their ability to identify these

putative binding sites, with D. melanogaster once again chosen as the

target species (since binding site information is highly incomplete

in other genomes). EMMA is the more similar of the programs to

ours, since it is based on an explicit model of gain and loss and

aligns the sequences within a binding-site-aware framework;

however, it is currently limited to two species. We therefore

performed three sets of experiments, corresponding to three

phylogenies: a two-way phylogeny, (melanogaster, pseudoobscura), a

six-way phylogeny, ((((melanogaster, (yakuba, erecta)), ananassae),

pseudoobscura), virilis), and a 10-way phylogeny, ((((((melanogaster,

simulans), (yakuba, erecta)), ananassae), pseudoobscura), willistoni), ((moja-

vensis, virilis), grimshawi)). We employed 17-way cross-validation—

i.e., training each model on 16 sequences and testing on the

remaining sequence. Training of EMMA was carried out via

software included in the EMMA software distribution (program

‘‘weight_est’’). Training of MAFIA was by simple hill-climbing on

individual parameters (see Materials and Methods). Training of

rMONKEY was by simple hill-climbing on the single P-value

threshold used to filter predictions. In all cases, the objective

function for training was site-level prediction accuracy on the

training sequences. The program PhyloGibbs-MP is a de novo motif

finder but also accepts matrix files specifying known motifs and

will predict sites based on conservation evidence; this is how the

program was used here.

When performing prediction based on only two species, MAFIA

substantially outperformed EMMA in its recommended configu-

ration (Table 3). Because EMMA can utilize only two input

sequences at a time, our 6-way comparisons included only MAFIA

and rMONKEY. MAFIA’s accuracy was again superior at the

whole-site level (by 2.4%). MAFIA was also applied to the 10-

species set, as was PhyloGibbs-MP. rMONKEY was unable to

evaluate all 10-way alignments, as some enhancers resulted in

memory consumption of over 8 GB. MAFIA applied to 10 species

produced the best nucleotide-level accuracy observed, and the

second-best site-level accuracy (second to the 2-way MAFIA run),

demonstrating that the incorporation of additional informant

sequences can improve annotation accuracy for a single target

genome, but need not do so in all cases. In addition, the insight

gained from a comparison between runs which differ in the

number of species used is inherently limited, as the information

gained from the ability to annotate additional related genomes is

not reflected. Note also that the nucleotide accuracy scores do not

reflect the ability to correctly identify the specific factor associated

with a binding site, which is a key goal of our system.

When applied to 10 species, MAFIA took 12.5 minutes on

average (SD: 10.5, max: 36.9) per CRM when using 8 CPU cores,

and 304 MB of RAM (SD: 65.5, max: 453). The 10-species data

files contained 600 bp sequences on average (SD: 450, max: 2400).

Note that increasing the number of species to be aligned results in

only a linear increase in computational complexity within our

system, while our use of the Hirschberg algorithm [20] permits the

application of very large models without incurring exorbitant

memory costs.

It is worth noting that the test set includes cases of overlapping

binding sites, which are indeed known to occur, either due to

functional reasons (such as mutual steric occlusion of activators

and repressors—e.g., [21]) or fortuitously constrained co-evolution

[11]. Though currently MAFIA cannot produce overlapping

predictions, MAFIA predictions for one factor sometimes

overlapped a known site for a different factor; these are counted

as false positives in our evaluation, though for pairs of factors

known to commonly overlap these may instead indicate true sites

that are missing from the ‘‘gold standard’’. Two such cases are

kruppel overlapping bicoid, and giant overlapping bicoid; these

overlapping pairs are widely known to function as competitive

repressor-activator sites [22], and are present both among the

known sites and in the overlaps between MAFIA predictions and

known sites (see tables S2 and S3 in Text S1). Although MAFIA

currently lacks the ability to predict overlapping binding sites

(except via separate runs with different factors), the future

incorporation of a sampling procedure should permit the

independent prediction of binding site instances via estimates of

posterior probabilities.

In addition to identifying many known sites, MAFIA predicted a

number of novel sites in this test set. As shown in Figure 5, the

known and novel sites in D. melanogaster had very similar degree-of-

orthology distributions, with a preponderance of well-conserved

sites in both cases. This suggests that many of these novel sites are

governed by similar selection pressures and contribute to the

function of the enhancer.
Table 3. Site-prediction accuracy on 17 Drosophila
developmental enhancers.

nucleotides whole sites

program #taxa F Sn Sp F Sn Sp

MAFIA 10 48.2 51.4 45.4 41.3 42.0 40.6

rMONKEY 10 - - - - - -

PhyloGibbs-MP 10 37.9 94.0 23.7 15.5 71.5 8.7

MAFIA 6 44.5 40.6 49.1 41.0 36.1 47.3

rMONKEY 6 45.6 50.4 41.7 38.6 40.8 36.7

MAFIA 2 46.7 43.9 49.8 42.3 38.5 46.8

EMMA 2 33.6 71.3 22.0 22.3 45.0 14.8

EMMA-E 2 47.1 62.6 37.8 37.3 46.2 31.2

Results from rMONKEY on the 10-way alignments are missing because the
program does not process the longer sequences due to large (.8 GB) memory
requirements. All numbers are percentages. [‘‘EMMA-E’’ results were obtained
by running EMMA in a nonstandard configuration (command line option ‘‘-e’’),
which forces prior densities to be re-estimated on the test sequence. We
included them here for completeness as they led to a noticeable improvement
at least on this set of enhancers.]
doi:10.1371/journal.pcbi.1001037.t003

Figure 5. Histogram of number of extant Drosophilids predicted
to share a given site, for known sites (top pane) and novel
predicted sites (bottom pane), over a 10-way phylogeny.
doi:10.1371/journal.pcbi.1001037.g005
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Assessing Predictions Using a Novel ChIP-Seq Analysis
The analysis of ‘‘gold standard’’ binding-site annotations

followed the example of previous studies, but others have recently

pointed out the presence of inherent biases in such datasets

(incompleteness and presence of weak but conserved, or partially

conserved, sites) which impede the evaluations of multi-genome

methods [23]. We therefore evaluated the same 17 enhancers via a

novel evaluation strategy which utilized genome-wide chromatin

immunoprecipitation (‘‘ChIP-seq’’) data obtained from Bradley et

al. [24] to construct an ROC-like curve. Figure 6 plots sensitivity

(TP/(TP+FN)) on the y-axis and false-positive rate (FP/(FP+TN)) on

the x-axis, for a large ensemble of peak-calling thresholds (see

Materials and Methods). MAFIA (blue) has a significantly larger

area under the curve (AUC) than rMONKEY (red): .67 versus .59

(Wilcoxon P = 2.2610216). The ‘‘gold standard’’ (gold curve) gives

an AUC of only .54, showing that this set of ‘‘known sites’’ does

indeed omit many elements that are supported by ChIP-seq data

and that both MAFIA and rMONKEY are able to find using only

conservation evidence.

While this evaluation clearly shows the overall advantage of our

method, it is instructive to examine individual enhancers to

illustrate the advantages of MAFIA in more detail. Figure 7 depicts

a sample CRM including known sites from the ‘‘gold standard’’,

predictions from several programs, and density scores (F-Seq [25])

obtained from the genome-wide ChIP-seq data. For this particular

CRM, the gold standard had only four sites annotated, all putative

tailless sites (colored white, since this factor was not included in the

ChIP-seq assay). This enhancer is a striking case for the

incompleteness of the gold standard, as it is immediately

noticeable that many predicted sites from different programs

clearly fall close to a peak in the corresponding density curve.

Though not all predicted sites fall near a peak, several non-peak

sites were agreed upon by multiple predictors, lending support to

their functional validity (see below). Figure 8 shows the MAFIA

alignments and annotations for a number of interesting sites (green

bars), which we highlight in the following.

Site A (hunchback) is strongly supported by ChIP-seq data, but

the clear lack of full conservation beyond the melanogaster+obscura

groups renders this site difficult to predict for some programs.

Though rMONKEY was able to predict the well-conserved

hunchback site shown at the left edge of the alignment, it was unable

to predict site A. EMMA was fortuitous in being able to predict the

site, since the site is fairly well conserved between D. melanogaster

and D. pseudoobscura (the two species used for the EMMA runs); it

would likely have missed the site if the second species had been

chosen from outside the melanogaster+obscura clade.

Of particular interest is the presence of a possible hunchback

site a short distance 39 of site A which appears to be absent from

the melanogaster subgroup but present in most species outside this

clade. Note that these two sites reside on opposite strands,

precluding the possibility that these are simply homologous sites

that have been mis-aligned. Parsimony considerations would

suggest that the forward-strand site is an ancient element that was

lost in the melanogaster subgroup (as well as along the lineage

leading to D. willistoni), while site A was gained somewhat earlier

than this loss event, on the common lineage leading to the

melanogaster and obscura groups. Under this hypothesis, the existence

of site A may have reduced the strength of selection maintaining

the forward-strand element near site A in the melanogaster subgroup,

leading to the latter site’s demise. The very possibility for these

types of context-dependent turnover events demonstrates a

potential for further extensions to models of evolutionary patterns

in conservation-based prediction systems.

Site B is an example of a prediction with minimal support from

the ChIP-seq data, but which is very likely a functional binding site

nonetheless. This putative hunchback site is perfectly conserved

across all ten species, while flanking sequences show less-than-

perfect conservation, suggesting strong purifying selection specific

to the eight positions making up the putative site. The consensus

sequence perfectly matches that of the weight matrix for this

factor, and produces a likelihood ratio of 5.4 when evaluated using

the weight matrix with a 2nd order Markov chain as background.

Three of the four predictors (MAFIA, rMONKEY, and EMMA)

Figure 6. ROC-like curve for MAFIA (blue) applied to ten
species, rMonkey (red) applied to six species, and the ‘‘gold
standard’’ (gold). Sensitivity is plotted on the y-axis, false-positive
rate along the x-axis. Each point corresponds to a different stringency
threshold in the processed ChIP-seq data.
doi:10.1371/journal.pcbi.1001037.g006

Figure 7. An example D. melanogaster developmental enhancer.
At top are F-Seq scores from ChIP-seq data for six transcription factors
(kr = kruppel, kni = knirps, hb = hunchback, gt = giant, cad = caudal,
bcd = bicoid); curves were scaled to maximize visual impact for the
figure. Predictions and known sites are shown below, with colors
denoting factor identity as per the F-Seq curves (factor tailless was not
assayed in the ChIP-seq experiments and is shown in white). Plus and
minus tracks correspond respectively to sense and antisense strands of
the dm3 assembly for chromosome 3R. The FlyReg track depicts known
binding sites according to the ‘‘gold standard’’ (see text). The EMMA
track was produced using the –e option for that program.
doi:10.1371/journal.pcbi.1001037.g007
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agree in placing a hunchback site at this precise location. Assuming

that the site is indeed functional within some spatiotemporal

context in the organism’s lifecycle, this example illustrates the

limitations of ChIP-seq data for establishing the validity of putative

binding sites. In this particular case, whole embryos were collected

during a narrow window of time corresponding to the anterior-

posterior pattern formation stage of Drosophilid embryogenesis [24].

The transcription factors assayed are well known to play

prominent roles in anterior-posterior pattern formation, but this

does not preclude other uses of these factors later or earlier in the

organism’s lifecycle. Spatial resolution may also play a role in

obscuring binding affinity for particular sites, since the use of

whole embryos will bias the results toward more obligately bound

sites, potentially leaving the signal from lower-bound sites, or sites

bound in small numbers of cells, below the effective noise

threshold.

Finally, site C (tailless) demonstrates the ability of our system to

predict sites that are not only not conserved in other species, but

that may be interrupted in the alignment by indels; most phylo-

HMM based methods will miss sites such as these because they

prohibit indels within binding sites. Though rMONKEY did

predict a conserved site in the 6-way alignment at this location, in

order to do so it was forced to predict consensus sequences for D.

pseudoobscura (ACAATCT) and D. ananassae (AATGTCT) that are

relatively poor matches to the weight matrix for this factor.

Discussion

A variety of methods have been explored in recent years for

alignment of DNA sequence, for identification of functional

binding sites, and, in relatively few cases, for performing both

simultaneously. The incorporation of binding-sites into the

alignment model is an attractive idea, since the presumed higher

level of conservation of binding sites in many instances may aid the

alignment process by providing ‘‘alignment anchors’’, which in

turn should ease the task of identifying binding sites in the resulting

alignment (based on conservation patterns).

Several recent studies have proposed techniques for adapting

pair HMMs to the problem of multiple-sequence alignment,

specifically within the context of regulatory modules. The work

presented here continues in a direction similar to these latter

efforts, but provides a more thorough computational foundation

for detailed models of regulatory sequences and their evolution.

The two key aspects of this foundation are: (1) the ability to

implement different sequence evolution models specified via a

simple but powerful modeling language; and (2) the sole reliance

on pairwise sequence models (PPHMMs), which permits the use of

far larger numbers of functional classes than would be possible via,

e.g., composing transducers (as in [26]) into N-ary HMMs, for

large N. We showed that our implementation’s alignment accuracy

and its success at binding site identification is competitive with

current state-of-the-art tools for either problem, while scaling to

allow for the evolutionary analysis of multiple genomes (e.g. ten

Drosophila species).

Explicit modeling of evolutionary (non-compensatory) turnover

in regulatory binding sites has recently seen an increase in interest,

both in the two-species case [5] and for larger numbers of species

[7]. The propensity for regulatory sequences to experience

significant evolutionary change, including wholesale rearrange-

ment of binding sites, has been well documented [27,6,28].

Incorporating turnover into predictive models is nontrivial,

however. As noted by Hawkins et al. [23], relaxation of the

‘‘complete orthology’’ assumption effectively increases the diffi-

culty of the classification task (site vs. non-site) because it decreases

the difference between the classes to be distinguished (i.e., it

decreases the classifier’s achievable ‘‘margin’’). Incorporation of a

gain and/or loss mechanism in a binding site model should

therefore be expected to improve sensitivity at the expense of

specificity. In our own simulation runs (EVOS data set #1—see

Text S1), we found precisely the opposite, with the overall

accuracy (F-score) improving after the incorporation of gain and

loss states in our model, with the improvement being rather drastic

when high levels of turnover were present in at least some of the

test sequences. This disagreement with the theoretical findings of

Hawkins et al. may be due to the effect of the gain and loss states

during the alignment process; in the work by Hawkins et al., the

alignments were pre-computed by a general-purpose aligner with

no knowledge of binding sites. He et al. [5], who utilized gain and

loss states during the alignment, also found an improvement in

prediction accuracy when gain and loss states were enabled. Ray

et al. [7], who modeled gain and loss in a multiple-species setting

but relied on pre-computed alignments, also found that their

model outperformed other systems lacking gain and loss states, and

that this advantage was relatively stable across different rates of

turnover in simulated data.

Another interesting result of the Hawkins et al. [5] study was

their conclusion that ‘‘gold standard’’ test sets tend to be biased

against methods capable of detecting weak binding sites (due to the

experimental protocols involved in identifying the sites in the gold

standard), and are therefore biased against models such as Phylo-

HMMs which can detect sites with weak binding profiles but

strong conservation. The 17-CRM Drosophila data set used here

Figure 8. Example MAFIA alignments from the CRM shown in Figure 7. Nucleotides predicted to participate in binding are shown in bold.
Weight matrices for factors are shown as sequence logos above (sense strand) or below (antisense strand) the alignment.
doi:10.1371/journal.pcbi.1001037.g008
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likely suffers from another obvious confounding problem:

annotated sites were identified by scanning footprinted sequence

data with a simple weight matrix and calling the highest-scoring

interval the ‘‘correct’’ site [5], which will bias annotations toward

strong sites in one annotated target species, while also being

incomplete. Our use of ChIP-seq data to construct ROC-like

curves provides a more unbiased means for evaluating the relative

merits of competing prediction systems. Whereas other authors

have applied peak-calling algorithms to ChIP data to identify

putative sites, our procedure mitigates the uncertainty inherent in

the peak-calling process by identifying putative binding regions at

many different binding thresholds. The resulting ensemble of

nested peaks is used to compute a set of sensitivity6 false-positive-

rate pairs that can be compared both visually, via an ROC-like

curve, and more rigorously via formal statistical tests. As ChIP

data continues to become available in larger volumes and for lar-

ger numbers of organisms, we believe this type of analysis will be-

come increasingly valuable for those investigating computational

methods for binding-site prediction.

In summary, it has been shown here that in settings in which we

know the actual evolutionary history of sequences (via model-

independent simulations) or can make use of genome-wide direct

binding evidence (rather than a manually annotated ‘‘gold

standard’’), our modeling framework shows strong improvement

in predictive capacity over previous attempts that relied on

precomputed alignments, were limited to small numbers of

sequences, or made untenable simplifying assumptions (such as

complete orthology). We have concentrated here on the ability to

accurately predict functional binding sites, but our framework also

provides a means to align sequences as well as simulate the

evolution of sequences and functional elements in those sequences,

at both the nucleotide and whole-element level. In particular, it is

straightforward to impose ‘‘grammatical’’ restrictions such as

relative order or orientation of sites. We expect that the flexibility

of this framework will allow further improvements to predictive

accuracy as a wider range of models are investigated within the

context of this easily configurable system.

Materials and Methods

Data
The set of seventeen Drosophila CRMs consisted of develop-

mental enhancers previously utilized by He et al. [5]; several

enhancers from the original set were excluded from our analyses

because they either contained no instances of binding sites for the

factors included in this analysis, or they caused one of the external

software packages in our comparison to malfunction. Because the

footprints in RedFly are often larger than the actual binding sites,

the latter authors scanned the footprints with a positional weight

matrix to identify precise boundaries for the putative binding site.

This process likely induces a bias in favor of prediction methods

incorporating a weight-matrix-like approach. The CRMs had a

mean length of 612 bp (range: 67–1889), totaling 62391 bp (10028

in D. melanogaster alone).

The 142 RedFly footprinting profiles had a mean length of

662 bp (range: 610–1908), totaling 564345 bp (87824 in D.

melanogaster alone); the ‘‘decoy’’ CRMs had a mean length of

495 bp (range: 500–5114), totaling 421644 bp (71000 bp in D.

melanogaster alone). The decoy sites were chosen to have the same

G+C density (within one half percent) and the same PhastCons

[29] conservation level (these levels are given in 10% increments

when downloaded from the UCSC [30] genome browser) as one

of the true CRMs (a different such CRM for each decoy site).

For the PSPE simulation runs, we parameterized the simulator

identically to Huang, et al. [2]—i.e., with a Markov order of 3, a

negative Binomial gap model (with parameters 1 and 0.5), an

HKY substitution model (with parameter 0.05), a gamma value of

1, an iota value of 0.1, and a lambda value of 0.1. Sequences had a

mean length of 500 bp (range: 475–530), totaling 274975 bp

(54927 bp for D. melanogaster alone).

For the EVOS simulation runs, the mean CRM length was

503 bp (range: 71–877), totaling 1046498 bp (104735 for D.

melanogaster alone).

Models
A phylogenetic pair hidden Markov model (PPHMM) M = (Q,A,Pt,S)

consists of a set of states Q, an alphabet A which we take here to be

the nucleotide alphabet, a state transition function Pt(qj|qi) giving

the probability of transitioning from state qi to qj, and a conditional

substitution matrix S giving the probability of one symbol from A

being substituted by another symbol from A, conditional on state

q: P(a2|a1,q). A PPHMM can be instantiated from a PPHMM

template T = (Q,A,Ct,R), where Q and A are as defined above, Ct is

a set of closures Ct(qj|qi,t) giving the probability of transitioning from

state qi to qj conditional on a time parameter t, and conditional

substitution rate matrix R gives the instantaneous substitution rates

between symbols in A (conditional on state). Given a branch of

length t in a phylogeny, a PPHMM for that branch can be

instantiated via M = (Q,A,Ct(t),e
tR), where Ct(t) denotes the function

Pt(qj|qi) = Ct(qj|qi,t). PPHMM templates can be specified compactly

in our system using the SEAL modeling language, as described in

Text S1.

For the experiments reported here, we implemented binding-

site profiles (for ‘‘retention’’ events—i.e., no gain or loss of

function) via a linear sequence of PPHMM states trained via the

Halpern-Bruno construction [31] as applied to a JASPAR matrix.

(The Halpern-Bruno construction provides a means of obtaining a

substitution rate matrix for a foreground class, given a reversible

background substitution rate matrix and a foreground equilibrium

distribution). Phylogenies were constructed via the neighbor-

joining algorithm [32]. Pre-constructed alignments used for

training MAFIA and as input to competing programs were built

using MUSCLE. All substitution rate matrices were general time-

reversible models. Training of rate matrices was carried out as

described previously [33].

Our background model for these experiments (Figure 1)

consisted of three states (an insert, match, and delete state) trained

from the MUSCLE training alignments. The model is affine, since

the probability of a transition from the match state to an indel state

can differ from the self-transition probabilities within the indel

states. The model is also reversible (or symmetric) in the sense that

identical alignments are produced whether sequence A is aligned

to B or B is aligned to A; many popular models (e.g., TKF91—

[34]; SPH08—[4]) do not have this property. The probability

s = s(t) of leaving the background model is given by s(t) = 1-(1-
b‘)(1-b(t)), for b‘ = limtR‘b(t), where b(t) is the gain probability for

binding sites (to be defined shortly); s(t) dictates the density of

binding sites. a and b are parameters to the model; their relative

values influence the frequency and average lengths of gaps.

Binding-site gain and loss events were modeled using PPHMMs

of the form depicted in Figure 2. The top half of each state in the

figure is labeled with the functional class of the ancestral residue,

while the bottom half is labeled with the class of the descendent

residue; bg represents the background functional class, Wi

represents the functional class for the ith column of the

corresponding binding profile, and a dash indicates a gap rather

than a residue, in the case of insertion and deletion states. (For
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retention states the ancestral and descendent functional classes

would be identical). Transition probabilities (denoted a, b, c, …, n

in the figure) are derived from the background model (see Figure

S1 in Text S1). This model enforces the constraint that indels are

not permitted inside functional binding sites, but permits them to

occur in non-functional sequences orthologous to functional

binding sites.

An example illustrating the utility of these indel states in the

gain/loss submodels is given in Figures S4 and S5 in Text S1. As

shown in the figure it is quite possible to have strong matches to a

binding site profile in several organisms while one or more other

organisms show clear nucleotide homology with those sites without

retaining a strong match to the binding site profile. Without indel

states in the gain/loss submodels, these (putatively) orthologous

non-functional nucleotides would often be incapable of aligning

with the putative binding sites in the other sequences, and would

contribute more gaps to the alignment.

The background, retention, gain, and loss submodels were

merged into a single PPHMM template which was then used to

instantiate the models used for the computational experiments.

Because transitions between submodels were constrained for these

experiments to be between the background submodel and a

foreground (gain/loss/retention) submodel (see Figure 3), transi-

tions between submodels were governed by the probabilities for

gain, loss, and retention events on binding sites; these are

described next.

Gain, loss, and retention events were modeled via a stochastic

birth-death process, as follows. Let A be an ancestral taxon having

a descendant D, with D following A by t time units. For any

binding site present in A’s genome, p(t) will denote the probability

that the orthologous site in D is a functional binding site (for the

same factor), while q(t) will denote the probability that the site is

not functional in D. We model the time evolution of p(t) and q(t) via

the following set of differential equations:

dp(t)

dt
~{mp(t)zl(1{p(t))

dq(t)

dt
~mp(t){lq(t)

ð5Þ

with initial conditions q(0) = 0 and p(0) = 1; parameter l is the

instantaneous birth rate, while m is the instantaneous death rate. The

above system admits the following solution:

p(t)~
l

lzm
1z

m

l
e{(lzm)t

� �

q(t)~
m

lzm
(1{e{(lzm)t)

ð6Þ

For any vacant interval of the proper size in the ancestral genome

(lacking a binding site of any kind), we denote by b(t) the

probability that the orthologous site in the descendant will now be

a functional binding site for some transcription factor:

db(t)

dt
~l(1{b(t)){mb(t), b(0)~0: ð7Þ

This equation admits the following solution:

b(t)~
l

mzl
1{e{(mzl)t
� �

ð8Þ

The limit of this term, limtR‘b(t) = b‘ = l/(l+m), provides the

probability for leaving the background state. The probabilities of

entering a gain, loss, or retention submodel are derived from b(t),

q(t), and p(t), respectively. We call b(t) the gain probability, q(t) the loss

probability, and p(t) the retention probability.

Evolutionary rates of individual nucleotides in gain and loss

states are assessed in MAFIA via a mixture model combining the

foreground and background substitution rates. Let B and b denote

two different functional classes, B for the ancestor and b for the

descendant. PB(t) and Pb(t) denote the respective substitution

matrices for these classes. The mixture substitution model PBRb(t)

is given by:

PB?b(t) ~
1

t

ðt

0

PB(s)Pb(t{s)ds ~
1

t
M1 Bij

� �
M{1

2

QB~M1L1M{1
1

Qb~M2L2M{1
2

M3~M{1
1 M2~½mij �

Lk~diag(lk1,lk2,lk3,lk4)

ð9Þ

where Mi and Mi
21 are found via spectral decomposition of Qb or

QB (the instantaneous rate matrices from which the corresponding

P(t) matrices are derived), and Bij is given by:

Bij~

mije
l2i tt ifl1j~l2i

mij(e
l1j t

{e
l2j t

)

l1j{l2i

otherwise

8><
>: ð10Þ

for lkj the eigenvalues resulting from the spectral decompositions.

PBRb(t) is used in assessing substitution probabilities in any cross-

functional state having ancestral functional class B and descendent

class b (B?b).

Algorithms
MAFIA performs multiple-sequence alignment using a

bottom-up progressive alignment approach followed by a top-

down refinement step, as described in the Results. During the

bottom-up progressive phase, a modified version of Felsenstein’s

algorithm [35], which we call Lossy Felsenstein, is used; this

algorithm permits retention and loss events, but not gain events,

in order to promote sensitivity and reduce greedy behavior.

Once the progressive up-pass is complete, we apply Dollo

parsimony [36] in an attempt to filter spurious ancestral

nucleotides that were too liberally propagated up the tree

during the up-pass; Dollo parsimony effectively finds the clades

where individual features were first introduced by evolution

(according to a parsimony criterion). Finally, we apply a down-

pass to remove any inconsistencies introduced by the Dollo

procedure.

During the up-pass, each pair of sibling taxa in the phylogeny

are aligned by performing Viterbi decoding [37]; emission

probabilities are computed via Felsenstein pruning, as previously

noted. The PPHMM for this sibling-alignment step is obtained by

instantiating the PPHMM template on a branch of length t1+t2,

where t1 is the branch length between the left sibling and its parent

in the tree, and t2 is the length of the branch between the right

sibling and its parent. This step differs from the sibling alignment

step in the approach of Holmes and Bruno [26], who instead

compose the transducers on the two sibling branches into a single

‘‘triple HMM’’ with an enlarged state space. Decoding of the triple
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HMM will produce a pair of alignments: one between each sibling

and its parent. Composing pair HMMs with hundreds of states

each into a triple HMM would result in a vastly larger state space,

so we instead construct the PPHMM for aligning the siblings

directly, as previously stated. This results in an alignment ALR

between siblings L and R. In order to obtain alignments APL and

APR between parent P and each sibling, we assume (only during the

up-pass) that all residues in either sibling are present in the parent;

this produces unambiguous alignments between the parent and

each sibling, while retaining a similar flavor to the Lossy

Felsenstein algorithm described above (since it permits only

deletions and matches during the up-pass). Though this strategy

favors increasing sequence lengths for taxa higher in the tree, the

Dollo parsimony procedure performed after the up-pass reduces

sequence lengths by identifying clades where (according to the

Dollo principle) a nucleotide should be considered to have

originated.

During the down-pass, the PPHMM instantiated at each

branch in the phylogeny is used to re-align the ancestral and

descendent taxa at either end of the branch. Because non-leaf

taxa are unobservable, this procedure effectively re-aligns species

inside the child clade (as a unit) to all species outside the child

clade (as a unit). Emission probabilities are computed using a

variant of Felsenstein’s algorithm which finds the maximum

probability over all gain/loss histories; we call this variant Gain-

Loss Felsenstein (see Text S1). For these down-pass re-alignment

steps, a constrained variant of Viterbi decoding is used, which

considers only state paths which respect the functional parse

(assignment of functional classes to residues) of the ancestral

sequence; the very first re-alignment step of the down-pass utilizes

unconstrained Viterbi decoding to obtain a functional parse for

the root sequence (this root decoding step is essentially equivalent

to a standard Phylo-HMM). Once the down-pass completes, all

sequences (including ancestral sequences) will have been assigned

a functional parse, from which binding site predictions are

extracted.

Evaluation of emission probabilities in gain and loss states is

performed via:

Lu(x,B)~

d~(u,x) if u is a leaf

P
c[

C(u)

max
b[
f0,1g

P
y[D

P(b B)j P(y x,hB?b)j Lc(y,b) otherwise

8><
>: ð11Þ

where P(b|B) is given by the birth-death equations described

above, x is a nucleotide, C(u) are the children of u, D is the

nucleotide alphabet, and P(y|x,hBRb) imposes the substitution

mixture model hBRb for the current state, q. This formula produces

a conditional likelihood, P(Sleaves|Sroot,q) = Lroot(Sroot,B) for Sroot the

(unobserved) residue at the clade root and Sleaves the set of

(observed) residues at the leaves of the clade. To obtain a marginal

likelihood, P(Sleaves|q), we compute gxLroot(x,B)Peq(x|B), for Peq(x|B)

the equilibrium nucleotide frequency obtained from the substitu-

tion matrix for the class B implied by state q.

Detailed descriptions of all algorithms referenced above are

given in Text S1.

Training and Evaluation
For the experiments described here, the following protocols

were observed for training and application of the software.

Parameters a and b were trained via simple counts taken from a

training alignment. l and m were constrained via l = dm/(1-d) for

d the estimated density of binding sites in training data, and then

optimized to maximize site-level prediction accuracy on training

data (for Drosophila experiments m was fixed at 0.08 as early runs

indicated little or no advantage to changing this value); because

these were trained discriminatively they need not reflect the

actual birth and death rates along ancestral lineages. Relative

frequencies for individual transcription factors were estimated

from training data as well, and were used to scale the

probabilities of transitions entering submodels for individual

factors; an additional multiplicative term of 0.5 was applied, since

we included a forward and reverse-strand submodel for each

factor. Two additional multiplicative factors were introduced into

the model after it was observed in simulations that they could

improve the discriminative power of the predictor: an indel

coefficient cindel which was applied to a and b, and a branch

coefficient cbranch, which was applied to all branch lengths in the

phylogeny. The need for such ‘‘fudge factors’’ in improving the

discriminative power of generative models has been well-

documented, particularly in the context of cross-species gene

prediction [9], and more recently in cross-species binding-site

prediction [7]. These coefficients were optimized by maximizing

the predictive accuracy of the model on the training data via hill-

climbing (with site-level F-score as the objective function). The

background substitution rate matrix was trained via gradient

ascent on training alignments; foreground rate matrices (one for

each position in each factor’s binding profile) were trained via the

Halpern-Bruno construction, as mentioned previously. Branch

lengths for the phylogeny were estimated simultaneously with the

background rate matrix via gradient ascent (since rates and times

are confounded). Note that these branch lengths are likely to be

less suitable for use in computing the transition and gain/loss

probabilities, since they were estimated specifically to maximize

the likelihood of the (background) substitution matrix only. This

likely accounts for the improvement observed when cbranch was

incorporated into the model; in the future we intend to instead

estimate separate branch lengths for these other components of

the model. The model currently has very few free parameters,

despite having many hundreds of states: a, b, l, m, d, cindel, cbranch, a

relative density for each factor, the phylogeny branch lengths,

and the parameters of the background rate matrix (6 for GTR);

binding site profiles (positional weight matrices) were obtained

from external sources and were not estimated directly by us

(though we arbitrarily added pseudocounts of 0.1). Score

thresholds for PhyloGibbs and rMONKEY predictions were

optimized via cross-validation; overlapping predictions were

disambiguated by selecting the highest scoring sites.

For the ROC-like curves, we obtained Bowtie [38] alignments

of ChIP-seq reads from Bradley et al. [24] and subjected these to

the F-Seq program [25]; F-Seq scores were normalized using total-

chromatin files provided by Bradley et al. [24]. We then applied

1000 cutoff values to the resulting F-Seq profiles to obtain intervals

of varying sizes around putative binding sites. At each cutoff we

evaluated sensitivity and false positive rates for a fixed set of

predictions and plotted these as in a standard ROC curve. The

resulting curve was smoothed by averaging values in a fixed-length

window; identical smoothing parameters were applied to all

curves.

Supporting Information

Text S1 Detailed description of algorithms and models discussed

in the manuscript, additional results, and additional methods.

Found at: doi:10.1371/journal.pcbi.1001037.s001 (1.64 MB

DOC)
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