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Abstract

Virtually every molecular biologist has searched a protein or DNA sequence database to find sequences that are
evolutionarily related to a given query. Pairwise sequence comparison methods—i.e., measures of similarity between query
and target sequences—provide the engine for sequence database search and have been the subject of 30 years of
computational research. For the difficult problem of detecting remote evolutionary relationships between protein
sequences, the most successful pairwise comparison methods involve building local models (e.g., profile hidden Markov
models) of protein sequences. However, recent work in massive data domains like web search and natural language
processing demonstrate the advantage of exploiting the global structure of the data space. Motivated by this work, we
present a large-scale algorithm called PROTEMBED, which learns an embedding of protein sequences into a low-dimensional
‘‘semantic space.’’ Evolutionarily related proteins are embedded in close proximity, and additional pieces of evidence, such
as 3D structural similarity or class labels, can be incorporated into the learning process. We find that PROTEMBED achieves
superior accuracy to widely used pairwise sequence methods like PSI-BLAST and HHSearch for remote homology detection;
it also outperforms our previous RANKPROP algorithm, which incorporates global structure in the form of a protein similarity
network. Finally, the PROTEMBED embedding space can be visualized, both at the global level and local to a given query,
yielding intuition about the structure of protein sequence space.
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Introduction

Using sequence similarity between proteins to detect evolution-

ary relationships—protein homology detection—is one of the most

fundamental and longest studied problems in computational

biology. A protein’s function is strongly correlated with its 3D

structure, and due to evolutionary pressure, protein structures

diverge much more slowly than primary sequences. Because

protein sequence data will always be far more abundant than high-

quality 3D structural data, the computational challenge is to infer

evolutionarily conserved structure and function from subtle

sequence similarities. When the evolutionary distance is large

and the sequence signal faint—so-called remote homology detection—

this problem is still unsolved.

Stated in purely computational terms, remote homology

detection involves searching a protein database for sequences that

are evolutionarily related (even remotely) to a given query

sequence. Most work in this area has focused on developing more

sensitive pairwise comparisons between the query and target

sequences, including sequence-sequence local alignments (BLAST

[1], Smith-Waterman [2]); profile-sequence (PSI-BLAST [3]) and

HMM-sequence comparisons (HMMER [4]); and, most recently,

profile-profile [5] and HMM-HMM (HHPred/HHSearch [6])

comparisons. From a machine learning point of view, these recent

methods involve building a model of the neighborhood of the query

and of the target in protein sequence space and using the local

neighborhood models to compute a better similarity measure.

However, recent advances in massive data domains such as web

search and natural language processing suggest that the global

structure of the data space can also be exploited. For example,

motivated by the success of Google’s PageRank algorithm, we

previously developed RANKPROP [7], an algorithm that uses graph

diffusion on the protein similarity network, defined on a large protein

sequence database, in order to re-rank target sequences relative to

the query and substantially improve remote homology detection.

In the current study, we are motivated by large-scale learning of

language models in recent work in natural language processing

(NLP) [8]. This NLP work exploited large online text data sets

(e.g., Wikipedia) to learn an embedding of words into a low-

dimensional semantic space, inducing an embedding of sentence

fragments. The embedding algorithm iteratively pushes pairs of

real sentence fragments together and pulls pairs of real and

randomized sentence fragments apart. Thus, at the end of

training, words that are near each other in the embedding space

are likely to be semantically related. Moreover, the embedding

representation can be leveraged to simultaneously train models to

solve multiple NLP tasks, using the framework of multitask

learning [9].

Here, we present an algorithm called PROTEMBED that learns an

embedding of protein domain sequences into a semantic space
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such that proximity in the embedding space captures homology

relationships. After this large-scale training procedure, remote

homologs of a query sequence can be detected by mapping the

query to the embedding space and retrieving its nearest neighbors.

Furthermore, as in the NLP case, we can use multitask learning to

incorporate auxiliary information, where available, to improve the

embedding, including structural class labels from databases such as

SCOP [10] or structural similarity scores for pairs of training

examples where both 3D structures are known. It is important to

note that our embedding is defined naturally on protein domain

sequences rather than multidomain sequences. In particular,

inclusion of multidomain sequences in the training data can lead

to incompatible distance relationships in the semantic space due to

lack of transitivity, resulting in a worse embedding. At testing time,

it may be possible to resolve the domain structure of a

multidomain query sequence using the learned embedding (see

Discussion); however, we only evaluate performance on domain

sequence queries in the current study.

We show that PROTEMBED achieves state-of-the-art performance

for remote protein homology detection, outperforming our

previous algorithm RANKPROP, which also exploits global structure

but uses a fixed weighted similarity network rather than a learned

embedding. Our procedure also yields statistical confidence

estimates and enables a visualization of the learned protein

embedding space, giving new intuition about the global structure

of the protein sequence space.

Methods

Semantic protein indexing
The main idea of our approach is to learn a mapping of protein

domain sequences into a vector space that captures their

‘‘semantic similarity’’, i.e. closeness in the semantic space should

reflect homology relationships between sequences.

In order to learn an embedding of protein sequences into a

semantic space, we need to define (i) a feature representation for

proteins, (ii) a training signal that determines whether a given pair

of training sequences are similar and should be pushed together by

the algorithm, or dissimilar and should be pulled apart, and (iii) an

algorithm that learns an appropriate embedding.

Let us denote the set of proteins in the database as fptg‘t~1 and

a query protein as q[P, where P is the set of all possible

sequences of amino acids. We then choose a feature map w(:)[R‘

to represent proteins as vectors. This map is necessary so that we

can perform geometric operations on proteins. We use the

following representation for a protein p0:

W(p0)~(E(p0,p1), . . . E(p0,p‘))

where E(p0,pi) is the E-value returned by a surrogate protein

alignment algorithm, such as PSI-BLAST, suitably transformed.

Following RANKPROP [7], we use the following transformation:

Wp0 ,pi
~exp({Sp0 (pi)=s)

E(p0,pi)~Wp0pi

,X
j

Wp0pj

where Sp0 (pi) is the PSI-BLAST E-value assigned to protein pi

given query p0 and where we set the parameter s~100. This

transformation yields a stochastic connectivity matrix; i.e., the

value E(p0,pi) can be interpreted as the probability that a random

walk on the protein similarity network will choose to move from

protein p0 to protein pi. Note that, because most protein pairs

exhibit no detectable similarity according to an algorithm such as

PSI-BLAST, most feature values are zero. (Specifically, PSI-

BLAST assigns a large maximal E-value to all database sequences

for which no homology to the query is detected, and the

exponential transfer function converts these values to zero.) The

sparseness of the feature vectors will be important for computa-

tional reasons.

Next, we again use a surrogate protein alignment algorithm, this

time as a teacher to provide a noisy training signal. We construct a

training set of tuples R, where each tuple contains a query q, a

related protein pz and an unrelated (or lower ranked) protein p{.

The tuples themselves are collected by running PSI-BLAST in an

all-versus-all fashion over the database of proteins. Taking any

given protein q as the query, we consider any protein with an E-

value lower than 0.1 to be a similar protein (instance of a pz); in

the current implementation, instances of p{ are chosen randomly

from all training examples and with high probability will be

dissimilar to q. We can then, in principle, construct all possible

combinations (tuples) from which we sample randomly during

online training.

Given the feature vectors and the training tuples, our aim is to

learn a feature embedding that performs well for protein ranking

and classification tasks. We will learn an embedding function

g(p)~WW(p)

where W is an n|‘ matrix, resulting in an embedding g(p)[Rn.

Typically, n is chosen to be low dimensional, e.g. n~200. The

learning procedure consists of finding a matrix W such that similar

proteins have close proximity in the embedding space. Specifically,

we would like to choose W such that, for all tuples (q,pz,p{)[R,

f (q,pz)vf (q,p{)

expressing that pz should be ranked higher than p{, relative to an

appropriate distance measure f (:,:) in the embedding space. We

Author Summary

Searching a protein or DNA sequence database to find
sequences that are evolutionarily related to a query is one
of the foundational problems in computational biology.
These database searches rely on pairwise comparisons of
sequence similarity between the query and targets, but
despite years of method refinements, pairwise compari-
sons still often fail to detect more distantly related targets.
In this study, we adapt recent work from natural language
processing to exploit the global structure of the data space
in this detection problem. In particular, we borrow the idea
of a semantic embedding, where by training on a large
text data set, one learns an embedding of words into a
low-dimensional semantic space such that words embed-
ded close to each other are likely to be semantically
related. We present the ProtEmbed algorithm, which
learns an embedding of protein sequences into a semantic
space where evolutionarily-related proteins are embedded
in close proximity. The flexible training algorithm allows
additional pieces of evidence, such as 3D structural
information, to be incorporated in the learning process
and enables ProtEmbed to achieve state-of-the-art perfor-
mance for the task of detecting targets that have remote
evolutionary relationships to the query.

Detecting Remote Evolutionary Relationships
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define this distance measure using the L1-norm (which is defined

as jjxjj1~
Pn

k~1 jxkj):

f (q,p)~jjg(q){g(p)jj1~jjWW(q){WW(p)jj1:

After training, given a query protein q, we will rank the

database using the ranking score:

f (q,pi)~jjg(q){g(pi)jj1

where we consider smaller values of f (q,:) to be more highly

ranked.

The training objective employs the margin ranking loss [11],

which has been used successfully in the field of information

retrieval to rank documents given a query [12–14]. That is, we

minimize:

X
(q,pz ,p{)[R

max (0,1{f (q,p{)zf (q,pz)), ð1Þ

which encourages f (q,pz) to be smaller than f (q,p{) until a

margin constraint of f (q,p{){f (q,pz)§1 is satisfied. Intuitively,

the algorithm tries to push g(q) and g(pz) together while pulling

g(q) and g(p{) apart, until the difference in distances achieves a

margin of 1. For an equivalent formulation, we can introduce a

slack variable j(q,pz ,p{) for each tuple (q,pz,p{)[R and enforce

the constraints

f (q,p{){f (q,pz)§1{j(q,pz,p{)

for all tuples while minimizing the objective function

X
(q,pz ,p{)[R

j(q,pz ,p{):

This optimization problem is solved using stochastic gradient

descent [13]: iteratively, one picks a random tuple (q,pz,p{) and,

if 1{f (q,p{)zf (q,pz)w0, makes a gradient step for that tuple

as follows:

W/W{l sign(WW(q){WW(p{))W(q)>zl sign(WW(q){

WW(p{))W(p{)>zlsign(WW(q){WW(pz))W(q)>{

l sign(WW(q){WW(pz))W(pz)>
ð2Þ

where sign(x) denotes that the sign function is applied

componentwise to the vector x to yield a vector of +1 values.

Pseudocode for training the PROTEMBED embedding is given in

Algorithm 1 in Text S1.

One can exploit the sparsity of W(q) and W(p) when calculating

these updates to make them computationally cheap. To train our

model, we choose the (fixed) learning rate l that minimizes the

training error, i.e. the loss defined by equation (1). We initialize the

matrix W randomly using a normal distribution with mean zero

and standard deviation one. Overall, stochastic training is highly

scalable and is easy to implement for our model, and learning can

scale to millions of proteins.

After training, we precompute the embedding g(pi) for every

protein in the database. At test time, given a query protein q, we

compute its linear embedding once. Then we are left with only n

operations per protein in the database to perform when retrieving

results for that query.

Adding information about protein structure
In general, recognizing remote homology relationships among

protein structures is easier than recognizing remote homologies

based only on protein sequences. Although structural information

is available for only a subset of the proteins in the database, we

would like to ensure that our embedding captures this structural

information in addition to the sequence-based information

provided by PSI-BLAST. We consider two sources of structural

information: (1) category labels for a given protein and (2)

similarity scores between pairs of proteins. For the the category

labels, we use the Structural Classification of Proteins (SCOP)

[10]. For pairwise similarity scores, we use pairwise structure

alignments of known 3D structures using MAMMOTH [15].

We incorporate this auxiliary information using the framework

of multitask learning: in addition to the main embedding task, we

simultaneously learn models to solve additional tasks using

appropriate subsets of the training data. The tasks share internal

representations learned by the algorithm, in this case, the

embedding function g. In particular, we pose an auxiliary

classification task using SCOP categories, and we pose an auxiliary

ranking task using either SCOP category relationships or using

MAMMOTH similarities. In all cases, the multitask objective

function is simply the sum of the original PROTEMBED objective

function and of that of the auxiliary task. We consider these two

task types in turn.

Class-based data. For auxiliary data in the form of a class

label yi [ 1, . . . ,Cf g for protein pi we train an auxiliary

classification task that is multitasked with the original PROTEMBED

objective, sharing the same embedding space. For each fold and

superfamily class we create a vector ci, i~1, . . . ,C, which can be

thought of as a set of class centroids. We then would like to satisfy

the constraints:

f (pi,cyi
)vf (pj ,cyi

),Vj : yj=yi:

That is, proteins belonging to some class should be closer to that

class centroid than proteins that do not belong to that class. We

train this model using the margin ranking loss as before, and

multitask this problem with the original objective using the

following updates:

W/Wzl sign(WW(q){WcC(pz))W(q)>

W/W{l sign(WW(q){WcC(p{))W(q)>

Wc/Wc{l sign(WW(q){WcC(pz))C(pz)>

Wc/Wczl sign(WW(q){WcC(p{))C(p{)>

ð3Þ

Here Wc is a matrix containing the centroid vectors ci as columns,

and C(pz) (resp. C(p{)) is the bit vector of length C whose two

non-zero entries are placed at indices for the fold and superfamily

of the labeled training example pz (resp. p{). Pseudocode for

training the PROTEMBED embedding with class-based auxiliary

data is given in Algorithm 2 in Text S1.

Ranking-based data. For auxiliary data in the form of

similarity scores between pairs of proteins, we simply add more

ranking constraints into the set of tuples R. That is, we

consider additional tuples of the form (p,pz,p{) where p and

pz are similar SCOP proteins based on auxiliary data—i.e., a

similarity score comparing these proteins is above a cutoff

value—while p{ is chosen at random from all of SCOP and

Detecting Remote Evolutionary Relationships
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with high probability will be structurally dissimilar to q. Then

we require these additional tuples to satisfy constraints of the

form

f (p,pz)vf (p,p{),

analogous to the constraints in the main optimization problem.

Two examples of the use of such auxiliary constraints are given

by using SCOP superfamily labels or MAMMOTH. For SCOP

labels, if two proteins are in the same superfamily, we say

they are similar. For MAMMOTH, we choose a cutoff value

of 2.0, and a pair of proteins that has a structural align-

ment scoring above this cutoff is deemed to be similar.

Pseudocode for training the PROTEMBED embedding with

ranking-based auxiliary data is given in Algorithm 3 in Text

S1.

Data sets
For labeled data—namely, proteins with structural category

labels and 3D structures from which to compute pairwise similarity

scores—we used proteins from the SCOP v1.59 protein database.

We used ASTRAL [16] to filter these sequences so that no two

sequences share greater than 95% identity. This filtering resulted

in 7329 sequences. Our test set consists of 97 proteins selected at

random from these SCOP sequences. These test sequences were

excluded entirely from the training data.

Figure 1. Visualization of the protein embedding. Visualization based on training PROTEMBED with dimension n~2 and viewing WW(p) for SCOP
proteins from all superfamilies with 25 or more members.
doi:10.1371/journal.pcbi.1001047.g001

Detecting Remote Evolutionary Relationships
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For unlabeled data, i.e. protein domain sequences without

category labels or structural information, we used sequences from

the ADDA domain database version 4 [17] (http://ekhidna.

biocenter.helsinki.fi/downloads/adda). This database contains

3,854,803 single-domain sequences. We removed from the

database sequences comprised entirely of the ambiguity code

‘‘X,’’ sequences shorter than 6 amino acids and sequences longer

than 10,000 amino acids. We then randomly selected sequences

from the remaining sequences until we had picked 3% of the

original sequences. This left us with an unlabeled single domain

database of 115,644 sequences.

We ran PSI-BLAST version 2.2.8 on the combined

SCOP+ADDA database using the default parameters, allowing

a maximum of 6 iterations. For a second and more powerful

pairwise sequence similarity method based on HMM-HMM

comparisons, we also ran HHSearch version 1.5.0, using default

parameters. HHPred/HHSearch is considered a leading

method for remote homology detection [6]. When searching

for homologs to the test set domains, we added the HHSearch

options ‘‘-realign -mact 0,’’ which uses local Viterbi search

followed by MAC to realign the proteins globally on a local

posterior probability matrix. Similarly, MAMMOTH was run

with its default settings.

We first trained embeddings on SCOP+ADDA (with SCOP test

sequences held out) using PSI-BLAST or HHSearch as the

pairwise sequence comparison method to serve as ‘‘teacher’’ for

producing (q,pz,p{) tuples. In this setting, we did not make use of

the category labels or structural information for the SCOP training

examples. We then trained embeddings using ADDA as unlabeled

data and SCOP as labeled data, where the labeled data was used

in (i) an auxiliary classification task based on SCOP category labels

or (ii) an auxiliary ranking task based either on SCOP category

relationships or on MAMMOTH similarity scores.

Results

A two-dimensional embedding of proteins
As an initial proof-of-concept test of the PROTEMBED algorithm,

we created an embedding of protein domains into a two-

dimensional space. This embedding is necessarily underfit,

because two dimensions does not provide very much capacity to

learn a good embedding. However, a two-dimensional space has

the advantage of being easy to visualize. We trained the

embedding using the 7329 SCOP proteins from the training set,

and then calculated the locations of the all SCOP proteins from all

superfamilies with 25 or more members. Figure 1 shows these

locations. Proteins are colored and labeled according to their

SCOP superfamilies. The embedding generally places members of

the same superfamily near one another.

ProtEmbed provides accurate rankings
To investigate the ability of PROTEMBED to rank homologous

proteins above non-homologs, we used a gold standard derived

from the SCOP database of protein domain structures. We then

used PSI-BLAST, Rankprop, HHSearch and PROTEMBED to rank a

collection of 7329 SCOP domain sequences with respect to each of

97 test domains. To provide a rich database in which to perform the

search, we augmented the SCOP data set with 115,644 single-

Figure 2. Comparison of mean ROC scores. Each node corresponds to a homology detection algorithm, and the value associated with each
node is the mean ROC1 (A) or ROC50 (B) score achieved with respect to 97 test queries. An edge between nodes X and Y indicates that method X
performs better than method Y, according to a Wilcoxon signed-rank test with a 0.05 significance threshold.
doi:10.1371/journal.pcbi.1001047.g002
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domain sequences from the ADDA domain database. In our

evaluation, protein domains that reside in the same SCOP

superfamily as a query domain are labeled positive, and domains

in different folds than that of the query are labeled negative. The

remaining sequences—from the same fold but different superfam-

ilies—are ignored, because their homology to the query is uncertain.

For each query, traversing the ranked list of labeled sequences

induces a receiver operating characteristic (ROC) curve, which plots

the percentage of positives as a function of the percentage of

negatives observed thus far in the ranked list. We measured the area

under this curve up to the first false positive (ROC1) or the 50th false

positive (ROC50). Both scores are normalized such that perfect

performance corresponds to a score of 1.0.

Before training our embedding, we ran a series of cross-validation

experiments within the training set to select hyperparameters; i.e.,

parameters that are not subject to optimization. Based on these

experiments, we used, for PSI-BLAST, a learning rate of 0.05 and

an embedding dimension of 250; and for HHSearch, a learning rate

of 0.02 and an embedding dimension of 100. In each case, the

training was run for 150 epochs, where one epoch corresponds to

20,000 tuples. We used the same hyperparameters when training

with or without the auxiliary, structural information.

Figure 2 compares the performance of PSI-BLAST, RankProp,

HHSearch and various versions of the PROTEMBED algorithm. The

performance of each algorithm is summarized by the mean ROC1

or ROC50 score. To establish the statistical significance of the

observed differences, we used a Wilcoxon signed-rank test with a

0.05 significance threshold. For both of the performance metrics that

we considered, the ranking of the three previously described methods

is the same: HHSearch outperforms Rankprop, which outperforms

PSI-BLAST. Also, the standard PROTEMBED algorithm, with no

auxiliary data, outperforms PSI-BLAST when it is trained using PSI-

BLAST and outperforms HHSearch when it is trained using

HHSearch, although for the latter comparison, the difference is only

significant for the ROC1 performance metric. Figure 2 in Text S1,

which plots the number of queries for which the ROC1 or ROC50

score exceeds a given threshold, shows that the differences among

methods are not traceable to queries with particularly high or low

ROC values; on the contrary, the improvements from one method to

the next span the entire range of ROC values.

Figure 2 shows that adding auxiliary, structural information

during PROTEMBED training significantly improves the quality of the

resulting rankings. Adding structural information to PROTEMBED

improves the mean ROC1 score by 0.038–0.170 and improves the

ROC50 by 0.083–0.180. Perhaps most strikingly, if we consider

PROTEMBED trained from HHSearch, the initial embedding is 0.154

away from a perfect ROC50 score, whereas the embedding learned

using SCOP rankings is only 0.025 away from a perfect ROC50

score. Thus, in this case, structural information removes 83.7% of

the residual error. In general, using SCOP information leads to

better rankings than using MAMMOTH. This is not surprising,

because we are using a gold standard based on SCOP. Between the

two modes of representation, the SCOP ranking appears to give

better results than using SCOP class-based structural information.

This result is somewhat surprising, because our gold standard is

based explicitly on SCOP classes and perhaps suggests that the

ranking representation is more resistant to overfitting.

In evaluations of remote homology detection algorithms, some

researchers prefer to ignore members of the same family as the

query, since these family members are presumably easy to identify

[18]. To ensure that our results are not dependent on family-level

information, we repeated the ROC calculations above, but we

skipped target proteins that fall into the same family as the query.

Figure 3 in Text S1 shows that the conclusions above remain

unchanged in this setting: PROTEMBED outperforms HHSearch,

RankProp and PSI-BLAST, and using structural information

significantly improves ProtEmbed’s performance.

Calibration of ProtEmbed scores
Next, we evaluated how well PROTEMBED scores are calibrated

between queries. We say that our scores are well calibrated if pairs

of query and target sequences at similar distances from each other

in embedding space also have similar degrees of homology,

regardless of where the query embeds. If this property holds, then

the scores generated by ranking database sequences relative to

different queries can be compared to each other and modeled to

assign statistical significance.

The experiment reported in Figure 2, in which ROC scores are

computed separately for each query and then averaged, only

measures how well the target sequences in the database are ranked

relative to each query sequence. To measure the calibration of the

scores among queries, we sorted all of the scores from all 97 test

queries into a single list. The resulting ROC curves are shown in

Figure 3. The overall ranking of methods is the same as in Figure 2,

in order of improving performance: PSI-BLAST, Rankprop,

HHSearch, ProtEmbed. To obtain calibrated scores, PSI-BLAST,

Rankprop and HHSearch include specific calibration proce-

dures—calculation of E-values for PSI-BLAST and HHSearch,

and calculation of superfamily probabilities for Rankprop.

ProtEmbed, in contrast, requires no explicit calibration procedure;

instead, the scores are naturally calibrated because they all

correspond to distances in a single embedding space.

Figure 3. Combined evaluation across multiple queries. Each
panel shows a collection of ROC curves, produced by sorting into a
single ranked list the results from all 97 test queries. Each series
corresponds to a different algorithm. The panel on top (A) includes
algorithms based on PSI-BLAST; the panel on the bottom (B) includes
algorithms based on HHSearch.
doi:10.1371/journal.pcbi.1001047.g003
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To be useful, a homology detection algorithm must provide

scores with well defined semantics. For example, PSI-BLAST

reports an expectation value, or E-value, that corresponds to the

number of scores as good or better than the observed score that

are expected to occur in a random database of the given size [3].

Rankprop reports for each query-target pair the probability that

they belong to the same SCOP superfamily [19]. To convert

PROTEMBED distances to an interpretable score, we employed a

simple empirical null model in which protein sequences are

generated by a third-order Markov chain, with parameters derived

from the SCOP+ADDA database. We randomly generated decoy

protein sequences according to this null model, and we embedded

these proteins into the PSI-BLAST PROTEMBED space. Empirical

analysis of the resulting sets of scores (Figure 1 in Text S1) shows

that the left tail of the null distribution is well approximated by a

Weibull distribution. To compute a p-value, we select the null

distribution based on the length of the given query sequence.

Further details are given in Text S1.

We cannot use these p-values directly, because we must correct

for the large number of tests involved in searching a large sequence

database. To do so, we employ standard false discovery rate-based

multiple testing correction procedures. In particular, for a given

query, we first estimate the percentage p0 of the observed scores

that are drawn according to the null distribution [20]. We then use

the Benjamin-Hochberg procedure [21] to estimate false discovery

rates, including the multiplicative factor p0. Finally, we convert the

estimated false discovery rate into a q-value [20], which is defined

as the minimum FDR threshold at which an observed score is

deemed significant.

Visualizing the results of a query
For many users of alignment tools such as PSI-BLAST, the

multiple alignment produced with respect to a given query is as

useful as the rankings and accompanying E-values, because the

multiple alignment provides an explanation of the ranking.

However, a method like PROTEMBED does not rely solely on

multiple alignments. Therefore, although it would certainly be

feasible to create, in a post hoc fashion, an alignment of the ranked

proteins up to, e.g., a specified PROTEMBED q-value threshold, such

a multiple alignment is not likely to accurately reflect the semantics

of the PROTEMBED embedding space. Instead, we propose to use a

multidimensional scaling approach to project the top-ranked

protein domains into an easy-to-visualize 2D representation.

To illustrate how effective such a visualization can be, we

systematically generated 2D maps of the neighborhood for all 97

test set domains, using a q-value threshold of 0.01. Thumbnail

versions of all 97 neighborhoods are provided in the supplement.

Here, we focus on a single example. Figure 4 shows the

structure learned by the embedding near a particular query, the C-

terminal domain of Staphylococcal enterotoxin B (PDB ID 3seb).

Figure 4(A) shows the neighborhood of the query relative to the

initial PSI-BLAST based feature embedding of the domain

sequences, projected into 2D for easier visualization. This

mapping corresponds to the initialization of the embedding

algorithm, before any training. We see that the other members

of the query’s family—the superantigen toxins, C-terminal domain

(SCOP 1.75 ID d.15.6.1), shown in green—are generally near the

query in the initial embedding, but these true positives are

intermingled with members of a functionally related but

structurally distinct superfamily, the bacterial enterotoxins (SCOP

1.75 ID b.40.2, shown in blue) as well as several members of

unrelated superfamilies. When we map the query sequence into

the final embedding space (Figure 4(B)), we now find that it lands

in a tight cluster of its family members, which is near but separated

from the cluster of related bacterial enterotoxins. Meanwhile,

unrelated superfamilies are appropriately separated into distinct

clusters distant from the query. In this example, the homology

detection performance improves from an ROC1 score of 0.091

(ROC50 of 0.716) relative to the initial embedding to a perfect

ROC1 (and perfect ROC50) of 1.0 after training.

Figure 4. Neighborhood of a query in the embedding space. (A) To visualize the effect of the embedding, we first show a query, the C-
terminal domain of Staphylococcal enterotoxin B (PDB ID 3seb), mapped into a metric space according to the PSI-BLAST based feature representation
used to initialize the embedding algorithm. (B) The query is now mapped into the final embedding space. In both panels, the query is labeled and
indicated with a black circle. All members of the same SCOP family (superantigen toxins, C-terminal domain; SCOP 1.75 ID d.15.6.1), indicated with
green triangles, are now in a tight cluster around the query and disambiguated from a distinct but functionally related SCOP superfamily (bacterial
enterotoxins; SCOP 1.75 ID b.40.2), indicated with blue squares. Unrelated superfamilies are well separated from the query in the embedding space;
members of unrelated SCOP superfamilies are indicated by various colored shapes, as labeled in the right panel.
doi:10.1371/journal.pcbi.1001047.g004
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Discussion

We have shown that PROTEMBED learns an embedding of protein

domain sequences such that proximity in the embedding space

reflects homology relationships. Due to efficient stochastic gradient

descent methods, the training algorithm can scale to millions of

sequences. A flexible multitask framework also enables the use of

additional label or ranking information, e.g. protein structural

classes or pairwise structural similarity scores, where known, to

improve the embedding. Given a test query sequence, its

embedding can be computed in the same time that it takes to

run the underlying pairwise sequence alignment method. The

query’s homologs can then be efficiently retrieved by determining

the nearby database proteins based on their precomputed

embedding coordinates. Moreover, using a faster but less accurate

pairwise alignment method, such as PSI-BLAST, together with

ProtEmbed, when supplied with labeled data through an auxiliary

task, leads to better performance than state-of-the-art but slower

pairwise alignments methods, such as HHSearch, used on their

own. Moreover, use of more sensitive PSI-BLAST parameters

rather than the default choices could potentially further improve

the performance of the embedding.

While alignment-based pairwise sequence similarity scores are

used as features for calculating the embedding, PROTEMBED does

not produce multiple sequence alignments for query sequences as

an output of its computation. Instead, the embedding neighbor-

hood of the query can be visualized for insight into the relationship

between the query and its homologs. For further sequence-based

analysis of query-homolog similarities, hits from the PROTEMBED

neighborhood could be used to compute an alignment using

standard methods [22] or newer graph algorithm approaches [23].

The PROTEMBED algorithm learns its embedding on domain

sequences rather than full-length protein sequences, because the

embedding only makes sense when transitivity relationships hold.

For example, a multidomain sequence will have sequence

similarity to its constituent domains, which will typically also be

represented as entries in the database; if these domains are

dissimilar from each other, then the set of pairwise relationships

lead to conflicting constraints during training. Nonetheless, it is

possible to process a multidomain query sequences using

PROTEMBED by first applying an existing domain decomposition

algorithm [24] and then embedding each domain separately.

Alternatively, one could potentially use the embedding to help

resolve the domain structure: first, one could run a pairwise

alignment method such as PSI-BLAST to determine the start and

end positions of all the hits, and then these subsequences could be

embedded separately as candidate domain sequences. The p-value

for the score between the embedded candidate sequence and its

nearest neighbor in the database should generally favor candidates

with boundaries similar to those of the true domains.

Protein sequence analysis is one of the oldest subfields of

computational biology, with mature and specialized tools designed

to describe the local structure of protein sequence space. By

adapting new techniques from massive data domains such as

natural language processing and web search, we have demon-

strated that the global structural of protein sequence space can be

exploited for classical problems like homology detection.

Supporting Information

Text S1 Supplementary methods and results.

Found at: doi:10.1371/journal.pcbi.1001047.s001 (1.69 MB PDF)
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