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Abstract

We develop a unified model accounting simultaneously for the contrast invariance of the width of the orientation tuning
curves (OT) and for the sigmoidal shape of the contrast response function (CRF) of neurons in the primary visual cortex (V1).
We determine analytically the conditions for the structure of the afferent LGN and recurrent V1 inputs that lead to these
properties for a hypercolumn composed of rate based neurons with a power-law transfer function. We investigate what are
the relative contributions of single neuron and network properties in shaping the OT and the CRF. We test these results with
numerical simulations of a network of conductance-based model (CBM) neurons and we demonstrate that they are valid
and more robust here than in the rate model. The results indicate that because of the acceleration in the transfer function,
described here by a power-law, the orientation tuning curves of V1 neurons are more tuned, and their CRF is steeper than
those of their inputs. Last, we show that it is possible to account for the diversity in the measured CRFs by introducing
heterogeneities either in single neuron properties or in the input to the neurons. We show how correlations among the
parameters that characterize the CRF depend on these sources of heterogeneities. Comparison with experimental data
suggests that both sources contribute nearly equally to the diversity of CRF shapes observed in V1 neurons.
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Introduction

The dependence of the neuronal response amplitude on

stimulus contrast, the contrast-response function (CRF), typically

displays a sigmoidal shape in the visual cortex: it accelerates at low

contrast and saturates at high contrast [1–8]. This major

nonlinearity appears to be accentuated in cortex, as ganglion cells

in the retina and relay cells in the LGN saturate at higher contrast

and show shallower slopes [3,7,9–15]. In the extreme, some

parvocellular neurons in primate LGN display a quasi-linear

contrast-response function [13,14,16].

A large fraction of neurons in the primary visual cortex (V1)

respond in a manner that is selective to the stimulus orientation

[17,18]. The dependence of the spike rate on stimulus orientation

(the orientation tuning curve) is well described by a Gaussian

whose amplitude varies substantially with stimulus contrast.

Although this might be less true in primate [19,20], it has been

shown in carnivore and rodents that the width of the tuning curves

does not change when the contrast is modified [2,7,15,21–25] This

property is referred to as ‘‘contrast invariance’’ of orientation

tuning. The membrane potential response of cortical neurons

displays an orientation tuning width that is typically 1.5 times

larger than that of the spiking response [15,26–30]. This tuning

width is also contrast invariant [23]. These contrast-invariant

properties constitute strong constraints for understanding the

mechanisms underlying the response of V1 neurons to visual

stimuli.

The models that have been proposed to explain orientation

selectivity in V1 can be broadly classified in two groups (reviewed

in [31,32]): feedforward models, in which orientation selectivity

emerges mainly from the spatial arrangement of ON and OFF

receptive fields of the LGN cells that form the input to V1

neurons, and recurrent network models in which the orientation

selectivity emerges mainly from the recurrent connectivity within

V1. Both classes of models have limitations. Although recurrent

models can account for contrast invariance in the spiking response

[33–37], they appear incompatible with the fact that V1 recurrent

inputs seem to have, at best, a very weak effect on the voltage

tuning width [38,39]. Recurrent models have further been

questioned given the peculiar responses they generate in the

presence of pairs of oriented contours [40] and given strong

interaction between spatial frequency and orientation selectivity

[36]. Furthermore, in contradiction to the experimental results,

the response of neurons in such models either display contrast

invariance of orientation selectivity, or CRFs saturation, but not

both simultaneously [41,42].

The feedforward model, in its original formulation [17], cannot

account simultaneously for the fact that orientation tuning of the
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spike response is sharper than the tuning of the voltage and for the

contrast invariance of the spike response tuning width. Neverthe-

less, including feedforward anti-phase inhibition [43] or broadly

tuned inhibition [44,45] in the feedforward model permits

contrast-invariance of orientation tuning in the membrane

potential response. Anderson et al. [23] further showed that

contrast invariance of orientation tuning for the spiking response,

in addition to that of the membrane potential response, can be

achieved in the feedforward model if membrane potential

fluctuations (‘‘synaptic noise’’) are taken into account. This is

because these fluctuations smooth the threshold non-linearity

[15,46,47]. This smoothing effectively transforms the transfer

function of the neurons to a power-law voltage-rate relationship.

This is exactly what is needed to obtain contrast invariance for

both the voltage and the firing rate, provided membrane potential

fluctuations amplitude scales with contrast [15]. However, the

feedforward model may account for sigmoidal CRFs only if the

LGN input saturates sufficiently strongly. Yet the contrast at which

saturation occurs in V1 is lower than for the LGN input. This

implies that additional mechanisms are required to account for the

co-occurrence of contrast-invariant orientation tuning and of

CRFs typical of V1 neurons.

Some of the models used to examine the mechanisms

responsible for the saturation of the CRF also display contrast-

invariant stimulus selectivity. In the ‘‘normalization model’’ [48–

51], saturation results from feedback shunting inhibition from a

pool of inhibitory neurons. Because this pooling includes

inhibitory neurons with a wide range of preferences, this model

also accounts for cross-orientation inhibition as well as for

contrast-invariance of orientation tuning. However, this model

has been questioned due to membrane time constants require-

ments [32].

Alternatively, synaptic depression has been proposed as one

mechanism to explain saturation at high contrast [52,53]. In these

models however, contrast-invariance of orientation tuning does

not depend on synaptic depression but depends on the push-pull

arrangement of inhibition and excitation, as in the model

proposed by Troyer et al. [43]. In another recent model, Banitt

et al. [54] examined how contrast-invariance of orientation tuning

may depend on thalamocortical synaptic depression, but they did

not explore the mechanisms underlying contrast saturation.

Models based on synaptic depression are able to explain not only

the static properties of the behavior of V1 neurons, but also

dynamical aspects, such as contrast-dependent phase advances

and frequency-dependent contrast saturation. Nevertheless, recent

experimental studies showed that synaptic depression in the

thalamocortical pathway may be rather weak in vivo, especially in

the presence of spontaneous activity that generates a steady state of

synaptic depression [55–57].

Thus the question is: can one formulate, without resorting to

synaptic depression, a model in which cortical neurons display

contrast-invariant tuning-width for both membrane potential and

spike responses, as in the feedforward model in the presence of

synaptic noise, while at the same time intracortical interactions

induce a saturation of the CRF of cortical neurons at lower

contrast than their LGN afferents ? To examine this question, we

investigated a rate model of a hypercolumn in the visual cortex

with neurons whose transfer function nonlinearity was described

by a power-law. This allowed us to find conditions for getting both

a sigmoidally shaped CRF and contrast invariant orientation

tuning width when both feedforward and feedback inputs were

included.

We then tested whether our results hold in a less idealized

network model made of conductance-based (CBM) neurons. Using

numerical simulations in this later model, we investigated the

robustness of the results obtained in our rate model. We analyzed

the respective contributions of the feedforward input, of the

recurrent intra-cortical input, and of neuronal intrinsic properties

in shaping the CRF. In particular, we studied the differences

between inhibitory and excitatory neurons, and how these relate to

differences in their intrinsic properties.

Finally, we explored possible explanations for the broad

diversity of CRFs shapes observed in V1 neurons: although

typically sigmoidal, CRFs are characterized by parameter values

that vary widely at the population level [1,3,8]. For this purpose,

we compared the predictions from our model with experimental

data obtained in area V1 of the marmoset monkey. Our results

suggest that substantial heterogeneities in the intrinsic properties of

the neurons as well as heterogeneities in the CRFs of LGN

neurons are required to account for the diversity of CRFs shapes

observed in the primary visual cortex.

Part of this work has been presented at the 34th and 36th

annual meeting of the Society for Neuroscience (San-Diego, Oct

2004; Atlanta, Oct 2006).

Results

The tuning curves of neurons in the hypercolumn rate
model

Conditions for an exact contrast-invariance of the

orientation tuning width. Our model consists of NE

excitatory (E) and NI inhibitory (I ) rate units with a power law

input-output transfer function. Neuron k in population A
(k~1,:::,NA, A~E,I ) is characterized by its preferred orientation

(PO), hk
A~kp=NA. The strength of the synaptic connection

between neurons i,A and j,B depends on the difference in their

preferred orientation, J
ij
AB~pN{1

B JABG(hi
a{h

j
b,s2

AB), where

G(h,s) is the p-periodic Gaussian with widths s, G(h,s):P?
k~{? exp ({½h{kp�2=2s2)=

ffiffiffiffiffiffi
2p
p

s. In addition to the

recurrent inputs from the network, neuron i,A receives a tuned

input I i
A,LGN~IA,LGN(hi

A{Y,C), where Y is the stimulus

orientation and C the stimulus contrast. We assume IA,LGN to

Author Summary

Both the response and membrane potential of neurons
in the primary visual cortex (V1) are selective to the
orientation of elongated stimuli. The widths of the tuning
curves, which characterize this selectivity, hardly depend
on stimulus contrast whereas their amplitude does. The
contrast dependence of this amplitude, the contrast
response function (CRF), has a sigmoidal shape. Saturation
of the spike response is substantially lower than the
neurons’ maximal firing rate. These well established facts
constrain the possible mechanisms for orientation selec-
tivity in V1. Furthermore, the single neuron CRFs in V1
display a broad diversity in their shape. This adds other
constraints. Many theoretical works have tried to elaborate
mechanisms of orientation selectivity that are compatible
with the contrast invariant tuning widths. However, these
mechanisms are usually incompatible with sigmoidal CRFs.
We propose a mechanism which accounts simultaneously
for contrast invariant tuning width for both rate and
voltage response and for the shape and diversity of the
CRFs. This mechanism relies on the interplay between
power-law frequency-current transfer functions of single
neurons, as measured in vivo in cortex, and on the
recurrent interactions in the cortical circuit.

Contrast Response Properties of V1 Neurons
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have a Gaussian shape, IA,LGN(h,C)~I0
A(C)G(h,sA,LGN), where

I0
A(C) is the visually input for a stimulus at the preferred orientation

of the neuron. The latter input represents the total input resulting

from the combination of the thalamic excitation to V1 and an

untuned cortical feedforward inhibition which cancels the untuned

part of the LGN excitation (see Discussion).

In the following, we assume that I0
A(C) varies logarithmically

with contrast (in % of the maximal contrast, C between 0 and

100): I0
A(C)~IA, max½log (Cz1)= log (101)�. Note that the tuning

width of this input does not depend on contrast. More details on

the model are given in the Methods Section.

In the absence of recurrent interactions in the network, JAB~0,

the response of neuron i,A to a stimulus is

Ri
A~RA(hA{Y)~bA½I0

A(C)G(hi
A{Y,sA,LGN)�aA , ð1Þ

where aAw1 is the exponent of the power-law transfer function of

the neuron. If s is sufficiently small compared to p, G(h,s)a is, to a

very good approximation, proportional to G(h,s=
ffiffiffi
a
p

). Hence the

steady state firing rate satisfies

RA(h)~R0
AG(h{Y,sA), ð2Þ

with

sA~sA,LGN=
ffiffiffiffiffiffi
aA

p
: ð3Þ

As a result, the output tuning width is contrast invariant and is

sharper than the tuning width of the LGN input by a factor

1=
ffiffiffiffiffiffi
aA
p

.

When the neurons interact, the tuning width of their responses

does depend on the contrast, unless some specific conditions,

concerning the range of the interactions and the tuning width of

the LGN input, are met. To derive these conditions we make the

Ansatz that RA(h) is a periodic Gaussian with standard-deviation

sA: RA(h)~R0
AG(hA,sA). In the large NA limit the feedback input

is I i
A,FB~IA,FB(hi

A{Y), where IA,FB is given by

IA,FB(h)~
X

B~E,I

JABR0
B

ðp=2

{p=2

G(h{h
0
,sAB)G(h

0
,sB)dh

0

~
X

B~E,I

JABR0
BG(h,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

ABzs2
B

q
):

ð4Þ

Here we have used the fact that the convolution of two periodic

Gaussians is a periodic Gaussian whose variance is the sum of their

variances.

Consistency with this Ansatz requires that the total input

IA,LGN(h)zIA,FB(h) is also a Gaussian. This happens only if

s2
EEzs2

E~s2
EIzs2

I ~s2
E,LGN ð5Þ

and

s2
IEzs2

E~s2
IIzs2

I ~s2
I ,LGN ð6Þ

It should be noted that, if these conditions are satisfied, the

recurrent interactions do not contribute to the sharpening of the

output tuning. Consequently, the output tuning width of the

neurons, which is still given by Equation (3), is still contrast

invariant.

These conditions can be rewritten as

sEE~sE,LGN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{1=aE

p
, sEI~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

E,LGN{s2
I ,LGN=aI

q
ð7Þ

sIE~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

I ,LGN{s2
E,LGN=aE

q
, sII~sI ,LGN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{1=aI

p
ð8Þ

In particular, the assumption that sE,LGN~sI ,LGN and

1vaEvaI , implies that sAEvsAI , i.e., that the inhibitory

projections are broader than the excitatory ones. On the other

hand, if the input tuning for the inhibitory cells is broader than for

the excitatory ones, sI ,LGNwsE,LGN , we may obtain that

sAEwsAI , i. e., that the excitatory feedback tuning is broader

than the inhibitory one, even if aEvaI . When Eqns. (8) are

satisfied, the width of the output tuning curves does not depend on

the interactions, but their amplitude does.

Inserting Eqn. (4) into Eqn. (1) one finds that R0
E and R0

I are

determined by the self-consistency equations

R0
E

bEsE

ffiffiffiffiffiffi
2p
p

 !1=aE

~
JEER0

E{JEI R0
I zI0

E

sE

ffiffiffiffiffiffiffiffiffiffiffi
2paE

p
� �

z

R0
I

bI sI

ffiffiffiffiffiffi
2p
p

 !1=aI

~
JIER0

E{JII R0
I zI0

I

sI

ffiffiffiffiffiffiffiffiffiffi
2paI

p
� �

z

, ð9Þ

where ½x�z~x for xw0 and 0 for xƒ0.

Equations (9) have been derived under the assumption that the

tuning width of the LGN input is much smaller than p. In Fig. 1,

we compare the results derived from these equations with the

numerical simulations of the dynamics of the model, for a network

with sI ,LGN~p=7~25:70, sE,LGN~
ffiffiffiffiffiffiffiffi
3=5

p
sI ,LGN and aE~1:5,

aI~2:5. This implies that sE~sI . The coupling strengths are

such that the maximal firing rate is substantially larger in

inhibitory neurons in comparison to excitatory neurons. With

these parameters, the width of the output tuning curves is close to

15 degrees, on the order of experimentally reported values for V1

neurons. Fig. 1 shows the input (top) and output (bottom) of the

excitatory and inhibitory populations from simulations. The

output is narrower than the input and its width is contrast-

invariant (insets in the bottom panel). We verified that the

simulation results are in excellent agreement with Eqns. (9).

In Supporting Text S1 we determine the stability of the steady state

against arbitrarily small perturbations. These calculations show that,

in general, the least stable mode corresponds to a modulation in the

amplitude of the response without change in the shape of the

orientation tuning curve: RA(h,t)~(R0
AzdRA(t))G(h,sA). The

stability of this mode depends of the ratio between the excitatory

and inhibitory time constants, tE and tI respectively. If tI=tE

becomes too large, the steady state looses its stability. However, for

reasonable values of the network parameters, the restriction on the

inhibitory time constant is very weak. For the parameters we have

used, the network is stable for tI~tE .

The shape of the contrast response function. The

contrast response function of a neuron for a stimulus at its

preferred orientation can be computed by solving the self-

consistent equations, Eqns. (9). Let us first consider low contrast

stimuli, i.e. I0
A%1. In this regime, the output firing rate is small.

Since aaw1, (RA)aA%RA where RA~R0
AG(0,sA) is the firing rate

of neurons whose preferred orientation coincides with the stimulus

Contrast Response Properties of V1 Neurons
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orientation. One finds easily that in this limit the rate responses

are, to leading order, proportional to the LGN input, RA*(I0
A)aA .

Therefore, for low contrasts there is an acceleration in the

response, which depends mostly on the exponent a of the neuron’s

transfer function. The larger a is, the steeper the CRF at low

contrast is.

The behavior of the response for large inputs depends on the

strength of inhibition between inhibitory neurons, compared to the

strength of inhibition they exert on excitatory neurons. Assuming

an equal LGN input on both populations, I0
E~I0

I ~I0, Eqns. (9)

indicates that if

Q:
JEI sI

ffiffiffiffiffi
aI
p

JII sE
ffiffiffiffiffiffi
aE
p w1 ð10Þ

R0
E vanishes for sufficiently large I0. Hence, in that case, the

activity of the excitatory population varies non-monotonically with

the LGN input whereas the activity of the inhibitory neurons

increases (Fig. 2, A–C). This is because the inhibitory neurons

receive an input from the LGN. Moreover, the weaker the mutual

inhibition between inhibitory neurons, the sharper their firing

rates increase with the LGN input I0. As a consequence, if the

inhibition on the excitatory neurons is sufficiently strong, it can

suppress the activity of the excitatory populations at large LGN

input. An example of this situation is shown in Fig. 2A.

If the inequality (10) is not satisfied, the inhibitory popula-

tion cannot suppress the activity of the excitatory one. As a

consequence, the activities of both populations increase mono-

tonically with no bound with I0. Fig. 2B corresponds to this

situation.

The ratio, Q, controls the position of the maximum of RE(I0) as

well as the shape of this curve around it. In Fig. 2C, Q has been

chosen so that the curve is very flat around the maximum.

These results imply that three qualitatively different shapes can

be found for RE(C) and RI (C) as a function of the contrast, C.

For sufficiently large Q, the CRF increases at low contrast but

decreases at large contrast. If Q is sufficiently small, so that RE(I0)
increases monotonically with I0, the CRF as well as its derivative

increase with the contrast. In some intermediate range of Q, the

CRF is still increasing with C, but it displays an inflexion point

Figure 1. Tuning curves in the rate model when conditions Eqns. (7, 8) are satisfied. A: LGN inputs to the excitatory neurons. B: LGN inputs
to the inhibitory neurons for different I0 . C: tuning curves of the output for these inputs for excitatory cells. D: tuning curves of the output for
inhibitory cells. Solid line: I0~1:5, pluses: I0~1, dashed line: I0~0:5, dotted line: I0~0:1. Insets: tuning curves are normalized to their peaks showing
that the tuning width is exactly contrast-invariant. Parameters: JEE~1,JEI ~4,JIE~2,JII ~4:3, bE~bI~1, aE~1:5, aI~2:5, and I0

E~I0
I ~I0 .

doi:10.1371/journal.pcbi.1001078.g001

Contrast Response Properties of V1 Neurons
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beyond which it tends to saturate. This happens when RE(I0) is

non-monotonous, with a maximum located at a value of I0 larger

than I0(100%). An example of such a saturating CRF is displayed

in Fig. 2D. The solid line corresponds to a fit with an H-ratio

function (see Methods) which is very good in the full range of

contrast.

The shape of the CRF depends predominantly on the

inhibitory feedback. Since Q as defined by Eqn. (10) only

depends on the strengths of the feedback connections from the

inhibitory cells, JEI and JII , and not on the connections from the

excitatory ones, JEE and JIE , only modification of the first two can

change the CRF shape from sub- to supersaturating.

Figs. 2A–C show the effect of changing JEI on the shape of the

response of excitatory neurons when I0 is increased. These

responses increases monotonically and mildly saturate when JEI is

small and displays supersaturation when JEI is large. This is

because Q increases with JEI .

The dependency of the CRF shape on JII is depicted in Fig. 3A.

For large JII , Q is small. Therefore, in that case the CRF increases

monotonously with C. In contrast, for small JII , Q is large. Thus

in that case we expect the CRF to be non-monotonic and to

display super-saturation. Intuitively, it stems from the fact that the

saturation of the CRF of the excitatory neurons is due to the

inhibitory feedback they receive. As JII increases, this feedback

decreases and this is more pronounced at high contrast, where RI

is large, than at low contrast.

The recurrent excitation, JEE , affects the shape of the CRF

much less than inhibition, although it strongly affects the level of

activity at large contrast. As shown in Fig. 3B, the effect of

changing JEE is roughly multiplicative. This holds in a wide range

of changes in JEE as large as 100% (not illustrated).

Dependence of the CRF on the power-law exponents of the

neuronal transfer functions. Equation (10) predicts that, at

high contrast, aE and JII affect the CRF of the excitatory neurons

in a qualitatively similar way. This is illustrated in Fig. 3C where

CRFs are plotted for three values of aE , while keeping aI~2:5.

Only the CRF for the smallest value of aE displays saturation at

large contrast. This is because as aE=aI increases, the inhibitory

feedback is reduced at high contrasts. This is expressed by the fact

that Q is proportional to the ratio
ffiffiffiffiffiffiffiffiffiffiffiffi
aE=aI

p
.

Figure 2. Firing rate vs. LGN input in the rate model. A–C: solutions of Eqn. (9), for the excitatory (solid line) and inhibitory (dashed line)
neurons. The parameters, except for JEI , are as in Fig. 1. A: inequality (10) is satisfied (JEI~5:25). B: inequality (10) is not satisfied. (JEI~3). C:
inequality (10) is barely satisfied. (JEI~4). D: activity plotted against contrast assuming I0~2:5 log (Cz1)= log 101. Parameters as in C. Circles:
excitatory neurons. Solid line: best fit H-ratio function. Parameters of the fit are Rmax~0:236, n~1:118, C50~9:15 Dashed line: inhibitory neuron’s
response.
doi:10.1371/journal.pcbi.1001078.g002

Contrast Response Properties of V1 Neurons
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Response properties of the neurons in the conductance
based model

In this section, we investigate to what extent the results we have

obtained in our simplified rate model still hold in a more realistic

conductance-based model, in which neuronal dynamics is govern-

ed by voltage-dependent conductance channels and synaptic

interactions are mediated by conductance changes (see Eqn. 23).

We also investigate in this framework how far diversity in the

intrinsic cell properties or in the connectivity can account for the

heterogeneity in the CRFs observed experimentally (present study

and [1–6,8]).
The input-output transfer functions of the neurons in the

conductance-based model. The frequency-current (f-I)

transfer functions of our conductance-based excitatory and inhi-

bitory model neurons are plotted in Fig. 4A,B. In the absence of

noise (solid lines), the firing rate increases as a square root near

current threshold (as it is typical for type I neurons, [58]), and

linearly beyond. Note that the excitatory neurons have a smaller

gain than the inhibitory ones. This is mainly due to the level of

adaptation, which is larger in the excitatory neurons than in the

inhibitory neurons (note that activity was averaged over a time

window of 1.5 sec). This adaptation linearizes the f-I curve of the

excitatory neurons [58].

The conductance-based network model is studied below for a

fixed level of input noise, chosen so that the standard deviation

of the sub-threshold membrane potential fluctuations is on the

order of 3–4 mV, as measured in-vivo [23]. The f-I curves with

such a noise level have a convex shape (Fig. 4A,B), which can be

well fitted with a power law [46]. The parameters of this fit

depend on the range of currents over which one makes it. The

dashed lines (Fig. 4A,B) correspond to the best fits in the range

I0~½0,2:5�mA=cm2 (or equivalently, firing rates in the ranges

[0, 30] Hz and [0, 60] Hz for excitatory and inhibitory neurons

respectively). The exponent of the power law is 2.35 for the

inhibitory neurons and 1.54 for the excitatory ones.

The bottom panels in Fig. 4 show the V-I curves for the

excitatory (Fig. 4C) and inhibitory (Fig. 4D) neurons. Fitting these

curves with a power law in the same range of external inputs

(I0~½0,2:5�mA=cm2) gives exponents smaller than 1, (aE~0:73,

aI~0:94).
Transfer function for synaptic inputs. The effect of a

synapse on the dynamics of a neuron consists of the injection of a

time-dependent current combined with a time-dependent increase

in the neuron input conductance. It is not obvious how the rate

model developed in the previous section can account for the

combination of these effects. Shriki et al. [59] addressed a similar

issue in the case where the noise in the network is weak and the

input-output transduction function of the neurons is well

approximated by a threshold linear function. They showed that

the shunting effect of the synaptic conductances can be accounted

to a good approximation by a shift of the neuronal transduction

function. This shift is proportional to the conductance change,

provided the neurons fire sufficiently asynchronously and the

external inputs vary sufficiently slowly. Consequently, the

stationary properties of the conductance based network can be

obtained by solving the mean field equations for an effective rate

model.

If the background noise is large, the shunting effect due to the

synapses can affect the gain b as well as the exponent a of the

effective power-law transfer function. To generalize the approach of

Shriki et al. to the situation of our model, we studied the f-I curves of

the neurons in the presence of noise (the same amount as in Fig. 4)

for different values of the leak conductance gL. The results are

depicted in Fig. 5. This shows that increasing gL translates the f-I

curves to the right, effectively shifting the threshold by an amount

that, in the range of gL we explored, is approximately linear in gL.

In contrast, the gain, b, and the exponent, a, of the power law are

not sensitive to gL. Indeed, the best fits of the f-I curves obtained in

intervals of currents of similar amplitudes for different values of gL

superimpose well once normalized for the shift in threshold (insets in

Fig. 5). Note however that as gL increases, the range in firing rates in

which the fit is good becomes smaller.

Orientation selectivity and contrast-response functions in
the conductance-base model

We simulated a network model of V1 made of these

conductance-based neurons. The effect of a visual stimulus is

modeled by adding an input I i
A,LGN(C)~I0(C)G(hi

A,sA,LGN) to

the neurons. We take the connection widths such that they satisfy

the condition: s2
AB~aAs2

A{s2
B (see Eqns. (7, 8)) where aA are

given by the best fit of the f-I curves (see above and Fig. 5). The

maximal LGN input, I0, depends on the contrast C:

I0(C)~Imax
Cn

CnzCn
50

: ð11Þ

Figure 3. Dependence on network parameters of the CRF for the excitatory neurons. Solid lines: same parameters as in Fig. 1. A: change of
inhibition to inhibitory coupling JII by 5%. Dashed line : JII = 4.1, dotted line: JII = 4.5. B: change of recurrent excitation JEE by 20%. Dashed line:
JEE = 1.2; dotted line: JEE = 0.8. C: Change of exponent of the power-law aE . Dashed line: aE~1:75 (dashed line); dotted line aE~2.
doi:10.1371/journal.pcbi.1001078.g003

Contrast Response Properties of V1 Neurons

PLoS Computational Biology | www.ploscompbiol.org 6 February 2011 | Volume 7 | Issue 2 | e1001078



The width of the LGN input to the excitatory and inhibitory

populations is sE,LGN~200 and sI ,LGN~250 respectively.

Fig. 6 shows the orientation tuning curves for the firing rate and

average voltage of both neuron types. The firing rate tuning curve

is well fitted by a Gaussian for both types of neurons. The width of

the optimal Gaussian changes by less than 10% when the contrast

increases from 1 to 64%. For this contrast range, the effective leak

conductance, DgL, increases from 0 to 0.19 mS/cm2 for the

excitatory neurons and from 0 to 0.13 mS/cm2 for the inhibitory

ones.

We have also plotted in Fig. 6 the predictions given by the

effective rate model. For the excitatory population, the simulations

results differ substantially from the prediction of the rate model;

the rate model underestimates the peak of the tuning curve of the

excitatory neurons by as much as 30% (Fig. 6A). The discrepancy

is less substantial for the inhibitory population (Fig. 6B). It may be

surprising that the discrepancy is larger for the excitatory neurons

than for the inhibitory neurons, whereas the deviations from a

power-law in Fig. 5 is bigger for the former than for the later.

However, this can be explained as follows.

According to Fig. 5, the inhibitory rate should be lower in the

spiking network than in the effective rate model. This, however,

also decreases the inhibitory feedback to the I population. This

decreased inhibitory feedback cancels the effect of the deviation

from power law of the f-I curve to a large extent. For the excitatory

neurons the fit to a power-law is good for the whole input range,

but the E population also receives less inhibitory feedback than

predicted from the effective rate model. This leads to a substantial

increase in the firing rate of the excitatory neurons, compared to

what one would expect from the effective rate model (Fig. 6A).

In contrast to the height of the tuning curves, there is

surprisingly little discrepancy between the numerical simulations

and the predictions of the effective rate model for what concerns

the width of the tuning curves. This also stems from the corrective

effect of the inhibitory feedback. The inhibitory feedback to the

inhibitory populations suppresses the broadening of the output

tuning curve implied by the deviation of the power-law. As a

result, the width of the inhibitory feedback to the excitatory cells is

close to that predicted by the effective rate model. Hence the

excitatory tuning width is also close to the predicted one.

Figure 4. The f -I (A,B) and the V-I (C,D) transfer functions of the neurons in the conductance-based model. Left: excitatory neurons.
Right: inhibitory neurons. Black solid lines (A,B): transfer functions in the absence of noise. Blue/Red solid lines: transfer functions in presence of noise
(parameters given in Table 3). Dashed lines: power-law fit. The activity and the sub-threshold voltages (clipping the spikes at 250 mV) were averaged
over a time window of 1.5 sec and 10 repetitions. Error bars correspond to the error on the mean.
doi:10.1371/journal.pcbi.1001078.g004
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Because in the CBM the average voltage varies almost linearly

with the input, the tuning curve of the voltage follows the tuning

curve of the net input. Since the latter is close to a Gaussian with a

contrast independent width, the voltage tuning curves are well

approximated by Gaussians and have a close to contrast-invariant

tuning width, as shown in Fig. 6C,D. Note that voltage tuning

width is substantially broader than the tuning width of the spike

response.

The CRFs of V1 neurons saturate before the input

CRF. The CRFs of the LGN input is plotted in Fig. 7A and

the CRFs for the spike response of the excitatory and inhibitory

neurons are displayed in 7B. The latter CRFs are well fitted to an

H-ratio function. The CRF of the inhibitory neurons has almost

the same C50 as the LGN input (18% and 17.2%, respectively). In

contrast, the CRF of the excitatory neurons is steeper than the

LGN input CRF (C50 = 5.6%). This is similar to what was

observed in our rate model and this is due to the sharp increase in

inhibition from the network at high contrast.

Fig. 7C shows the CRFs of the voltages. These are also well

fitted by an H-ratio function. In both excitatory and inhibitory

neurons, the voltage CRFs saturate approximately as early as the

excitatory spike rate, reflecting the effect of excitatory recurrent

input on the voltage contrast-saturation. The exponents n of the

voltage CRFs, however, are smaller than those of the spike rate.

This is because for the spike rate, the exponent n is significantly

affected by the nonlinearity of the f-I curve.
Sensitivity to changes of synaptic width. The theory

predicts contrast invariance of the tuning if the width of the

synaptic feedback tuning satisfies Eqns. (7) and (8). It is unlikely

that these conditions are exactly satisfied. Therefore it was

important to check that contrast invariance is not sensitive to

deviations from these conditions. This robustness is depicted in

Fig. 8 where the normalized tuning curves of an excitatory and an

inhibitory neuron are plotted for a value of sII reduced by a factor

of 2. Even with this drastic deviation from Eqns. (7, 8) the tuning

width of the excitatory and inhibitory neurons change by less than

10% and 15% respectively when the contrast is increased from 1%

to 64%. The sensitivity to changes in the width of the other

feedback connections is even less (not shown). Thus the

mechanism does not require precise fine-tuning of the feedback

width.

Diversity of the CRF shapes
Fits to the H-ratio function of the CRFs of V1 neurons reveal a

large diversity in the parameters Rmax, C50 and n [1–6,8]. Can this

diversity be accounted for in the framework of our model ?

Heterogeneity in synaptic inputs. We investigate first how

heterogeneities in the synaptic inputs to the neurons contribute to

the diversity of their CRFs. Heterogeneity in the inputs originates

in the retina or in the LGN, where CRFs differ significantly

between cells [3,9–12,14]. At the same time, a proportion of single

cells in V1 combine inputs from LGN cells with distinct properties

[4,60]. Alternatively, recurrent interactions within V1, or feedback

inputs from areas higher in the visual pathway, could contribute to

this variability.

The number of recurrent connections a given neuron in V1

receives is on the order of several thousand. Therefore, one

expects that the fluctuations in the recurrent synaptic input will be

much smaller than its average. Therefore, these fluctuations

should contribute only weakly to the CRFs diversity, unless they

are correlated, or the network is in a state of balance of excitation

and inhibition (see Discussion).

A more significant contribution to this diversity is expected from

the variability in the inputs from the LGN, which are much less

numerous; it has recently been estimated that the firing of a spike

in a cortical simple cell results from the functional convergence of

30 LGN cells only [61].

In our conductance based model the LGN input is

IA,LGN~ImaxCn=(CnzCn
50)G(h,sA,LGN). We incorporated vari-

Figure 5. Transfer functions of excitatory (left panel) and inhibitory (right panel) CBM neurons in presence of noise and different
values of gL. From left to right, gL~0:2,0:3,0:4mS=cm2 . Solid lines: simulation results. Dashed lines: best fits to the power-law function:
R~b(I0{VcDgL)a

z with aE = 1.44, bE = 6.46, and Vc,E = 10.57 and aI = 2.23 bI = 5.19, and Vc,I = 9.45, for all gL. Insets: same data as a function of
I0{VcDgL .
doi:10.1371/journal.pcbi.1001078.g005
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ability in this input by randomly selecting, for each neuron, the

parameters Imax, C50 and n from flat distributions. Specifically, we

took C50 uniformly between 8% and 28% and n between 1 and

1.8. These values are in agreement with experimental data for

magnocellular neurons [3]. We further assumed that Imax is

distributed between 3.5 and 4.5 mA=cm2.

Our simulations show that heterogeneity in the LGN input

generates diversity in CRF shapes of the V1 neurons (Fig. 9A,B).

Since the heterogeneity in the total feedback input IFB is small (see

above), the CRF of neuron i can be approximated by

Ri&b(ILGN,i(C)zSIFB(C)T)a. Therefore, depending on the

LGN input a neuron receives, its CRF can super-saturate or

semi-saturate. For example, if the ILGN,i saturates at high contrast,

then the increase in IFB, which is negative, will lead to super-

saturation. Since on average the inhibitory activity does not

saturate, inhibitory neurons do not show super-saturation.

Despite the presence of heterogeneities, the CRFs could be well-

fitted with an H-ratio function for most neurons (84%) in our

model network. The distribution histograms of the 3 parameters of

the fit are shown in Fig. 9C–E for the excitatory neurons. The

distributions are broad, Rmax~13:8+3:9 Hz, C50~9:1+5:6%

and n~2:7+0:7(mean+SD), with dispersion comparable to that

observed experimentally. Broad distributions are also found for the

CRF parameters of the inhibitory neurons in our network with

Rmax~49:8+10:5 Hz, C50~20:6+9:7% and, n~2:5+0:5 (not

illustrated).

We next examined correlations between the CRFs parameters

values. Neurons with a bad fit, (sx=mxw0:15 for x~Rmax, C50 or

n) were excluded from this analysis. We found a negative

correlation between the best fit estimates for n and C50 across

the excitatory neurons population (Fig. 9H). This can be explained

as follows: on the one hand, variability in Imax has only a weak

effect on the response to low contrast of the neurons. Thus the

contrast at which the neuron’s response starts to increase

significantly from baseline is relatively unaffected by the

heterogeneity of the synaptic input. On the other hand, the larger

ILGN , the higher the contrast has to be before the inhibitory

feedback becomes large enough to induce a saturation in that

neuron’s response. This both increases the range of contrast over

which he output varies and hence decreases the parameter n. Since

C50 is approximately halfway between the contrast at which the

response starts and the point of saturation, it also increases C50.

Figure 6. Orientation tuning curves for the spike response (A: excitatory neurons, B: inhibitory neurons) and voltage (C: excitatory
neurons, D: inhibitory neurons). Triangles: C = 3%, squares: C = 6%, circles: 25%. Green lines in A and B are the predictions from the effective rate
model. Black solid curves are fits to a Gaussian.
doi:10.1371/journal.pcbi.1001078.g006
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Therefore the correlation between C50 and n will be negative. In

contrast, Rmax is not significantly correlated with C50 and n

(Fig. 9F,G).

Heterogeneity in single neuron properties. Another

possible source of CRFs diversity is the heterogeneity in intrinsic

properties of V1 neurons. To investigate this contribution, we now

assume that all the neurons receive the same LGN input, with

parameters Imax~4 mA=cm2, C50~18%, and n~1:4, but now

ascribe heterogeneous parameters for single neuron dynamics.

Specifically, we assume that the adaptation conductances, gKs, are

uniformly distributed over the range [0.5,6.5] mS/cm2 and

[0.1,1.1] mS/cm2, for the excitatory and the inhibitory neurons,

respectively, resulting in variable adaptation strength for V1

neurons, as reported experimentally [62,63]. As a consequence, a,

the exponent of the effective input-output function of the neurons,

varies from neuron to neuron. We also introduce heterogeneities

in the leak reversal potential which is uniformly distributed

between 277.5 mV and 267.5 mV. This is equivalent to an

effective heterogeneity in the spike threshold current of the

neurons, Ith,i, as reported experimentally [30,64,65]. Therefore,

the CRF for neuron i can be written as Ri&b(ILGN (C)z
SIFB(C)T{Ith,i)

ai .

Examples of CRFs obtained under these conditions are given in

Fig. 10A,B. As in the case of LGN input heterogeneities, the

excitatory CRFs are steeper (n is higher) and saturate earlier (C50 is

lower) than in the LGN inputs. Here also, most of the CRFs are

well fitted to the H-ratio function (92%). However, none of the

cells exhibit super-saturation. This is because ILGN and IFB are the

same for all the neurons. The heterogeneity in Ith and a can only

shift and scale the CRF.

The distributions of the parameters of the H-ratio function

which fit the CRFs are broad (Fig. 10C–E). We found that

Figure 8. Orientation tuning curves of normalized responses for an excitatory neuron (left) and an inhibitory neuron (right), when
sII?sII=2. Visual stimuli of 3% contrast (triangles), 6% contrast (squared), and 25% contrast (circles). Solid curves are fits to a Gaussian function. sE at
low, medium and high contrasts is: 15:30 , 15:550, and 15:90 respectively. sI is: 15:950,15:50, and 19:450 respectively. In the interval of contrast [1%,64%]
the tuning widths are sE~15:90+1:20, and sI ~18:50+2:30 ( mean + SD). Insets: the CRF of the excitatory and inhibitory neuron.
doi:10.1371/journal.pcbi.1001078.g008

Figure 7. CRFs in the conductance based model. A: CRF of the LGN input, I0, in the excitatory and inhibitory neurons (Eqn. (11), with
Imax~6 mA=cm2, C50~18% and n~1:4). B: CRF of the spike response. Circles: excitatory neurons, squares: inhibitory neurons. Solid lines: best fit to
H-ratio function. Parameters of the fits: Rmax~13:3 Hz, C50~5:6%, and n~3:23 for the E population. Rmax~85 Hz, C50~17:2% and n~1:96 for the
I population. Dotted lines: prediction of the effective rate model. C: CRFs of the voltage. Circles: excitatory neurons, squares: inhibitory neurons. Solid
lines: best fit to H-ratio functions.
doi:10.1371/journal.pcbi.1001078.g007
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Figure 9. Diversity in CRFs induced by heterogeneity of the LGN input. Examples of CRFs of excitatory (A) and inhibitory (B) neurons. Dotted
lines: population averaged CRF. Histograms of the H-ratio fit parameters Rmax (C), C50 (D) and n (E) for all the excitatory neurons. Bottom: pair-wise
scatter plot of these parameters, n vs. Rmax (F), Rmax vs. C50 (G) and C50 vs. n (H). Dots in the scatter plot show all neurons. Circles shows neurons with
a good fit (N = 326). The correlation coefficient between n and C50 is r~{0:68. The other two correlations are not statistically significant.
doi:10.1371/journal.pcbi.1001078.g009

Contrast Response Properties of V1 Neurons

PLoS Computational Biology | www.ploscompbiol.org 11 February 2011 | Volume 7 | Issue 2 | e1001078



Figure 10. Distribution of CRFs induced by heterogeneous neuron properties. Examples of CRFs for (A) excitatory and (B) inhibitory
neurons. Dotted lines: Population averaged CRF. Distribution histograms of the the H-ratio parameters Rmax, C50 and n are shown for excitatory
neurons in C, D and E respectively (all the neurons are included). Bottom: pair-wise scatter plot of these parameters, n vs. Rmax (F), Rmax vs. C50

(G) and C50 vs. n (H). Dots in the scatter plot show all neurons, and circles show neurons with a good fit (N = 368). The correlation coefficient between
n and C50 is r~0:78. The other two correlations are not statistically significant.
doi:10.1371/journal.pcbi.1001078.g010
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Rmax~14:7+7:65 Hz, C50~12:6+3:15%, n~2:54+0:52 and

Rmax~36:7+14:36 Hz, C50~26:6+6:8%, n~2:86+0:47, for

the excitatory and the inhibitory neurons, respectively.

We examined correlations between the CRFs parameters

values, considering only the neurons for which the CRF was well

fitted by an H-ratio function. The correlations between Rmax and

the other two parameters of the CRF are not significant (see

Fig. 10F,G), as is the case when the heterogeneity is due to LGN

input diversity. However, now a positive correlation exists between

C50 and n. This can be understood as follows: since all neurons

receive the same synaptic input, the contrast at which the response

saturates is roughly the same for all cells. However, the variability

in spiking threshold has a major effect on the contrast at which the

neurons begin to respond. Neurons with a low threshold start

firing at lower contrasts, and therefore will have a larger contrast

range over which the output varies, and hence n will be smaller.

But because they start to fire earlier, C50 will also be smaller for

these neurons compared to cells with higher spike threshold. As a

result, C50 and n are positively correlated.

Combination of LGN input and single neuron

heterogeneities. It is quite likely that, in reality,

heterogeneities both in LGN input and in neuronal properties

contribute to the diversity of CRFs shape in V1. The results we

have just described suggest that these contributions would hardly

be disentangled by relying solely on the shape of the distribution

histograms for the parameters Rmax, C50 and n. As a matter of

fact, the shape of the distributions are very similar, whether the

heterogeneities are in the LGN inputs or in the neuronal

properties. However, the sign of the correlation between the

parameters n and C50 is different in the two cases. This suggests

that it may be possible to quantify the contribution of these two

sources of heterogeneity by examining this correlation.

To combine both sources of heterogeneities, we took distribu-

tions of LGN and single neuron parameters with the same shapes

and same means as above, but with widths narrowed by a factor P
and 1{P respectively. Thus, when P~1, we only have

heterogeneities in the LGN input, while if P~0, there are only

heterogeneities in the intrinsic properties of the neurons.

We performed numerical simulations of the network with

different values of 0vPv1. For each value, we computed the

parameters of the CRFs fit for all the neurons. In Fig. 11, C50 is

plotted vs. n for all the excitatory neurons which have a CRF well

fitted by an H-ratio function and for three values of P. This shows,

as expected, that as P increases from 0 to 1, the correlation

changes from positive to negative. For P~0:5, there is an

approximate balance between the effects of the heterogeneities in

the LGN input and those in the cell properties and the correlation

is small.

The correlation coefficients for Rmax vs. n, Rmax vs. C50, and n
vs. C50 are plotted as a function P in Fig. 12 for both excitatory

and inhibitory neurons. When considering n vs. C50, the

correlation appears in general weaker for the inhibitory population

than for the excitatory population. Except for the range

P~0:5+0:1, there should be clear differences between the two

neuron types. However, for both populations, the sign of the

correlation changes around P&0:5. As a consequence, a crossing

between the two lines occurs around that value of P. Thus,

correlations are significantly reduced for both cell types only when

LGN input and intrinsic neuronal properties contribute equally to

CRFs diversity.

Comparison with experimental data. To get an insight on

the contribution of the different sources of heterogeneity in reality,

we examined CRFs for extracellularly recorded neurons in the

primary visual cortex of anesthetized marmoset monkeys. Stimuli

were drifting gratings presented with the orientation and spatial

frequency optimal for the cell under study. The CRFs were

produced using 12 contrasts values between 2 and 90%. The data

were fitted with an H-ratio function of the form R~Bz

RmaxCn=(CnzCn
50).

Fig. 13 shows some examples. CRFs were established using the

F0 component in complex cells and the F1 component in simple

cells. There was no significant difference between simple and

complex cells for any of the parameters of H-ratio function. Simple

and complex cells have therefore not been distinguished in the

population data analysis.

When classified as described in the Methods, saturating cells

represented 53 of the 98 cells (Fig. 13, A,B), non-saturating cells 25

(Fig. 13, E, F), and super-saturating ones 20 cells (Fig. 13, C, D), in

proportion similar to the one reported by Peirce [8] in macaque

V1.

In our sample of 98 cells, the median Rmax was 8.7 sp/sec

(interquartile: 14.0), the median C50 was 25.5% (interquartile:

17.2) and the median exponent was 3.44 (interquartile: 2.54).

Distributions for the exponent and C50 (Fig. 14) appear

comparable to those obtained in macaque V1 [3]. Both appear

to be distinct from those measured in either the magno- or

Figure 11. Scatter plot of C50 and n for heterogeneities in both LGN input and single neuron properties (excitatory neurons only).
Correlation between C50 and n decreases from positive to negative as the diversity due to single cell properties is decreased and the diversity due to
the LGN input is increased.
doi:10.1371/journal.pcbi.1001078.g011
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parvocellular layers of the macaque LGN [3]. It is also to be

noticed that the proportion of cells in our database displaying

saturating or super-saturating response is much larger than in

marmoset LGN [14,66,67].

Qualitatively, the presence of super-saturating cells in V1

would support the ‘‘heterogeneous LGN inputs’’ model, as super-

saturation does not occur in the ‘‘heterogeneous intrinsic

properties’’ model. To refine this conclusion, we examined the

correlation between CRF slope and C50. The results were on the

margin of significance: using Fisher’s test (a test that supposes an

affine relationship between variables), the p value was 0.07 and

the correlation coefficient, r, was 20.185. On the other hand, a

non parametric test (Spearman rank correlation) returned a

significant correlation with a p value of 0.03 and a correlation

coefficient, r, of 20.221. These results suggest that heterogene-

ities in LGN inputs and heterogeneity in neuronal intrinsic

properties both contribute to the diversity of CRFs in V1,

with a possible slightly greater contribution for LGN inputs

heterogeneity.

Discussion

Many theoretical studies have previously investigated possible

mechanisms explaining the contrast invariance of the width of the

orientation tuning curves measured in neurons in primary visual

cortex [15,23,33–37,42–44,46,47,49–51,54]. Some studies have

provided theoretical explanations for the contrast-response

functions of these neurons [42,48–50,52,53]. However, only a

few of them have examined both features together, either

unsuccessfully [42] or using parameter regimes that may not be

relevant to the in vivo situation (membrane time constants: [49,50];

synaptic depressions: [52,53]).

Figure 12. The correlation coefficient values for all parameters for excitatory (triangles) and inhibitory neurons (squares). Except for
P~0:5+0:1, the absolute value of the correlation coefficient for inhibitory neurons is higher than for the excitatory ones for the correlation between
Rmax and C50 or the exponent n. For the correlation between n and C50 the excitatory neurons show stronger correlations than the inhibitory ones.
doi:10.1371/journal.pcbi.1001078.g012

Figure 13. Examples illustrating the variety of CRFs calculated for single neurons in marmoset V1. Continuous lines represent the H-
ratio function fitted to the experimental data (open dots). The y-axis corresponds to the firing rate modulation F1 for simple cells (A, C, F) and to the
F0 component for complex cells (B, D, E). The figure depicts examples of saturating CRFs (A,B) mildly saturating CRF (C), and strongly supersaturating
CRFs (D). Non-saturating CRFs are plotted in E and F. Parameters of the H-ratio fits are: A: Rmax = 11.9 sp/sec, n = 4.28, C50 = 11.3%. B: Rmax = 41.6
sp/sec, n = 3.28, C50 = 21.0%. C: Rmax = 21.5 sp/sec, n = 5.32, C50 = 33.7%. D: Rmax = 55.4 sp/sec, n = 6.49, C50 = 12.6%. E: Rmax = 8.2 sp/sec, n = 2.01,
C50 = 31.5%. F: Rmax = 20.4 sp/sec, n = 1.49, C50 = 52.6%. The 6 examples presented here were obtained during one single electrode penetration in
one marmoset; Therefore the diversity illustrated here is not due to inter-individual variability.
doi:10.1371/journal.pcbi.1001078.g013
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The transfer function
All the findings of the present paper rely on the fact that, in the

presence of noise, the effective input-output transfer function is

accelerating and can be fitted by a power-law over the physiological

range of neuronal responses to visual stimuli [15,23,46,47,68,69].

The noise in the input influences the neuron’s transfer function by

effectively smoothing the effect of the spiking threshold. The mean

input current and voltage are also non-linearly related, such that the

rate-voltage transfer function is well fitted by a power-law, but with

an exponent that is larger than the one of the rate-current transfer

function. In the present model, the exponent, a, of the input-output

transfer functions of the neurons must be larger than 1 to insure

spike tuning curves sharper than the tuning curves of the LGN

input. For neurons in vivo, the transfer function for voltage vs. firing

rate is well approximated by a power-law, with an exponent,

ranging between 2 and 5 [15,23,68].

Under the assumption that the input noise is on the same order

for different neuron types, the input-output transfer function of our

model inhibitory neurons accelerate more than that of excitatory

neurons. This is because inhibitory neurons have higher gain and

show less firing rate adaptation (e. g., [63,70]). Thus, the fit of the

spiking rate to a power-law reveals different exponents a, for the

different neuron types in our model. That the exponent tends to be

higher in the inhibitory cells than in the excitatory ones has been

reported in recent experimental studies [69].

A major difference between the rate model and the conductance-

based model is that, in the later, synaptic inputs increase the effective

leak conductance, an effect that was not taken into account in the

former. Nevertheless, we have shown here that an increase, DgL, of

the leak conductance, if not too large (increasing the effective gL up a

factor of 2) has the same effect on the transfer function as an

additional negative current, Ieff . This current is proportional to DgL,

Ieff ~VCDgL. This is similar to what was found by Shriki et al. [59]

for the transfer of conductance based neurons in the absence of noise.

As we have shown, this allows for the derivation of an effective rate

model, which replicates the steady state behavior of the CBM.

Role of the feedforward and feedback inputs: Contrast
invariance of orientation tuning

Noise, as inferred from voltage traces, has been reported to be

independent of stimuli contrast and orientation [23] (but see

[15,71]). Such a noise in the input current effectively results in a

power law transfer function [46,47]. It has been shown that, in the

absence of recurrent cortical interactions and with feedforward

inputs alone, the power-law transfer function leads to an

approximate contrast invariance of the orientation tuning curve

width [46], given contrast invariant input width, as they emerge

from the spatial arrangement of LGN ON and OFF cells [17,61].

Due to the nonlinearity of the transfer function the outputs are

more tuned than the inputs by the factor
ffiffiffi
a
p

. Here we extended

these results to take into account recurrent cortical interactions.

We showed that they remain true provided that the synaptic

distributions have an appropriate spatial extent, namely that the

conditions expressed by Eqns. (7, 8) are satisfied.

When the conditions for the width of the feedback, expressed by

Eqns. (7, 8) are satisfied, the feedback interactions do not contribute

to the sharpening of the tuning. The latter is determined by the

tuning of the LGN input, together with the sharpening effect of the

power-law transfer function. This is in sharp contrast to the role of

recurrent interactions in network models of V1 studied previously

[33–37,72]. Recurrent interactions, however, appear essential for

explaining the shape of the CRFs (see below).

Role of the feedforward and feedback inputs: Contrast-
response function

In the absence of recurrent interactions, the CRF of the cortical

neurons is shifted toward higher contrast compared to the CRF of

Figure 14. Distributions and correlations between CRF parameters obtained in marmoset V1. A. Rmax. B. C50 C. The exponent n. D. Panels
(D) and (E) show that there is no significant correlation between Rmax and n and between Rmax and C50. Panel F shows that correlation between n
and C50 is on the margin of significance (p~0:07 and r~{0:185 with Fisher’s test, but p~0:03 and r~{0:221 with the non parametric Spearman
rank correlation). The line represents the linear correlation.
doi:10.1371/journal.pcbi.1001078.g014

Contrast Response Properties of V1 Neurons

PLoS Computational Biology | www.ploscompbiol.org 15 February 2011 | Volume 7 | Issue 2 | e1001078



their feedforward inputs. This means that to achieve a reasonably

large response at low contrast the parameter Imax of the LGN

input must be quite large. This implies that, at maximum contrast,

the response of the cortical neurons is large too. However, beyond

a critical value, the response amplitude would fall in a range where

the transfer function of the neurons deviates substantially from a

power-law. In our conductance-based model, this deviation

becomes appreciable above 40 Hz. In turn, this deviation from

power-law implies substantial deviations from contrast-invariance

of the tuning-width at high contrast. Therefore, the strong

inhibitory feedback in the recurrent network model we have

studied plays a crucial role, which is to regulate the high contrast

responses, relative to the responses at intermediate and low

contrast. As a result, both feedforward and excitatory recurrent

inputs can be relatively strong, resulting in a consistent response

for both low and intermediate contrast, yet the response at high

contrast does not reach values beyond which contrast invariance is

lost. We have demonstrated this role in our conductance-based

model. The saturation due to the feedback which keeps the

response within the power-law range for high contrast also causes

a decrease of the C50 and an increase in the slope of the CRF

relative to the LGN input.

Tuning of the LGN input
We have modeled the LGN input as a Gaussian, with a width

that is independent of contrast. This represents a simplification,

which is nevertheless justified given previous theoretical studies on

contrast invariance of orientation tuning in simple cells.

A well known problem in this context [31,43] is that, in simple

cells, the LGN input generates an untuned DC component in the

membrane potential response, which grows faster with contrast

that the tuned AC component. A solution to this problem consists

in canceling this DC component by including either anti-phase or

broadly tuned inhibition in the models [43,45,72]. This was not

explicitly incorporated in our model. We rather simplified it with a

tuned LGN input that one should view as a net input into the cells

which combines both the actual LGN input and the feedforward

inhibition.

Comparison with experimental data
The conditions expressed by Eqns. (7, 8) imply specific range for

the synaptic connections between sub-populations of neurons.

They show that, if the orientation tuning width of inhibitory

neurons is broader than that of excitatory neurons as reported

experimentally [28,30] the synaptic projection from inhibitory to

excitatory neurons should be narrower than the projection width

from excitatory to excitatory neurons. This is compatible with

anatomical data, which show that the spatial extent of inhibitory

connections is usually less than that of excitatory connections

[73,74]. Note that these conditions were obtained under the

assumptions of Gaussian inputs and outputs, which are in line with

experimental data (e. g., [75]).

Here an important caveat should be made. We showed that

contrast invariance of the tuning width is robust to violations of

conditions Eqns. (7, 8). If the range of the synaptic feedback, both

excitatory and inhibitory, is changed by as much as 50%, contrast

invariance is still nearly achieved with a relative error of less than

10%. Thus the model predictions about the relative extent of the

excitatory and inhibitory feedback should not necessarily be taken

as quantitative.

The parameters we used generated relatively narrow tuning

curves (see Results), in accordance with the tuning width reported

for layer 4 simple cells in some studies (e. g., [15,69]). However,

others studies reported a large heterogeneity of tuning width,

including broadly tuned cells and cells showing a non-negligible

response at the orthogonal orientation [7,19,20,28,30,76]. We

therefore checked whether our results were valid for parameter

regimes different from the one we initially used. We simulated

networks with broader tuning curves (sE&300), for which the

response at the orthogonal orientation was approximately one

tenth of that at the preferred orientation. For such networks, we

found that the orientation tuning width did not change

significantly with contrast. However, the ratio of the response at

the orthogonal orientation versus the preferred orientation

decreased slightly with contrast. Interestingly, this departure from

strict contrast-invariant orientation tuning has been observed

experimentally for broadly tuned cells in some studies [7,19]; but

see [20]. However, this should not be taken too seriously because,

as Fig. 8 shows, deviations from Eqns. (7, 8) for the feedback width

can have a substantial effect on the response at the orthogonal

orientation, which could result in the reverse effect.

The origins of the diversity in the CRF of V1 neurons
The CRF of the spike response can be well fitted by an H-ratio

function in a large fraction of V1 neurons. However, the

parameters of the function are highly diverse across neurons [1–

4,7]. Most studies that aim to explain contrast invariance or the

shape of the CRF ignore this heterogeneity and usually do not

indicate whether the proposed mechanism can accommodate a

large diversity of responses.

Whether the excitatory neurons saturate or not is determined by

the strength of the feedback connections, particularly from the

inhibitory cells. This implies that some degree of fine-tuning of

these strengths is necessary if we impose that the average

excitatory CRF saturates at 100% contrast. Because of this

sensitivity, relatively small variability in the feedback strengths for

individual neurons leads to rather large changes in the CRFs. This

can contribute to the large variability in CRFs, with non-

saturating, saturating and super-saturating cells observed in the

primary visual cortex of the same animal.

Here we have investigated other possible sources for this

diversity, focusing on the contribution of variability in single

neuron intrinsic properties, and on the contribution of heteroge-

neities in the CRFs of LGN neurons. We have demonstrated that

these two sources of variability can both account for the diversity

observed in experiments. In addition, our model predicts a

correlation between the parameters n and C50, which is either

negative or positive, depending on the source of heterogeneities.

The strength of the correlation is further predicted to be reduced

when both sources are mixed, in proportion to the relative

contribution of each.

We examined CRFs for neurons in the primary visual cortex of

marmoset monkeys. The parameters n and C50 obtained in these

experimental data were at best weakly negatively correlated. This

suggests that heterogeneity in the LGN input may contribute

slightly more than the neurons’ intrinsic properties to the diversity

of CRFs shape.

Another possible source of heterogeneity we did not examine is

heterogeneity in the recurrent feedback inputs. We assumed that

these are uncorrelated. Then, given their large number compar-

atively to LGN inputs, heterogeneities in feedback inputs would

cancel each others and this would result in an ‘‘averaged’’ CRF

input to all neurons. However, some studies showed that subset of

excitatory and inhibitory neurons may form specific connections

with other neurons [77–80], and in many cases the connections

are not reciprocal. This would lead to heterogeneity in the

feedback input, that we expect to have the same effect on the

correlations between n and C50 as the diversity in the feedforward
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input. Other studies [81,82], however, suggest that inhibitory fast

spiking cells establish a dense network with other neurons, as

assumed in the present study.

Perspectives
Two major weaknesses of our model is that we have to add

external noise to the system to obtain voltage fluctuations that are

biologically plausible and that it does not exhibit heterogeneity in

the orientation tuning curves.

One way to obtain input fluctuations intrinsically is to use a

model that operates in the balanced regime [83,84]. In this

regime, heterogeneity in the response naturally arises from the

strongly amplified effect of randomness in the connectivity.

However, in their current formulation, balanced network models

cannot explain the shape of the CRF as observed experimentally.

This is because in such networks the population averaged response

should scale linearly with the external input [83,84], so that on

average the C50 of both the excitatory and inhibitory populations

should be the same as the C50 of the LGN input, in contrast to

what is observed experimentally. It is our hope that development

of such models, in which recurrent connections are responsible for

the synaptic noise which is so essential to contrast-invariance of

tuning width, will help further integration of feedforward and

feedback models for a better understanding of the mechanisms at

work in cortical processing.

Materials and Methods

Ethics statement
The protocol for the experiments which are reported here is in

accordance with guidelines of the French ministry of agriculture

(décret 87/848) and the European Union (directive 87/609).

The rate based model
Our rate model consists of NE excitatory and NI inhibitory

neurons. The firing rate of excitatory neuron i and inhibitory

neuron j, denoted by Ri
E and R

j
I respectively satisfy

tA
dRi

A

dt
~{Ri

AzfA(I i
A) for A~E,I and 1ƒiƒNA, ð12Þ

where tA is the membrane time constant for population A, I i
A is

the total, noise averaged, input into the neuron, and fA is the

effective, noise averaged, transfer function. Following recent

experiments [23,68] and theoretical studies [46,47], we assume

that the transfer function fA is a threshold power-law function,

fA(I)~bA½I �aA

z. Here ½:�z denotes the half rectified linear function,

½x�z~x for x§0 and ½x�z~0 for xv0. The exponent of the

power law function is aA and bA sets its scale.

Our model network represent a hypercolumn in V1 and has the

geometry of a ring [33]. Neuron i in population A is characterized

by an angle hi
A, defined as the orientation of the visual stimulus for

which the LGN input it receives is maximum. We model this input

as

I i
A,LGN~I0

AG(hi
A{Y,sA,LGN), ð13Þ

where Y is the orientation of the stimulus, G(h,s) is the p-periodic

Gaussian with width s, defined as G(h,s):
P?

k~{? exp ({

½h{kp�2=2s2)=
ffiffiffiffiffiffi
2p
p

s. I0
A gives the overall strength of the LGN

input and depends on the stimulus contrast. As we will see, for

Y~hi
A, not only the LGN input to neuron i,A is maximum but so

is also of its spike response. Therefore, hi
A is also the preferred

orientation of the neuron.

We assume that I0
A varies with the contrast, C, of the visual

stimulus as I0
A(C)~IA, max½log (Cz1)= log (101)� where C is in

percents. This logarithmic dependence, which does not saturate,

was chosen to facilitate the analysis of the cortical network.

The preferred orientations of the neurons are uniformly

distributed over the interval ½{p=2,p=2�. The feedback input

from the network to neuron i, I i
AFB, is given by

I i
A,FB~

X
B~E,I

p

NB

XNB

j~1

J
ij
ABR

j
B ð14Þ

where the synaptic strengths, J
ij
AB, depend on the difference in

preferred orientations between neurons i and j and falls off with

this difference as a periodic Gaussian with width sAB

J
ij
AB~JABG(hi

A{hj
B,sAB): ð15Þ

Note that we have scaled the synaptic strength by the density of

neurons. The number of neurons in population B with preferred

orientation between h and hzdh is equal to NBdh=p, which

explains the factor p=NB in Eqn. (14).

In the limit of large NA, we can replace
1

NA

XNA

j~1
by

1

p

ðp=2

{p=2

dh, and Ri
A by RA(h), where h is a continuous variable.

The rates RA(h) satisfy the dynamics

tA
dRA(h)

dt
~{RA(h)

zbA

X
B~E,I

ðp=2

{p=2

JAB(h{h
0
)RB(h

0
)dh

0
zIA,LGN(h{Y)

" #aa

z

ð16Þ

Due to the rotation symmetry of the network, the response RA(h,t)
of the neurons depends on the stimulus orientation Y only through

the difference, h{Y, between this orientation and the neurons

preferred orientation, Ri
A(t)~RA(hi

A{Y,t). Thus we need only to

consider the case where Y~0.

Steady states. In the steady state we have dRA(h)=dt~0, so

that:

(b{1
A RA(h))1=aA~

X
B~E,I

JAB

ðp=2

{p=2

G(h{h
0
,sAB)RB(h

0
)dh

0
zI0

AG(h,sA,LGN):
ð17Þ

A general analytical solution to this set of integral equations is not

available. However, as we show in the Results, if sA,LGN is much

smaller than p and the connection widths sAB satisfy

s2
AB~s2

A,LGN{s2
B,LGN=aB, the firing rates are approximately

given by

RA(h)~R0
AG(h,sA), ð18Þ

where sA~sA,LGN=
ffiffiffiffiffiffi
aA
p

and R0
A is given by

½R0
A�

1=aA~cA

X
B~E,I

JABR0
BzI0

A

" #
z

, ð19Þ

with cA~½
ffiffiffiffiffiffi
2p
p

sAbA�1=aA=
ffiffiffiffiffiffi
2p
p

sA,LGN.
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Stability analysis. The stability of the steady state, RA(h) is

investigated by setting RA(h,t)~RA(h)zdRA(h,t), where

dRA(h,t) is a small perturbation. Linearizing the dynamics, Eqn.

(16), around the steady state one obtains that the perturbations

satisfy

tA
d

dt
dRA(h,t)~{dRAzaAb

1=aA
A RA(h)1{1=aA|

X
B

JAB

ðp=2

{p=2

G(h{h
0
,sAB)dRB(h

0
,t)dh

0
" #

:

ð20Þ

This system has a discrete eigenvalue spectrum and the nth

eigenmode, dR
(n)
A , satisfies dR

(n)
A (h,t)~dR

(n)
A (h,0)elnt, where ln is

the eigenvalue associated with this eigenmode. If the real part of ln

is negative the eigenmodes decay to zero. Any perturbation

dRA(h,t) can be written as dRA(h,t)~
P

n kndR
(n)
A (h,t) with some

constants kn. If all the eigenvalues ln have negative real part, so

that all R
(n)
A decay to zero, every small perturbation decays and

hence the steady state is stable.

The conductance based model
In the conductance-based network, neurons are point-like and

the dynamics of their membrane potential, V , is:

CM

dV

dt
~{IL{INa{IK{IKs{IA{INapzIsynzInoisezILGN

ð21Þ

where CM~1nF=cm2. The first term on the right-hand side of

Eqn. (21) is the leak current IL~gL(V{VL). The next five terms

correspond to a sodium current, INa~gNam3
?h(V{VNa), a

delayed rectifier potassium current, IK~gK n4(V{VK ), responsi-

ble for the up and down-stroke of the action potential respectively,

a slow potassium current, IKs~gKsz(V{VK ), inducing spike

adaptation, an A-type potassium current, IA~gAa3
?b(V{VK ),

which becomes active during the hyper-polarization period and

affects the length of the inter-spike interval, and a persistent

sodium current, INaP~gNaPs?(V{VNa), which tends to amplify

small depolarizations.

The gating variables h, n, b, z follow the dynamics:

dx

dt
~

x?(V ){x

tx(V )
: ð22Þ

For x~m,h,n, the functions x?(V )~ax=(axzbx) and

tx(V )~1=(axzbx), with the parameters ax and bx as given in

Table 1 and for x~b,z the functions x?(V ) and tx are given in

Table 2. The maximal conductances of the ionic channels of the

excitatory and inhibitory neurons are given in Table 3. They are

chosen to reproduce qualitatively the frequency-current transfer

functions of regular spiking excitatory neurons and fast spiking

inhibitory neurons, such that excitatory neurons have a lower

threshold [85] and stronger spike frequency adaptation than

inhibitory neurons (e.g., [63,70]).

The terms left on the right-hand side of Eqn. (21) are the

synaptic inputs, I i
syn, the neuron receives because its recurrent

interactions with the other neurons in the network, a current,

ILGN, representing the feedforward inputs from the LGN to V1,

and the noise Inoise.

The synaptic current received by neuron i in population A, is

I i
A,syn~

X
B

p

NB

X
j,k

g
ij
ABf (t{t

j
B,k)(VB,syn{Vi

A) ð23Þ

where VE,syn~0 mV and VI ,syn~{70 mV are the reversal

potentials of excitatory and inhibitory synapses respectively. The

strength of a synapse connecting the presynaptic neuron j in

population B, to postsynaptic neuron i in population A, is

characterized by g
ij
AB~gABG(hi

A{h
j
B,sAB), where gAB is given by

Table 4. Note the normalization to the neuronal density p=NB.

The term f (t{t
j
B,k) describes the contribution of the kth spike of

neuron j in population B, which occurred at time t
j
B,k, to the

synaptic conductance at time t. We take

f (t)~
1

t2{t1
½exp ({t=t2){ exp ({t=t1)� ð24Þ

with rise time constant t1~1 msec and decay time constant t2~3
msec for excitatory as well as for inhibitory synapses. The current,

Inoise, is a Gaussian white noise with zero mean. Its standard

deviation, sf, is chosen such that the standard deviation of the

membrane potential of the neurons is approximately 3–4 mV, as

measured experimentally in V1 [23].

The LGN input is modeled as in Eqn. (13) with I0
A(C)~

IA, maxCn=(CnzCn
50), where the values of C50 and n are taken in

accordance with experimental data for magnocellular cells [3] and

IA, max is such that the activity of the neurons are similar to those

measured in V1 during visual stimulation [3,6].

Effective rate model. In our CBM network, because

feedback is generated through synaptic conductances, the

effective membrane conductance of the neurons depends on the

network state. When the latter is stationary, the recurrent feedback

induces an increase of this conductance which is equivalent to an

increase in the leak conductance of the neurons. Shriki et al. [59]

have shown that in absence of external noise, a change by a small

amount, Dg, affects the frequency-current transduction function of

the neurons as if a current, proportional to Dg, VcDg, was

subtracted from its input. Using single neuron simulations we

show, in the Results, that this is still the case if the neurons receive

a stationary input with noise, provided that the firing rates are not

too high. This allows us to formulate an effective rate model for

the conductance based network as follows: the total input to

neuron i of population A

�II i
A,syn(Vi

A)~
X
B,j

p

NB

g
ij
ABR

j
B(VB,syn{Vi

A): ð25Þ

Table 1. Gating variable of the conductance-based model.

x ax bx

m 0:1(Vz35)

1{ exp ({0:1(Vz35))

4 exp ({(Vz60)=18)

h 0:35 exp ({(Vz58)=20) 5

exp ({0:1(Vz28))z1

n 0:05(Vz34)

1{ exp ({0:1(Vz34))

0:625 exp ({(Vz44)=80)

x?(V )~ax=(axzbx) and tx(V )~1=(axzbx) (in msec).
doi:10.1371/journal.pcbi.1001078.t001
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can be decomposed into �II i
A,syn(Vi

A)~�II i
A,syn(VL)zDgi

A(VL{Vi
A),

where �II i
A,syn(VL)~p

P
B,j N{1

B g
ij
ABR

j
B(VB,syn{VL) is the current

into the neuron at rest and Di
A~p

P
B, j N{1

B g
ij
ABR

j
B is the effective

increase in leak conductance. Thus, if with an extra leak Dgi
A the

input-output relation of the neuron is given by Ri
A~

bA(I i
A{VcDgi

A)aA

z, we obtain that at equilibrium

Ri
A~bA(I i

A,LGNz
p

N

X
B, j

g
ij
AB(VB,syn{VL{Vc)R

j
B)aA

z: ð26Þ

This equation is the same as the fixed point equation of the rate

based model if we set J
ij
AB~g

ij
AB(VB,syn{VL{Vc).

Numerical simulations and analysis of the results
In the rate model we simulated networks with 100 neurons for

each of the populations, using a second order Runge Kutta

integration scheme with a time step of 1 msec. After verifying that

this discretization was sufficiently fine, we used these simulations to

find the fixed points in the rate equations and to verify the stability

of steady state.

The conductance-based model dynamics of networks consisting

of 400 excitatory and 400 inhibitory neurons was simulated using

a second order Runge-Kutta integration scheme with a time step

Dt~0:01 msec. For each contrast, ten trials with different noise

realizations were simulated and the responses were averaged over

a time window of 1.5 sec after elimination of a transient.

The orientation tuning curves of the neurons were fitted with

Gaussians parametrized as:
A

s
ffiffiffiffiffiffi
2p
p e

{
h2

2s2zB. For the rate model,

we set the offset, B, to zero. For the CBM, B was in general non-

zero because the noise induced a non-zero activity at cross-

orientation. The peak amplitude of these Gaussians estimated for

different contrast, C, yielded the CRFs of the neurons, which were

subsequently fitted with the H-ratio function [1]:

R(C)~Rmax
: Cn

CnzCn
50

zB ð27Þ

where Rmax is the maximum firing rate, C50 is the contrast (in %)

for R~
1

2
RmaxzB and the exponent, n, is a measurement of the

function’s steepness. In the case of the CBM, we additionally

computed the relative error of the estimated values of the CRF

parameters (the relative error on x is its SD divided by its mean,

sx=mx). Good fits were defined as those with relative errors smaller

than 0.15 for all the parameters.

Experimental data
Experimental data for the CRF was obtained from marmoset

monkeys (Callithrix Jacchus, n~6). Details about the experimental

protocol can be found in [20]. One half hour before anesthesia

induction, the animals were tranquilized with diazepam (Valium,

Roche) (i. m., 3 mg/kg) and atropine (0.05 mg/kg) was given at

the same time to reduce secretions and to prevent bradycardia.

Anesthesia was induced with Alphadalone/Alphaxalone acetate

(Saffan, Essex Pharma, 1.2 ml/kg) injected intramuscularly and

maintained during surgery by i. v. injection (0.17 ml/kg every 10–

15 minutes). Synthetic corticoids were given to prevent brain

edema. Animal’s body temperature was maintained at 380C using

a heating pad controlled by a rectal thermistor. EKG recording

was performed through metallic pliers.

The surgical procedure consisted first in placing a catheter in

the femoral vein. Next, a tracheotomy was performed to allow

artificial ventilation. The marmoset was then set in a stereotaxic

frame. Two holes were drilled over the frontal cortex and Ag wires

inserted for epidural EEG recording. A craniotomy was made to

gain access to area V1. A head post was sealed to the skull and

fixed to the stereotaxic apparatus.

Following surgery, the animal was artificially ventilated with

N2O/O2 (50%/50%). Anesthesia and analgesia were supplement-

ed by a continuous infusion of sufentanil citrate (Sufenta, Janssen,

4–6 mg/kg/hr) after a loading dose of 1 mg/kg. The infusion

vehicle was made of the mixture of 2 ml glucose 30%, 15 ml of

amino-acid perfusion solution (Totamin, Baxter) and included

synthetic corticoids (0.4 mg/kg/hr); NaCl was added to a final

volume of 50 ml. We waited for 1–2 hours of infusion with this

solution to ensure adequate depth of anesthesia. The animal was

Table 4. Synaptic conductance density in mS:msec/cm2 for
the conductance based model network.

gEE 1

gEI 4

gIE 1

gII 2.6

doi:10.1371/journal.pcbi.1001078.t004

Table 2. Gating variables of the ionic channels in the
conductance-based model.

x x? tx

a 1

1z exp ({(Vz35)=20)

NA

b 1

1z exp ((Vz80)=6)

20

s 1

1z exp ({(Vz40)=5)

NA

z 1

1z exp ({0:7(Vz30))

50

NA = not applicable; tx in msec.
doi:10.1371/journal.pcbi.1001078.t002

Table 3. Conductance density in mS/cm2 and the reversal
potentials in mV for the ionic channels of a excitatory (E) and
inhibitory (I) neurons in the conductance-based model.

E I

x gx Vx gx Vx

L 0.2 270 0.2 270

Na 35 55 35 55

NaP 0.12 55 0.08 55

K 15 290 7.5 290

A 2.5 290 7.5 290

Ks 2.5 290 0.25 290

doi:10.1371/journal.pcbi.1001078.t003
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then paralyzed by adding pancuronium bromide (Pavulon,

Organon, 0.1 mg/kg/hr) to the solution described above.

Mydriasis and cycloplegia were induced with ophthalmic atropine

sulfate (1%, Alcon). Gas permeable contact lenses were used to

protect the eyes. The heart rate, rectal temperature and expiratory

CO2 concentration were monitored throughout the experiment

and maintained at 250–350 bpm, 37–380C and 3–5%, respec-

tively. The EEG and the absence of reaction to noxious stimuli

were regularly checked.

Action-potentials were recorded extracellularly in area V1 using

tungsten-in-glass microelectrodes. Spike-sorting was performed

using Spike2 (Cambridge Electronic Design, Cambridge, UK)

system. Appropriateness of single-unit isolation was based on the

refractory period of the neuron. Visual stimuli were presented onto

a computer monitor placed at 114 cm from the animal’s eyes. We

first determined the preferred orientation using square-wave

drifting gratings. Optimal spatial frequency was then determined

using sine-wave drifting grating. The CRF was then established

using sine-wave drifting grating with optimal orientation and

spatial frequency, presented at 12 different levels of contrast

increasing geometrically for 2 to 90%. All visual stimuli were

presented in a circular patch of 2–6 degrees diameter, centered on

the receptive field. Drift velocity was between 0.5 and 2 cycles/sec.

To avoid transient responses, the contrast was incremented in a

1 sec duration ramp, maintained at steady level for 3 or 4 sec, then

decreased back to 0% in a 1 sec duration ramp, then maintained

at 0% contrast for 1 sec. The measurement of mean firing rates

was restricted to the 3–4 sec plateau period. The fits of the CRF to

a H-ratio function was performed as with the simulations data (see

above). The quality of the fit was good, (r2
w0:7) except one

supersaturating cell (r2~0:56) but there was no good reason to

exclude this cell. The mean r2 was 0:947+0:061 (S.D.) and the

median 0:962+0:06 (interquartile).

Receptive fields were classified as ‘‘simple’’ or ‘‘complex’’ on the

basis of the relative modulation (F1/F0 [86]) in their response to

gratings at the optimal spatial frequency. In our data set, the

distribution of F1/F0 was bimodal, with a gap at 1. Cells were

considered as simple when the relative modulation was w1 and

complex when it was v1 [86].

A cell was considered to display saturating response when the

response extrapolated to 100% contrast was equal to

Rmax+0:05Rmax. It was considered as non-saturating when the

extrapolated response was less than 0.95 Rmax and as super-

saturating if the response to at least one of the test contrast below

90% was larger than 1.05 Rmax.

Supporting Information

Text S1 Supporting information.

Found at: doi:10.1371/journal.pcbi.1001078.s001 (0.15 MB PDF)
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