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Abstract

According to recent experimental evidence, promoter architecture, defined by the number, strength and regulatory role of
the operators that control transcription, plays a major role in determining the level of cell-to-cell variability in gene
expression. These quantitative experiments call for a corresponding modeling effort that addresses the question of how
changes in promoter architecture affect variability in gene expression in a systematic rather than case-by-case fashion. In
this article we make such a systematic investigation, based on a microscopic model of gene regulation that incorporates
stochastic effects. In particular, we show how operator strength and operator multiplicity affect this variability. We examine
different modes of transcription factor binding to complex promoters (cooperative, independent, simultaneous) and how
each of these affects the level of variability in transcriptional output from cell-to-cell. We propose that direct comparison
between in vivo single-cell experiments and theoretical predictions for the moments of the probability distribution of mRNA
number per cell can be used to test kinetic models of gene regulation. The emphasis of the discussion is on prokaryotic
gene regulation, but our analysis can be extended to eukaryotic cells as well.
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Introduction

A fundamental property of all living organisms is their ability to

gather information about their environment and adjust their

internal physiological state in response to environmental condi-

tions. This property, shared by all organisms, includes the ability of

single-cells to respond to changes in their environment by

regulating their patterns of gene expression. By regulating the

genes they express, cells are able to survive, for example, changes

in the extracellular pH or osmotic pressure, switch the mode of

sugar utilization when the sugar content in their medium changes,

or respond to shortages in key metabolites by adapting their

metabolic pathways. Perhaps more interesting is the organization

of patterns of gene expression in space and time resulting in the

differentiation of cells into different types, which is one of the

defining features of multicellular organisms. Much of this

regulation occurs at the level of transcription initiation, and is

mediated by simple physical interactions between transcription

factor proteins and DNA, leading to genes being turned on or off.

Understanding how genes are turned on or off (as well as the more

nuanced expression patterns in which the level of expression takes

intermediate levels) at a mechanistic level has been one of the great

challenges of molecular biology and has attracted intense attention

over the past 50 years.

The current view of transcription and transcriptional regulation

has been strongly influenced by recent experiments with single-cell

and single-molecule resolution [1–11]. These experiments have

confirmed the long-suspected idea that gene expression is stochastic

[12,13], meaning that different steps on the path from gene to

protein occur at random. This stochasticity also causes variability in

the number of messenger RNAs (mRNA) and proteins produced

from cell-to-cell in a colony of isogenic cells [11,14–17]. The

question of how transcriptional regulatory networks function

reliably in spite of the noisy character of the inputs and outputs

has attracted much experimental and theoretical interest [18,19]. A

different, but also very relevant, question is whether cells actually

exploit this stochasticity to fulfill any physiologically important task.

This issue has been investigated in many different cell types and it

has been found that stochasticity in gene expression plays a pivotal

role in processes as diverse as cell fate determination in the retina of

Drosophila melanogaster [20], entrance to the competent state of B.

subtilis [7], resistance of yeast colonies to antibiotic challenge [17],

maintenance of HIV latency [21], promoting host infection by

pathogens [22] or the induction of the lactose operon in E. coli [23].

Other examples have been found, and reviewed elsewhere [24,25].

The overall conclusion of all of these studies is that stochasticity in

gene expression can have important physiological consequences in

natural and synthetic systems and that the overall architecture of the

gene regulatory network can greatly affect the level of stochasticity.

A number of theoretical and experimental studies have revealed

multiple ways in which the architecture of the gene regulatory

network affects cell-to-cell variability in gene expression. Examples
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of mechanisms for the control of stochasticity have been proposed

and tested, including the regulation of translational efficiency [8],

the presence of negative feedback loops [26,27,28], or the

propagation of fluctuations from upstream regulatory components

[29]. Another important source of stochasticity in gene expression

is fluctuations in promoter activity, caused by stochastic associa-

tion and dissociation of transcription factors, chromatin remod-

eling events, and formation of stable pre-initiation complexes

[5,15,16,23,30]. In particular, it has been reported that perturba-

tions to the architecture of yeast and bacterial promoters, such as

varying the strength of transcription factor binding sites[17], the

number and location of such binding sites [11,31], the presence of

auxiliary operators that mediate DNA looping [23], or the

competition of activators and repressors for binding to the same

stretch of DNA associated with the promoter [32], may strongly

affect the level of variability.

Our goal is to examine all of these different promoter

architectures from a unifying perspective provided by stochastic

models of transcription leading to mRNA production. The logic

here is the same as in earlier work where we examined a host of

different promoter architectures using thermodynamic models of

transcriptional regulation [33,34]. We now generalize those

systematic efforts to examine the same architectures, but now

from the point of view of stochastic models. These models allow us

to assess the unique signature provided by a particular regulatory

architecture in terms of the cell-to-cell variability it produces.

First, we investigate in general theoretical terms how the

architecture of a promoter affects the level of cell-to-cell variability.

The architecture of a promoter is defined by the collection of

transcription factor binding sites (also known as operators), their

number, position within the promoter, their strength, as well as

what kind of transcription factors bind them (repressors, activators

or both), and how those transcription factors bind to the operators

(independently, cooperatively, simultaneously). We apply the

master-equation model of stochastic gene expression [35,36,

37,38] to increasingly complex promoter architectures [30], and

compute the moments of the mRNA and protein distributions

expected for these promoters. Our results provide an expectation

for how different architectural elements affect cell-to-cell variabil-

ity in gene expression.

The second point of this paper is to make use of stochastic

kinetic models of gene regulation to put forth in vivo tests of the

molecular mechanisms of gene regulation by transcription factors

that have been proposed as a result of in vitro biochemical

experiments. The idea of using spontaneous fluctuations in gene

expression to infer properties of gene regulatory circuits is an area

of growing interest, given its non-invasive nature and its potential

to reveal regulatory mechanisms in vivo. Different theoretical

methods have recently been proposed, which could be employed

to distinguish between different modes (e.g. AND/OR) of

combinatorial gene regulation, and to rule out candidate

regulatory circuits [27,39,40] based solely on properties of noise

in gene expression, such as the autocorrelation function of the

fluctuations [27] or the three-point steady state correlations

between multiple inputs and outputs [39,40].

Here, we make experimentally testable predictions about the

level of cell-to-cell variability in gene expression expected for

different bacterial promoters, based on the physical kinetic models

of gene regulation that are believed to describe these promoters in

vivo. In particular, we focus on how varying the different

parameters (i.e., mutating operators to make them stronger or

weaker, varying the intracellular concentration of transcription

factors, etc.) should affect the level of variability. This way, cell-to-

cell variability in gene expression is used as a tool for testing kinetic

models of transcription factor mediated regulation of gene

expression in vivo.

The remainder of the paper is organized as follows: First we

describe the theoretical formalism we use to determine analytic

expressions for the moments of the probability distribution for

both mRNA and protein abundances per cell. Next, we examine

how the architecture of the promoter affects cell-to-cell variability

in gene expression. We focus on simple and cooperative

repression, simple and cooperative activation, and transcriptional

regulation by distal operators mediated by DNA looping. We

investigate how noise in gene expression caused by promoter

activation differs from repression, how operator multiplicity affects

noise in gene expression, the effect of cooperative binding of

transcription factors, as well as DNA looping. For each one of

these architectures we present a prediction of cell-to-cell variability

in gene expression for a bacterial promoter that has been well

characterized experimentally in terms of their mean expression

values. These predictions suggest a new round of experiments to

test the current mechanistic models of gene regulation at these

promoters.

Methods

In order to investigate how promoter architecture affects cell-to-

cell variability in gene expression, we use a model based on

classical chemical kinetics (illustrated in Figure 1A), in which a

promoter containing multiple operators may exist in as many

biochemical states as allowed by the combinatorial binding of

transcription factors to its operators. The promoter transitions

stochastically between the different states as transcription factors

bind and fall off. Synthesis of mRNA is assumed to occur

stochastically at a constant rate that is different for each promoter

state. Further, transcripts are assumed to be degraded at a

constant rate per molecule.

This kind of model is the kinetic counterpart of the so-called

‘‘thermodynamic model’’ of transcriptional regulation [41], and it

is the standard framework for interpreting the kinetics of gene

Author Summary

Stochastic chemical kinetics provides a framework for
modeling gene regulation at the single-cell level. Using
this framework, we systematically investigate the effect of
promoter architecture, that is, the number, quality and
position of transcription factor binding sites, on cell-to-cell
variability in transcription levels. We compare architectures
resulting in transcriptional activation with those resulting
in transcriptional repression. We start from simple activa-
tion and repression motifs with a single operator
sequence, and explore the parameter regime for which
the cell-to-cell variability is maximal. Using the same
formalism, we then turn to more complicated architectures
with more than one operator. We examine the effect of
independent and cooperative binding, as well as the role
of DNA mechanics for those architectures where DNA
looping is relevant. We examine the interplay between
operator strength and operator number, and we make
specific predictions for single-cell mRNA-counting exper-
iments with well characterized promoters. This theoretical
approach makes it possible to find the statistical response
of a population of cells to perturbations in the architecture
of the promoter; it can be used to quantitatively test
physical models of gene regulation in vivo, and as the basis
of a more systematic approach to designing new promoter
architectures.

Promoter Architecture and Cell-to-Cell Variability
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regulation in biochemical experiments, both in vivo [2,23] and in

vitro [42,43]. This class of kinetic models can easily accommodate

stochastic effects, and it leads to a master equation from which the

probability distribution of mRNA and protein copy number per

cell can be computed. It is often referred to as the standard model

of stochastic gene expression [38,44,45]. The degree of cell-to-cell

variability in gene expression can be quantified by the stationary

variance, defined as the ratio of the standard deviation and the

mean of the probability distribution of mRNA or protein copy

number per cell [35], or else by the Fano factor, the ratio between

the variance and the mean. These two are the two most common

metrics of noise in gene expression, and the relation between them

will be discussed later.

In order to compute the noise strength from this class of models,

we follow the same approach as in a previous article [30], which

extends a master equation derived elsewhere [36,37,46] to

promoters with arbitrary combinatorial complexity. The com-

plexity refers to the existence of a number of discrete promoter

states corresponding to different arrangements of transcription

factors on the promoter DNA. Promoter dynamics are described

by trajectories involving stochastic transitions between promoter

states which are induced by the binding and unbinding of

transcription factors. A detailed derivation of the equations which

describe promoter dynamics can be found in the Text S1, but the

essentials are described below.

There are only two stochastic variables in the model: the

number of mRNA transcripts per cell, which is represented by the

unitless state variable m, and the state of the promoter, which is

defined by the pattern of transcription factors bound to their

operator sites. The promoter state is described by a discrete and

finite stochastic variable (s) (for an example, see Figure 1A). The

example in Figure 1A illustrates the simplest model of transcrip-

tional activation by a transcription factor. When the activator is

not bound (state 1), mRNA is synthesized at rate r1. When the

activator is bound to the promoter (state 2), mRNA is synthesized

at the higher rate r2. The promoter switches stochastically from

Figure 1. Two-state promoter. (A) Simple two-state bacterial promoter undergoing stochastic activation by a transcriptional activator binding to a
single operator site. The rates of activator association and dissociation are given by kon

A and k
off
A , respectively and the rates of mRNA production for

the basal and active states are r1 and r2 respectively. The mRNA degradation rate is assumed to be constant for each molecule, and is given by the
parameter c. (B) List of all possible stochastic transitions affecting either the copy number of mRNA (m) or the state of the promoter (s) and their
respective statistical weight. State 1 has the operator free. State 2 is the activator bound state. The weights represent the probability that each
change of state will occur during a time increment Dt. The master equation is constructed based on these rules.
doi:10.1371/journal.pcbi.1001100.g001

Promoter Architecture and Cell-to-Cell Variability
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state 1 to state 2 with rate kon
A , and from state 2 to state 1 with rate

k
off
A . Each mRNA molecule is degraded with rate c.

The time evolution for the joint probability of having the

promoter in states 1 or 2, with m mRNAs in the cell (which we

write as p(1,m) and p(2,m), respectively), is given by a master

equation, which we can build by listing all possible reactions that

lead to a change in cellular state, either by changing m or by

changing s (Figure 1b). The master equation takes the form:

d

dt
p(1,m)~{kon

A p(1,m)zk
off
A p(2,m){r1p(1,m){cmp(1,m)z

r1p(1,m{1)zc(mz1)p(1,mz1),

d

dt
p(2,m)~kon

A p(1,m){k
off
A p(2,m){r2p(2,m){cmp(2,m)z

r2p(2,m{1)zc(mz1)p(2,mz1):

ð1Þ

Inspecting this system of equations, we notice that by defining the

vector:

~pp(m)~
p(1,m)

p(2,m)

� �
, ð2Þ

and the matrices

K̂K~
{kon

A k
off
A

kon
A {k

off
A

" #
; R̂R~

r1 0

0 r2

� �
; ÎI~

1 0

0 1

� �
, ð3Þ

we can rewrite the system of equations (1) in matrix form.

d

dt
~pp(m)~ K̂K{R̂R{mcÎI

� �
~pp(m)zR̂R~pp(m{1)z(mz1)cÎI~pp(mz1): ð4Þ

This has several advantages, but the most important one is that

the matrix approach reduces the task of obtaining analytical

expressions for the moments of the steady state mRNA distribution

for an arbitrarily complex promoter to solving two simple linear

matrix equations (more details are given in the Text S1).

The matrices appearing in equation (4) all have simple and

intuitive interpretations. The matrix K̂K describes the stochastic

transitions between promoter states: The off-diagonal elements of

the matrix K̂Kij are the rates of making transitions from promoter

state (j)to promoter state (i).The diagonal elements of the matrix

K̂Kjj are negative, and they represent the net probability flux out of

state (j): K̂Kjj~{
P
i=j

K̂Kij . The matrix R̂R is a diagonal matrix whose

element R̂Rjj gives the rate of transcription initiation when the

promoter is in state (j). Finally, the matrix ÎI is the identity matrix.

An example of matrices K̂K and R̂R is presented pictorially in

Figure 1 in Text S1. It is straightforward to see that even though

equation (4) has been derived for a two-state promoter, it also

applies to any other promoter architecture. What will change for

different architectures are the dimensions of the matrices and

vectors (these are given by the number of promoter states) as well

as the values of the rate constants that make up the matrix

elements of the various matrices.

An important limit of the master equation, which is often

attained experimentally, is the steady state limit, where the

probability distribution for mRNA number per cell does not

change with time. Although the time dependence of the moments

of the mRNA distribution can be easily computed from our model,

for the sake of simplicity and because most experimental studies

have been performed on cells in steady state, we focus on this limit.

As shown in Text S1, analytic expressions for the first two

moments of the steady state mRNA probability distribution are

found by multiplying both sides of equation (4) by m and m2

respectively, and then summing m from 0 to infinity. After some

algebra (elaborated in an earlier paper and in Text S1), we find

that the first two moments can be written as:

SmT~
~rr ~mm(0)

c
, ð5Þ

Sm2T~SmTz
~rr ~mm(1)

c
: ð6Þ

The vector~rr contains the ordered list of rates of transcription

initiation for each promoter state. For the two-state promoter

shown in Figure 1,~rr~ r1,r2ð Þ. The vector ~mm(0) contains the steady

state probabilities for finding the promoter in each one of the

possible promoter states, while ~mm(1) is the steady-state mean

mRNA number in each promoter state. The vector ~mm(0) is the

solution to the matrix equation

K̂K ~mm(0)~0, ð7Þ

while the vector ~mm(1) is obtained from

K̂K{c ÎI
� 	

~mm(1)zR̂R ~mm(0)~0: ð8Þ

Figure 1 illustrates the following algorithm for computing the

intrinsic variability of mRNA number for promoters of arbitrarily

complex architecture:

1) Make a list of all possible promoter states and their kinetic

transitions (Figure 1B)

2) Construct the matrices K̂K and R̂R, and the vector~rr, (Figure 1

in Text S1).

3) Solve equations (7–8) to obtain ~mm(0) and ~mm(1)

4) Plug solutions of (7–8) into equations (5–6) to obtain the

moments.

The normalized variance of the mRNA distribution in steady

state is then computed from the equation:

g2~
Var(m)

SmT2
~

Sm2T{SmT2

SmT2
~

1

SmT
z

1

SmT2

~rr~mm(1)

c
{SmT2

� �
:ð9Þ

Equation (9) reveals that, regardless of the specific details

characterizing promoter architecture, the intrinsic noise is always

the sum of two components, and it can be written as

g2~
1

SmT
zg2

promoter: ð10Þ

The first component is due to spontaneous stochastic produc-

tion and degradation of single mRNA molecules, it is always equal

Promoter Architecture and Cell-to-Cell Variability
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to the Poissonian expectation of 1=SmT, and is independent of the

architecture of the promoter. For an unregulated promoter that is

always active and does not switch between multiple states (or does

so very fast compared to the rates of transcription and mRNA

degradation), the mRNA distribution is well described by a

Poisson distribution [45,47], and the normalized variance is equal

to 1=SmT. The second component (‘‘promoter noise’’) results from

promoter state fluctuations, and captures the effect of the

promoter’s architecture on the cell-to-cell variability in mRNA:

g2
promoter~

1

SmT2

~rr ~mm(1)

c
{SmT2

� �
: ð11Þ

In order to quantify the effect of the promoter architecture in

the level of cell-to-cell variability in mRNA expression, we define

the deviation in the normalized variance caused by gene

regulation relative to the baseline Poisson noise for the same

mean (see Figure 2):

Fold{change mRNA noise~
g2

g2
Poisson

~
Var(m)



SmT2

1=SmT
~

Var(m)

SmT

ð12Þ

Therefore, the deviation in the normalized variance caused by

gene regulation is equal to the ratio between the variance and the

mean. This parameter is also known as the Fano factor. Thus, for

any given promoter architecture, the Fano factor quantitatively

characterizes how large the mRNA noise is relative to that of a

Poisson distribution of the same mean (i.e. how much the noise for

the regulated promoter elevates with respect to the Poisson noise).

This is the parameter that we will use throughout the paper as the

metric of cell-to-cell variability in gene expression.

Promoter noise and variability of mRNA and protein
numbers

For proteins, the picture is only slightly more complicated. As

shown in the Text S1, in the limit where the lifetime of mRNA is

much shorter than that of the protein it encodes for (a limit that is

often fulfilled [30]), the noise strength of the probability

distribution of proteins per cell takes the following form (where

we define n as a state variable that represents the copy number of

proteins per cell):

Var(n)

SnT2
~

Sn2T{SnT2

SnT2
~

1zb

SnT
z

1

SnT2
b
~rr~nn(1)

d
{SnT2

� �
, ð13Þ

where d stands for the protein degradation rate, and the constant b

is equal to the protein burst size (the average number of proteins

produced by one mRNA molecule). The mean protein per cell is

given by

SnT~b
~rr ~mm(0)

d
, ð14Þ

and the vector ~nn(1) is the solution of the algebraic equation:

K̂K{d ÎI
� 	

~nn(1)zbR̂R ~mm(0)~0: ð15Þ

The reader is referred to the Text S1 for a detailed derivation

and interpretation of these equations. In the previous section we

have shown that the noise for proteins and mRNA take very

similar analytical forms. Indeed, if we define~rrn~b~rr and R̂Rn~b R̂R,

as the vector and matrix containing the average rates of protein

synthesis for each promoter state, it is straightforward to see that

equations (8) and (15) are mathematically equivalent, with the only

difference being that in equation (15) the matrix R̂Rn represents the

rates of protein synthesis, so all the rates of transcription are

multiplied by the translation burst size b. Therefore, the vectors

~mm(1) and~nn(1) are only going to differ in the prefactor b multiplying

all the different transcription rates. We conclude that the promoter

contribution to the noise takes the exact same analytical form both

for proteins and for mRNA, with the only other quantitative

difference being the different rates of degradation for proteins and

mRNA. Therefore, promoter architecture has the same qualitative

effect on cell-to-cell variability in mRNA and protein numbers. All

the conclusions about the effect of promoter architecture on cell-

to-cell variability in mRNA expression are also valid for proteins,

even though quantitative differences do generally exist. For the

sake of simplicity we focus on mRNA noise for the remainder of

the paper.

Parameters and assumptions
In order to evaluate the equations in our model, we use

parameters that are consistent with experimental measurements of

rates and equilibrium constants in vivo and in vitro, which we

summarize in Table 1. Although these values correspond to

specific examples of E. coli promoters, like the Plac or the PRM

promoter, we extend their reach by using them as ‘‘typical’’

parameters characteristic of bacterial promoters, with the idea

being that we are trying to demonstrate the classes of effects that

can be expected, rather than dissecting in detail any particular

promoter. The rate of association for transcription factors to

operators in vivo is assumed to be the same as the recently

measured value for the Lac repressor, which is close to the

diffusion limited rate [48]. In order to test whether the particular

selection of parameters in Table 1 is biasing our results, we have

also done several controls (See Figures 2–4 in Text S1) in which

the kinetic parameters were randomly sampled. We found that the

conclusions reached for the set of parameters in Table 1 are valid

for other parameter sets as well.

Operator strength reflects how tightly operators bind their

transcription factors, and it is quantitatively characterized by the

equilibrium dissociation constant KO{TF . The dissociation constant

has units of concentration and is equal to the concentration of free

transcription factor at which the probability for the operator to be

occupied is 1/2. KO{TF is related to the association and dissociation

rates by KO{TF ~koff



k0

on, where koff is the rate (i.e., the probability

per unit time) at which a transcription factor dissociates from the

promoter, and k0
on is a second order rate constant, which represents

the association rate per unit of concentration of transcription factors,

i.e., kon~k0
on NTF½ �. Note that in the last formula kon, which has units

of s21, is written as the product of two quantities: ½NTF �, which is the

concentration (in units of (mol/liter)) of transcription factors inside the

cell, and k0
on, a second order rate constant that has units of (mol/

liter)21s21. For simplicity, we assume that the binding reaction is

diffusion limited, namely, k0
onis already close to its maximum possible

value, so the only parameter that can differ from operator to operator

is the dissociation rate: strong operators have slow dissociation rates,

and weak operators have large dissociation rates.

Throughout this paper, we also make the assumption that the

mean expression level is controlled by varying the intracellular

concentration of transcription factors, a scenario that is very

Promoter Architecture and Cell-to-Cell Variability
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Figure 2. Simple repression architecture. (A) Time traces for promoter activity, mRNA and protein copy number are shown for both the weak
operator and the strong operator. The mRNA histograms are also shown. The weaker operator with a faster repressor dissociation rate leads to small
promoter noise, and an mRNA probability distribution resembling a Poisson distribution (shown by the blue-bar histogram), in which most cells express

Promoter Architecture and Cell-to-Cell Variability
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common experimentally [49,50,51]. We also assume that

changing the intracellular concentration of transcription factors

only affects the association rate of transcription factors to the

operators, but the dissociation rate and the rates of transcrip-

tion at each promoter state are not affected. In other words, koff

is a constant parameter for each operator, and it is not changed

when we change the mean by titrating the intracellular

repressor level. All of these general assumptions need to be

revisited when studying a specific gene-regulatory system. Here

our focus is on illustrating the general principles associated with

different promoter architectures typical of those found in

prokaryotes.

Simulations
To generate mRNA time traces, we applied the Gillespie

algorithm [52] to the master equation described in the text. A

single time step of the simulation is performed as follows: one of

the set of possible trajectories is chosen according to its relative

weight, and the state of the system is updated appropriately. At

the same time, the time elapsed since the last step is chosen

from an exponential distribution, whose rate parameter equals

the sum of rate parameters of all possible trajectories. This

process is repeated iteratively to generate trajectories that

exactly reflect dynamics of the underlying master equation. For

the figures, simulation lengths were set long enough for the

system to reach steady state and for a few promoter state

transitions to occur.

To generate the probability distributions, it is convenient to

reformulate the entire system of mRNA master equations in terms

of a single matrix equation. To do this, we first define a vector

~PP~

p(1,0)

p(2,0)

..

.

p(N,0)

p(1,1)

..

.

p(N,1)

p(1,2)

..

.

p(N,2)

..

.

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

~

~pp(0)

~pp(1)

~pp(2)

..

.

0
BBBB@

1
CCCCA ð16Þ

where p(i,m)is the joint probability of having mmRNAs while in

the ith promoter state. Then the master equation for time

evolution of this probability vector is

d~PP

dt
~

K̂K{R̂R cÎI 0 :::

R̂R K̂K{(R̂RzcÎI) 2cÎI :::

0 R̂R K̂K{(R̂Rz2cÎI) :::

0
:

:

:

0

:

:

:

R̂R

:

:

:

:

:

:

:

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

~pp(0)

~pp(1)

~pp(2)

..

.

0
BBBB@

1
CCCCAð17Þ

mRNA near the population average. In contrast, the stronger operator with a slower repressor dissociation rate, leads to larger promoter noise and
strongly non-Poissonian mRNA statistics. (B) Kinetic mechanism of repression for an architecture involving a single repressor binding site. The repressor
turns off the gene when it binds to the promoter (with rate kon

R ), and transcription occurs at a constant rate r when the repressor falls off (with rate k
off
R ).

(C) Normalized variance as a function of the fold-change in mean mRNA copy number. The parameters used are drawn from Table 1. The value of
k

off
R ~0:0023s{1from Table 1 corresponds to the in vitro dissociation constant of the Lac repressor from the Oid operator (black). The results for an off-

rate 10-times higher are also plotted (red). As a reference for the size of the fluctuations, we show the normalized variance for a Poisson promoter. (D)
Fano factor for two promoters bearing the same off-rates as in (B). Inset. Prediction for the Fano factor for the DO3DO2PlacUV5 promoter, a variant of the
PlacUV5 promoter for which the two auxiliary operators have been deleted. The fold-change in mRNA noise is plotted as a function of the fold-change in
mean mRNA copy number for mutants of the promoter that replace O1 for Oid, O2 or O3. The parameters are taken from Table 1 and [33]. Lifetimes of
the operator-repressor complex are 7 min for Oid, 2.4 min for O1, 11s for O2 and 0.47 s for O3. (E) Fold-change in protein noise as a function of the fold-
change in mean expression. As expected, the effect of operator strength is the same as observed for mRNA noise.
doi:10.1371/journal.pcbi.1001100.g002

Table 1. Kinetic parameters used to make the quantitative estimates in the text and plots in the figures.

Kinetic Rate Symbol Value Reference

Unregulated promoter transcription rate r 0.33s21 [99]

Repressor and activator associations rates k0
R,k0

A 0:0027 (s nM){1 [2]

Repressor and activator dissociation rates k
off
R ,k

off
A

0:0023 s{1 [42]

mRNA decay rate c 0:011 s{1 [10]

Ratio between transcription rates due to activation f ~r1=r2 11 [50]

Cooperativity in repression Vrepression 0.013 [50]

Cooperativity in activation Vactivation 0:1 [33]

Looping J-factor ½J� 660 nM [33]

Protein translation burst size b 31.2 proteins/mRNA [5]

Protein decay rate ½J� 0.00083s21 [99]

These parameters are all measured for model systems such as the Plac promoter or the PRM in E. coli, and are here considered representative for promoter-transcription
factor interactions.
doi:10.1371/journal.pcbi.1001100.t001
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where each element of the matrix is itself an N by N matrix as

described in the text. Then finding the steady-state distribution
~PPSS is equivalent to finding the eigenvector of the above matrix

associated with eigenvalue 0. To perform this calculation

numerically, one must first choose an upper bound on mRNA

copy number in order to work with finite matrices. In this work,

we chose an upper bound six standard deviations above mean

mRNA copy number as an initial guess, and then modified this

bound if necessary. Computations were performed using the SciPy

(Scientific Python) software package.

Results

Promoters with a single repressor binding site
We first investigate a promoter architecture consisting of a

single repressor binding site, and examine how operator strength

affects intrinsic variability in gene expression. Although this

particular mode of gene regulation has been well studied

theoretically before [1,16,36,37,45], it is a useful starting point

for illustrating the utility of this class of models. Within this class of

models, when the repressor is bound to the operator, it interferes

with transcription initiation and transcription does not occur.

When the repressor dissociates and the operator is free, RNAP can

bind and initiate transcription at a constant rate r. The probability

per unit time that a bound repressor dissociates is k
off
R , and the

probability per unit time that a free repressor binds the empty

operator is kon
R ~k0

on NR½ �, where k0
on is the second-order

association constant and NR½ � is the intracellular repressor

concentration. The rate of mRNA degradation per molecule is

c. This mechanism is illustrated in Figure 2B.

We compute the mean and the Fano factor for this architecture

following the algorithm described in the Mathematical Methods

section. The kinetic rate and transcription rate matrices K̂K and R̂R

are shown in Table S1 in Text S1. For this simple architecture, the

mean of the mRNA probability distribution and the normalized

variance take simple analytical forms:

SmT~
r

c

k
off
R

k
off
R zkon

R

~
r

c

1

1zkon
R

.
k

off
R

, ð18Þ

g2~
1

SmT
z

kon
R

k
off
R

c

czk
off
R zkon

R

: ð19Þ

Using the relationship between kon
R and the intracellular

concentration of repressor, we can write the mean as:

SmT~
r

c

1

1zk0
on NR½ �

.
k

off
R

~SmTmax

1

1z NR½ �=KOR

: ð20Þ

Here we have defined the equilibrium dissociation constant

between the repressor and the operator as: KOR~k
off
R

.
k0

on. It is

interesting to note that equation (20) could have been derived

Figure 3. Dual repression architecture. (A) Kinetic mechanism of
repression for a dual-repression architecture. The parameters k

off
R and

kon
R are the rates of repressor dissociation and association to the

operators, and V is a parameter reflecting the effect of cooperative
binding on the dissociation rate. For independent binding, V~1 and
for cooperative binding V~0:013 (see Table 1). (B) Fold-change in the
mRNA noise caused by gene regulation for independent (red) and
cooperative (black) repression as a function of the mean mRNA copy
number. Inset: Prediction for a variant of the l PR promoter where the
upstream operators OL1, OL2 and OL3 are deleted. The promoter mRNA
noise is plotted as a function of the mean mRNA number for both wild-

type cI repressor (blue line) and a repressor mutant (Y210H) that
abolishes cooperativity (red line). Parameters taken from [43,97]. The
lifetime of the OR1-cI complex is 4 min. Lifetime of OR2-cI complex is
9.5s. (C) mRNA distribution for the same parameters used in (B).
doi:10.1371/journal.pcbi.1001100.g003
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Figure 4. Repression by DNA looping. (A) Kinetic mechanism of repression. k
off
R and kon

R are the rates of repressor dissociation and association.
The rate of loop formation is kloop~ J½ �k0

R, where J½ � can be thought of as the local concentration of repressor in the vicinity of one operator when it is
bound to the other operator. The rate of dissociation of the operator-repressor complex in the looped conformation is given by kunloop~c k

off
R . The

parameter c captures the rate of repressor dissociation in the looped state relative to the rate of dissociation in a non-looped state. (B) Effect of DNA
looping on cell-to-cell variability. The Fano factor is plotted as a function of the fold-change in the mean expression level, in the absence (blue) and
presence (black) of the auxiliary operator, and assuming that dissociation of the operator from Om is the same in the looped and the unlooped state
(c = 1). The presence of the auxiliary operator, which enables repression by DNA looping, increases the cell-to-cell variability. The regions over which
the state with two repressors bound, the state with one repressor bound, or the looped DNA state are dominant are indicated by the shading in the
background. The noise is larger at intermediate repression levels, where only one repressor is found bound to the promoter region, simultaneously
occupying the auxiliary and main operators through DNA looping. The rate of DNA loop formation is kloop~ 660nMð Þk0

R [33]. We also show the effect
of DNA looping in the case where the kinetics of dissociation from the looped state are 100 times faster than the kinetics of dissociation from the

unlooped state: c~kunloop

.
k

off
R ~100(red). In this limit, the presence of the auxiliary operator leads to less gene expression noise. (C) Prediction for a

library of PlacUV5 promoter variants, harboring an O2 deletion, and with the position of O3 moved upstream by multiples of 11 bp while keeping its
identity (red), or replaced by the operator by Oid (black). Parameters are taken from the analysis in [33] of the data in [98]. We assume a concentration
of 50 Lac repressor tetramers per cell. The association rate of the tetrameric repressor to the operators is taken from Table 1. The lifetimes of the
operator-repressor complex are given in the caption to Figure 2. The dependence of the rate of DNA looping on the inter-operator distance is taken

from [33], and equal to: kloop~kon
R |Exp {

u

D
{vLog D½ �zwDzz

h i
, where u~140:6, v~2:52, w~0:0014, z~19:9. Note that the Fano factor is not

plotted as a function of the mean, but as a function of the inter-operator distance D. In this case, as we change D, we vary both the mean and the

Fano factor.
doi:10.1371/journal.pcbi.1001100.g004
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using the thermodynamic model approach [33,34,41,53]. In

particular we see that this expression is equal to the product of

the maximal activity in the absence of repressor SmTmax~r=c,

and the so-called fold-change in gene expression: 1zkon
R

.�
k

off
R Þ

{1
~ 1z NR½ �=KORð Þ{1

[34]. The fold-change is defined as

the ratio of the level of expression in the presence of the

transcription factor of interest, and the level of expression in the

absence of the transcription factor.

The Fano factor for the mRNA distribution can be computed

from equation (12) and we obtain:

Fano~1z
kon

R

k
off
R zkon

R

� � r

czk
off
R zkon

R

� � , ð21Þ

which is also shown as the first entry of Table S2 in Text S1. In

many experiments [4,15,31,50], the concentration of repressor

inside the cell NR½ � (and therefore the association rate kon
R ~k0

on NR½ �)
can be varied by either expressing the repressor from an inducible

promoter, or by adding an inducer that binds directly to the

repressor rendering it incapable of binding specifically to the

operators in the promoter region. When such an operation is

performed, the only parameter that is varied is typically kon
R , and all

other kinetic rates are constant. The Fano factor can thus be re-

written as a function of the mean mRNA, and we find:

Fano~1zSmT
1{SmT=SmTmax

k
off
R

.
czSmT=SmTmax

0
@

1
A: ð22Þ

Therefore, for any given value of the mean, the Fano factor

depends only on two parameters: the maximal mRNA or protein

expression per cell, and a parameter that reflects the strength of

binding between the repressor and the operator: k
off
R

.
c.

Equations (20) and (21) reveal that changes in the mean due to

repressor titration affect the noise as well as the mean. Since

neither the repressor dissociation rate k
off
R nor the mRNA

degradation rates are affected by the concentration of repressors,

k
off
R

.
c is a constant parameter that will determine how large the

cell-to-cell variability is: The Fano factor is maximal for promoters

with very strong operators, (k
off
R ,,c, and it goes to 1 (i.e., the

distribution tends to a Poisson distribution) when the operator is

very weak and the rate of dissociation extremely fast (k
off
R ..c).

In the latter limit of fast promoter kinetics, the fast fluctuations in

promoter occupancy are filtered by the long lifetime of mRNA.

Effectively, mRNA degradation acts as a low-pass frequency filter

[54,55], and fast fluctuations in promoter occupancy are not

propagated into mRNA fluctuations. Therefore, promoters with

strong operators are expected to be noisier than promoters with

weak operators [56]. From this discussion it should also be clear

that the mRNA degradation rate critically affects cell-to-cell

variability. Any processes that tend to accelerate degradation will

tend to increase noise, and mRNA stabilization (i.e., protection of

the transcript by RNA binding proteins) leads to reduction of

variability. However, the focus of this article is on promoter

architecture and transcriptional regulation. Therefore, we do not

consider regulation of transcription by mRNA degradation, and

assume that all the promoters transcribe the same mRNA as is

often the case in experimental studies.

The effect of operator strength on the output of transcription

and translation is illustrated in Figure 2A, where we show results

from a stochastic simulation of the model depicted in Figure 2B,

for the case of a weak and a strong operator. The simulation yields

trajectories in time for the promoter state, the mRNA, and protein

number, as well as the steady state distribution of mRNA number.

Concentrations of repressor in the simulations were chosen so that

the mean expression level was equal for the two different promoter

architectures. As expected from the general arguments presented

above, we clearly see that the level of variability is smaller for the

weak operator than for the strong operator, due to faster promoter

switching leading to smaller mRNA fluctuations and a more

Poisson-like mRNA distribution (Figure 2A, weak promoter). Slow

dissociation from a strong operator, on the other hand, causes slow

promoter state fluctuations and a highly non-Poissonian mRNA

distribution, with few cells near the mean expression level (see

Figure 2A, strong promoter).

In order to show that the effect of operator strength on the cell-

to-cell variability is general and does not depend on the particular

set of parameters chosen in the simulation, in figures 2C and 2D,

we show the normalized variance and the Fano factor as a

function of the fold-change in the mean mRNA concentration for

a strong operator whose dissociation rate is k
off
R ~0:0027s{1 (a

value that is representative of well characterized repressor-

operator interactions such as the Lac repressor-lacOid, or the

cI2-lOR1), and for a single weak operator whose dissociation rate

k
off
R is 10 times larger.

The Fano factor has a characteristic shape whereby it takes

values approaching 1 at low and high transcription levels with a

peak at intermediate values. The reason for this shape is that for

very low transcription levels the promoter is nearly always inactive,

firing only very rarely. In this limit successive transcription events

become uncorrelated and the time in between them is exponen-

tially distributed, leading to a distribution of mRNA per cell that

approaches a Poisson distribution characterized by a Fano factor

equal to 1. In contrast, for very high transcription levels the

promoter is nearly always active, switching off very rarely and

staying in the off state for short times. In this limit, transcription

events are again uncorrelated and exponentially distributed,

leading once again to a Poisson distribution of mRNA number.

It is only for intermediate values of the mean that the promoter is

switching between a transcriptionally active and an inactive state.

This causes transcription to occur in bursts, and the mRNA

distribution to deviate from Poisson, leading to a Fano factor that

is larger than 1.

In Figure 2E we plot the fold-change in protein noise due to

gene regulation for the simple repression architecture. As

expected, we find that the effect of operator strength in protein

noise is qualitatively identical to what we found for mRNA. Since

the same can be said of all the rest of architectures studied, we will

limit the discussion to mRNA noise for the rest of the paper, with

the understanding that for the class of models considered here, all

the conclusions about the effect of promoter architecture in cell-to-

cell variability that are valid for mRNA, are true for intrinsic

protein noise as well.

In Figure 2, and throughout this paper, we plot the Fano factor

as a function of transcription level, which is characterized by the

fold-change in gene expression. The fold-change in gene

expression is defined as the mean mRNA number in the presence

of the transcription factor, normalized by the mean mRNA in the

absence of the transcription factor. For architectures based on

repression, the fold-change in gene expression is always less than 1,

since the repressor reduces the level of transcription. For example,

a fold-change in gene expression of 0.1 means that in the presence

of repressor, the transcription level is 10% of the value it would

have if the repressor concentration dropped to 0. For the case of
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activators, the fold-change is always greater than 1, since activators

raise the level of transcription.

An example of the single repressor-binding site architecture is a

simplified version of the PlacUV5 promoter, which consists of a

single operator overlapping with the promoter. Based on a simple

kinetic model of repression, in which the Lac repressor competes

with RNAP for binding at the promoter, we can write down the K̂K
and R̂R matrices and compute the cell-to-cell variability in mRNA

copy number. The matrices are presented in Table S1 in Text S1.

Based on our previous analysis, we know that stronger operators

are expected to cause larger noise and higher values of the Fano

factor than weaker operators. Therefore, we expect that if we

replace the wild-type O1 operator by the 10 times weaker O2

operator, or by the ,500 times weaker operator O3, the fold-

change in noise should go down. Using our best estimates and

available measurements for the kinetic parameters involved, we

find that noise is indeed much larger for O1 than for O2, and it is

negligible for O3. This prediction is presented as an inset in

Figure 2C.

Promoters with two repressor-binding operators
Dual repression occurs when promoters contain two or more

repressor binding sites. Here, we consider three different scenarios

for architectures with two operators: 1) repressors bind indepen-

dently to the two operators, 2) repressors bind cooperatively to the

two operators and 3) one single repressor may be bound to the two

operators simultaneously thereby looping the intervening DNA. At

the molecular level, cooperative repression is achieved by two

weak operators that form long-lived repressor-bound complexes

when both operators are simultaneously occupied. Transcription

factors may stabilize each other either through direct protein-

protein interactions [53], or through indirect mechanisms

mediated by alteration of DNA conformation [57].

Cooperative and independent repression. The kinetic

mechanisms of gene repression for both the cooperative and

independent repressor architectures are reproduced in Figure 3A.

For simplicity, we assume that both sites are of equal strength, so

the rates of association and dissociation to both sites are equal.

Cooperative binding is reflected in the fact that the rate of

dissociation from the state where the two operators are occupied is

slower (by a factor Vvv1) than the dissociation from a single

operator. This parameter is related to the cooperativity factor v
often found in thermodynamic models [54] by V~1=v. A typical

value of , 10{3{10{2 [50,53]. By way of contrast, independent

binding is characterized by a value of V~1, which reflects the fact

that the rate of dissociation from each operator is not affected by

the presence of the other operator.

The K̂K and R̂R matrices for these two architectures are defined in

Table S1 in Text S1. Using these matrices, we can compute the

mean gene expression and the Fano factor for these two

architectures as a function of the concentrations of repressor.

The resulting expression for the fold-change in noise is shown as

entry number 3 of Table S2 in Text S1. As shown in Figure 3B,

the noise for cooperative repression is substantially larger than for

the independent repression architecture. The high levels of

intrinsic noise associated with cooperative repression can be

understood intuitively in terms of the kinetics of repressor-operator

interactions. At low repressor concentration, the lifetime of the

states where only one repressor is bound to either one of the two

operators can be shorter than the time it takes for a second

repressor to bind. This makes simultaneous binding of two

repressors to the two operators a rare event. However, when it

occurs, the two repressors stabilize each other, forming a very

long-lived complex with the operator DNA. This mode of

repression, with rare but long-lived repression events, is intrinsi-

cally very noisy, since the promoter switches slowly between active

(unrepressed) and inactive (repressed) states, generating wide

bimodal distributions of mRNA (see Figure 3C). On the other

hand, independent binding to two operators causes more frequent

transitions between repressed and unrepressed states, leading to

lower levels of intrinsic noise and long-tailed mRNA distributions

(see Figure 3C). In order to illustrate these conclusions, we have

evaluated the model with a specific parameter set that is

representative of this kind of bacterial promoters, and plotted

the Fano factor as a function of the mean, under the assumption

that we vary the mean by titrating the amount of repressor inside

the cell. Furthermore, so as to demonstrate that our conclusions

are not dependent on choice of parameters, we have randomly

generated 10,000 different sets of kinetic parameters and

compared the Fano factor for cooperative and independent

binding. The result of this analysis is shown in Figure 2 in Text

S1, where we demonstrate that cooperative binding always results

in larger cell-to-cell variability than non-cooperative binding.

As an example of the two repressor-binding sites architecture,

we consider a simplified version of the lytic phage-l PR promoter,

which is controlled by the lysogenic repressor cI. The wild-type PR

promoter consists of three proximal repressor binding sites, OR1,

OR2 and OR3, with different affinities for the repressor (OR2 is

,25 times weaker than OR1) [58], and three distal operators OL1,

OL2 and OR3. For simplicity, we consider a simpler version of PR,

harboring a deletion of the three distal operators. In the absence of

these operators, the OR3 operator plays only a very minor role in

the repression of this promoter, and it can be ignored [50,59]. We

are then left with only OR1 and OR2. The cI repressor binds

cooperatively to OR1 and OR2, and that cooperativity is mediated

by direct protein-protein interactions between cI bound at each

operator [59]. Mutant forms of cI that are cooperativity deficient

(i.e., not able to bind cooperatively to the promoter) have been

designed [60]. In the inset in Figure 3B, we compare the

normalized variance of the mRNA distribution, both for wild-type

cI repressor, and for a cooperativity deficient mutant such as

Y210H [60]. The cooperative repressor is predicted to have

significantly larger promoter noise than the cooperativity deficient

mutant.

Simultaneous binding of one repressor to two operators:

DNA looping. Repression may also be enhanced by the

presence of distant operators, which stabilize the repressed state

by allowing certain repressors to simultaneously bind to both

distant and proximal operators, forming a DNA loop [61,62]. The

Plac promoter is a prominent example of this architecture. The

kinetic mechanism of repression characterizing this promoter

architecture is presented in Figure 4A. The repressor only prevents

transcription when it is bound to the main operator Om, but not

when it is only bound to the auxiliary operator Oa. DNA loop

formation is characterized by a kinetic rate kloop~k0
on J½ � where

J½ �, the looping J-factor, can be thought of as the local

concentration of repressor in the vicinity of one operator when

the repressor is bound to the other operator [33,34]. The rate of

dissociation of the operator-repressor complex in the looped

conformation is given by kunloop~c k
off
R . The parameters J½ � and c

have both been measured in vitro for the particular case of the Lac

repressor [42,63], and also estimated from in vivo data [33,64]. The

K̂Kand R̂R matrices for this architecture are defined in Table S1 in

Text S1. We use these matrices to compute the mean and the

noise strength, according to equations (5–12) resulting in the fifth

entry of Table S2 in Text S1.

We first examine how the presence of the auxiliary operator

affects the level of cell-to-cell variability in mRNA expression. In
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Figure 4B we compare the Fano factor in the absence of the

auxiliary operator with the Fano factor in the presence of the

auxiliary operator, which is assumed to be of the same strength as

the main operator. We use parameters in Table 1, and we first

assume that the dissociation rate of the operator-repressor

complex in the looped state is the same as the dissociation rate

in the unlooped state, so c~1 and kunloop~k
off
R . This assumption

is supported by single-molecule experiments in which the two

operators are on the same side of the DNA double-helix, separated

by multiples of the helical period of DNA [42,63]. Under these

conditions we find that the presence of an auxiliary operator

results in a larger Fano factor, in spite of the fact that the auxiliary

operator Oa does not stabilize the binding of the repressor to the

main operator Om. Interestingly, we find that the Fano factor is

maximal at intermediate concentrations of repressor for which

only one repressor is bound to the promoter, making the

simultaneous occupancy of the auxiliary and main operators

mediated by DNA looping possible. In contrast, the Fano factor is

identical to that of the simple repression case if the concentration

of repressor is so large that it saturates both operators and looping

never occurs. It had been previously hypothesized that DNA

looping might be a means to reduce noise in gene expression, due

to rapid re-association kinetics between Om and a repressor that is

still bound to Oa, which may cause short and frequent bursts of

transcription [64,65]. Here, by applying a simple stochastic model

of gene regulation, we show that the presence of the auxiliary

operator does not, by itself, decrease cell-to-cell variability. On the

contrary, it is expected to increase it. The reason for this increase is

that the rate of dissociation from the main operator is not made

faster by DNA looping; instead the presence of the auxiliary

operator causes the repressor to rapidly rebind the main operator,

extending the effective period of time when the promoter is

repressed.

Indeed, we find that only if the dissociation rate for a repressor

in the looped state is faster than in the unlooped state, the presence

of the auxiliary operator might reduce the cell-to-cell variability.

To illustrate this limit, we have assumed a value of c = 100, so that

kunloop~100 k
off
R , and find that the Fano factor goes down, below

the expectation for the simple repression architecture. A modest

increase in the dissociation rate in the looped conformation has

been reported in recent single-molecule experiments for promoter

architectures in which the two operators are out of phase (located

on different faces of the DNA) [42]. In order to verify the general

validity of these conclusions, we have randomly chosen 10,000

different sets of kinetic parameters and compared the Fano factor

for an architecture with an auxiliary operator and an architecture

without the auxiliary operator (simple repressor). In this analysis

the operator strength, rate of transcription, rate of DNA loop

formation and mean mRNA are randomly sampled over up to 4

orders of magnitude. The results are shown in Figure 4 in Text S1.

In the limit where dissociation of the repressor from the operator is

not affected by DNA looping c = 1, we find that the presence of the

auxiliary operator leads to an increase in noise (Figure 4A in Text

S1). In contrast, we find that when this parameter c is allowed to be

larger than 1, the presence of the auxiliary operator reduces cell-

to-cell variability in many instances (Figure 4B in Text S1).

An example of this type of architecture is a simplified variant of

the PlacUV5 promoter, which consists of one main operator and

one auxiliary operator upstream from the promoter. The kinetic

mechanism of repression is believed to be identical to the one

depicted in Figure 4A [23,42,63,64]. We can use the stochastic

model of gene regulation described in the theory section to make

precise predictions that will test this kinetic model of gene

regulation by DNA looping. We find that the kinetic model

predicts that, if we move the center of the auxiliary operator

further upstream from its wild-type location, in increments of

distance given by the helical period of the DNA, such that both

operators stay in phase, the fold-change in noise should behave as

represented in Figure 4C. In order to model the effect of DNA

looping, we assume that the dependence of the rate of DNA

looping on the inter-operator distance D (in units of base-pairs) is

given by [33], kloop~kon
R |Exp {

u

D
{vLog D½ �zwDzz

h i
,

where u~140:6, v~2:52, w~0:0014, z~19:9[33], and we

assume the same concentration of repressors (and therefore the

same value for kon
R ) for all of the different loop lengths. Note that in

Figure 4C, the Fano factor is not plotted as a function of the mean,

but as a function of the inter-operator distance D. That is, we keep

the number of repressors constant, and instead we alter the

distance between the two operators. In particular, as the operator

distance is changed, both the mean and the variance will change,

and therefore a direct comparison between Figures 4C and 4B

cannot be made. If we had plotted the Fano factor as a function of

the mean (as we do in Figure 4B) we would have seen that, for the

same mean, the Fano factor for looping is always larger than for a

simple repression motif, consistent with Figure 4B.

Simple activation
Transcriptional activators bind to specific sites at the promoter

from which they increase the rate of transcription initiation by

either direct contact with one or more RNAP subunits or

indirectly by modifying the conformation of DNA around the

promoter [57]. The simplest example of an activating promoter

architecture consists of a single binding site for an activator in the

vicinity of the RNAP binding site. When the activator is not

bound, transcription occurs at a low basal rate. When the activator

is bound, transcription occurs at a higher, activated rate.

Stochastic association and dissociation of the activator causes

fluctuations in transcription rate which in turn cause fluctuations

in mRNA copy number.

This simple activation architecture is illustrated in Figure 1A.

The K̂Kand R̂R matrices for this architecture are given in Table S1 in

Text S1. Solving equations (5–8) for this particular case, we find

that the mean mRNA per cell for this simple mechanism takes the

form:

SmT~
r2

c

kon
A

kon
A zk

off
A

z
r1

c

k
off
A

kon
A zk

off
A

ð23Þ

The mean mRNA can be changed by adjusting the intracellular

concentration of the activator. The rate at which one of the

activators binds to the promoter is proportional to the activator

concentration: kon
A ~k0

on NA½ �. Following the same argument as we

used in the simple repression case, the equilibrium dissociation

constant for the activator-promoter interaction is given by KOA~

k
off
A

.
k0

on. Finally, it is convenient to define the enhancement

factor: the ratio between the rate of transcription in the active and

the basal states f ~r2=r1. The mean mRNA can be written in

terms of these parameters as:

SmT~
r1

c

KOA

NA½ �zKOA

zf
NA½ �

NA½ �zKOA

� �
: ð24Þ

The Fano factor can be computed using equations (5–12) and it

is shown as entry 2 of Table S2 in Text S1. We can rewrite the
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equation appearing in Table S2 in Text S1 by writing kon
A as a

function of the mean:

Fano ~1zSmT
f {SmT=SmTbasal

SmT=SmTbasal

� �2

SmT=SmTbasal{1

f {SmT=SmTbasalð Þz k
off
A

c
f {1ð Þ

ð25Þ

With these equations in hand, we explore how operator strength

affects noise in gene expression in the case of activation. Stronger

operators bind to the activator more tightly than weak operators,

leading to longer residence times of the promoter in the active

state.

In Figure 5A we plot the Fano factor as a function of the fold-

change in mean expression for a strong operator as well as a 10

times weaker operator. We have used the parameters in Table 1.

Just as we saw for the simple repression architecture, it is also true

for the simple activation architecture that stronger operators cause

larger levels of noise for activators than weaker operators.

To get a sense of the differences between these two standard

regulatory mechanisms, we compare simple repression with simple

activation. In Figure 5B, we plot the Fano factor as a function of

the mean for a repressor and an activator with identical

dissociation rates. We assume that the promoter switches between

a transcription rate r~0 in its inactive state (which happens when

the repressor is bound in the simple repression case, or the

activator is not bound in the simple activation case), and a rate

equal to r~0:33 s{1(see Table 1) in the active state (repressor not

bound in the simple repression case, activator bound in the simple

activation case). As shown in Figure 5B, at low expression levels

the simple activation is considerably (.20 times) noisier than the

simple repression promoter. At high expression levels both

architectures yield very similar noise levels, with the simple

repression architecture being slightly noisier. A low level of gene

expression may be achieved either by low concentrations of an

activator, or by high concentrations of a repressor. Low

concentrations of an activator will lead to rare activation events.

High concentrations of a repressor will lead to frequent but short-

lasting windows of time for which the promoter is available for

transcription. As a result, and as we illustrate in Figure 5C, the

activation mechanism leads to bursty mRNA expression whereas

the repressor leads to Poissonian mRNA production. This result

suggests that in order to maintain a homogeneously low expression

level, a repressive strategy in which a high concentration of

repressor ensures low expression levels may be more adequate

than a low activation strategy. We confirmed that this statement is

true for other parameter sets in addition to the particular choice

used above. We randomly sampled the rates of activator and

repressor dissociation, as well as the rates of basal and maximum

transcription. As shown in Figure 3 in Text S1, the statement that

the simple activation architecture is noisier than the simple

repression architecture at low expression (less than 10 mRNA/cell)

levels is valid for a wide range of parameter values, with over 99%

of the conditions sampled leading to this conclusion.

An example of simple activation is the wild-type Plac promoter,

which is activated by CRP when complexed with cyclic AMP

(cAMP). CRP is a ubiquitous transcription factor, and is involved

in the regulation of dozens of promoters, which contain CRP

binding sites of different strengths [66]. In the inset of Figure 5A

we include CRP as an example of simple activation, and make

predictions for how changing the wild-type CRP binding site in

the Plac promoter by the CRP binding site of the Pgal promoter

(which is ,8 times weaker [67]), should affect the Fano factor. As

expected from our analysis of this class of promoters, the noise

goes down.

Dual activation: Independent and cooperative activation
Dual activation architectures have two operator binding sites.

Simultaneous binding of two activators to the two operators may

lead to a larger promoter activity in different ways. For instance, in

some promoters each of the activators may independently contact

the polymerase, recruiting it to the promoter. As a result, the

probability to find RNAP bound at the promoter increases and so

does the rate of transcription [33,68]. In other instances, there is

no increase in enhancement factor when the two activators are

bound. However, the first activator recruits the second one

through protein-protein or protein-DNA interactions, stabilizing

the active state and increasing the fraction of time that the

promoter is active [59]. These two modes are not mutually

exclusive, and some promoters exhibit a combination of both

mechanisms [69].

We first investigate the effect of dual activation in the limit

where binding of the two transcription factors is not cooperative.

Assuming that activators bound at the two operators indepen-

dently recruit the polymerase, we compare this architecture with

the simple activation architecture. The mechanism of activation is

depicted in Figure 6A, and matrices K̂K and R̂R are presented in

Table S1 in Text S1. For simplicity, we assume that both operators

have the same strength, and both have the same enhancement

factor f ~r2=r1~r3=r1. When the two activators are bound, the

total enhancement factor is given by the product of the individual

enhancement factors, which in this case is f |f ~r4=r1 [33]. All of

the other relevant kinetic parameters are given in Table 1. The

Fano factor is plotted in Figure 6B. We find that compared to the

single operator architecture, the second operator increases the

level of variability, even when binding to the operators is non-

cooperative.

We then ask whether this is also true when the binding of

activators is cooperative. We assume a small cooperativity factor

V~0:1. Just as we found for repressors, cooperative binding of

activators generates larger cell-to-cell variability than independent

binding, which in turn generates larger cell-to-cell variability than

simple activation. This is illustrated in the stochastic simulation in

Figure 6C. As expected the dual activation architectures are

noisier than the simple activation, characterized by rare but long

lived activation events that lead to large fluctuations in mRNA

levels. In contrast, the simple activation architecture leads to more

frequent but less intense activation events.

Together with the results from the dual repressor mechanism,

these results indicate that multiplicity in operator number may

introduce significant intrinsic noise in gene expression. Multiple

repeats of operators commonly appear in eukaryotic promoters

[1,70,71], but are often found in prokaryotic promoters as well

[59,68,72]. It is interesting to note that this prediction of the model

is in qualitative agreement with the findings by Raj et al. [2] who

report an increase in cell-to-cell variability in mRNA when the

number of activator binding sites was changed from one to seven.

An example of cooperative activation is the lysogenic phage-l
PRM promoter [59]. This promoter contains three operators (OR1,

OR2 and OR3) for the cI protein, which acts as an activator. When

OR2 is occupied, cI activates transcription. OR1 has no direct effect

on the transcription rate, but it helps recruit cI to OR2, since cI

binds cooperatively to the two operators. Finally, OR3 binds cI

very weakly, but when it is occupied, PRM becomes repressed.

There are variants of this promoter [50] that harbor mutations in
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OR3 that make it unable to bind cI. In Figure 6D, we include one

of these variants, r1-PRM [51] as an example of dual activation,

and we present a theoretical prediction for the promoter noise as a

function of the mean mRNA. We examine the role of

cooperativity by comparing the wild-type cI, with a cooperativity

deficient mutant. We find that the cooperative activator causes

substantially larger cell-to-cell variability than the mutant,

emphasizing our expectation that cooperativity may cause

substantial noise in gene expression in bacterial promoters such

as PRM.

Discussion

The DNA sequence of a promoter encodes the binding sites for

transcriptional regulators. In turn, the collection of these

regulatory sites, known as the architecture of the promoter,

determines the mechanism of gene regulation. The mechanism of

gene regulation, determines the transcriptional response of a

promoter to a specific input, in the form of the concentration of

one or more transcription factors or inducer molecules. In recent

years we have witnessed an increasing call for quantitative models

of gene regulation that can serve as a conceptual framework for

reflecting on the explosion of recent quantitative data, testing

hypotheses, and proposing new rounds of experiments [34,73,74].

Much of this data has come from bulk transcription experiments

with large numbers of cells, in which the average transcriptional

response from a population of cells (typically in the form of the

level of expression of a reporter protein) was measured as a

function of the concentration of a transcription factor or inducer

molecule [50,75]. Thermodynamic models [34,41,53] of gene

regulation are a general framework for modeling gene regulation

and dealing with this kind of bulk transcriptional regulation

experiments. This class of models has proven to be very successful

at predicting gene expression patterns from the promoter

architecture encoded in the DNA sequence [49,73–77]. However,

a new generation of experiments now provides information about

gene expression at the level of single-cells, with single-molecule

resolution [2,4,5,6,9,10,23,31,47,51]. These experiments provide

much richer information than just how the mean expression

changes as a function of an input signal: they tell us how that

response is spread among the population of cells, distinguishing

homogeneous responses, in which all cells express the same

amount of proteins or mRNA for the same input, from

heterogeneous responses in which some cells achieve very high

expression levels while others maintain low expression. Thermo-

dynamic models are unable to explain the single-cell statistics of

gene expression, and therefore are an incomplete framework for

modeling gene regulation at the single-cell level.

A class of stochastic kinetic models have been formulated that

make it possible to calculate either the probability distribution of

Figure 5. Simple activation architecture. (A) The Fano factor is
plotted as a function of the fold-change gene expression (blue line). In
red, we show the effect of reducing operator strength (i.e., reducing the
lifetime of the operator-activator complex) by a factor of 10. Just as we
observed with single repression, weak activator binding operators
generate less promoter noise than strong activating operators. The
parameters used are shown in Table 1 with the exception of
r1~0:33 s{1



f , where f is the enhancement factor. Inset: Prediction

for the activation of the Plac promoter. The fold-change in noise is
plotted as a function of the fold-change in mean mRNA expression for
both the wild-type Plac (CRP dissociation time = 8 min), represented by
a blue line, and a Plac promoter variant where the lac CRP binding site
has been replaced by the weaker gal CRP binding site (dissociation
time = 1 min). The enhancement factor was set to f ~50 [33]. These
parameters are taken from [67] and [33]. The remaining parameters
are taken from Table 1. (B) Fano factor as a function of SmRNAT=

SmRNATmax for a repressor (black) and an activator (red) with the
same transcription factor affinity. The transcription rate in the absence
of activator is assumed to be zero. The transcription rate in the fully
activated case is equal to the transcription rate of the repression
construct in the absence of repressor and is r~0:33 s{1 as specified by
Table 1. For low expression levels SmT=SmTmaxv0:5 simple activation
is considerably noisier than simple repression. (C) The results of a
stochastic simulation for the simple activation and simple repression
architectures. We assume identical dissociation rates for the activator
and repressor, and identical rates of transcription in their respective
active states. As shown in (B), low concentrations of an activator result
in few, but very productive transcription events, whereas high
concentrations of a repressor lead to the frequent but short lived
excursions into the active state.
doi:10.1371/journal.pcbi.1001100.g005
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mRNA or proteins per cell or its moments, for simple models of

gene regulation involving one active and one inactive promoter

state [36,37,45,78]. Recently, we have extended that formalism to

account for any number of promoter states [30], allowing us to

model any promoter architecture within the same mathematical

framework. Armed with this model, we can now ask how promoter

architecture affects not only the response function, but also how

that response is distributed among different cells.

In this paper we have explored the feasibility of this stochastic

analog of thermodynamic models as a general framework to

understand gene regulation at the single-cell level. Using this

approach we have examined a series of common promoter

architectures of increasing complexity, and established how they

affect the level of cell-to-cell variability of the number of mRNA

molecules, and proteins, in steady state. We have found that, given

the known kinetic rates of transcription factor association and

dissociation from operators, the level of variability in gene

expression for many well studied bacterial promoters is expected

to be larger than the simple Poissonian expectation, particularly

for mRNA and short-lived proteins. We have investigated how the

level of variability generated by a simple promoter consisting of

one single operator differs from more complex promoters

containing more than one operator, and found that the presence

of multiple operators increases the level of cell-to-cell variability

even in the absence of cooperative binding. Cooperative binding

makes the effect of operator multiplicity even larger. We also

found that operator strength is one of the major determinants of

cell-to-cell variability. Strong operators cause larger levels of cell-

to-cell variability than weak operators. We have also examined the

case where one single repressor may bind simultaneously to two

operators by looping the DNA in between. We have found that the

stability of the DNA loop is the key parameter in determining

whether DNA looping increases or decreases the level of

variability, suggesting a potential role of DNA mechanics in

regulating cell-to-cell variability.

We have examined the difference between activators and

repressors, and found that repressors tend to generate less cell-to-

cell variability than activators at low expression levels, whereas at

Figure 6. Dual activation architecture. (A) Kinetic mechanism of dual activation. The parameters k
off
A and kon

A are the rates of activator
dissociation and association to the operators, and V is a parameter reflecting the effect of cooperative binding on the dissociation rate. (B) Fano
factor as a function of the mean mRNA for independent (V~1, black), cooperative (V~0:1, red), and for simple activation (blue). The parameters are
taken from Table 1 and r1~0:33 s{1



f , r2~f |r1, r3~f |r1 , and r4~f 2|r1 ; f is the enhancement factor. (C) A stochastic simulation shows the

effect of independent and cooperative binding in creating a sustained state of high promoter activity, resulting in high levels of mRNA in the active
state and large cell-to-cell variability. (D) Prediction for the r1-PRM promoter (a PRM promoter variant that does not exhibit OR3 mediated repression [51]).
This promoter is activated by cI, which binds cooperatively to OR1 and OR2. The prediction is shown for wild-type cI (V~0:013) and for a cooperativity
deficient mutant (Y210H, V~1). Parameters are taken from [33,43,58,97]. The lifetime of OR1-cI complex is 4 min. Lifetime of OR2-cI complex is 9.5 s.
doi:10.1371/journal.pcbi.1001100.g006
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high expression levels repressors and activators generate similar

levels of cell-to-cell variability. We conclude that induction of gene

expression by increasing the concentration of an activator leads to

a more heterogeneous response at low and moderate expression

levels than induction of gene expression by degradation,

sequestration or dilution of a repressor. In addition, we have used

this model to make quantitative predictions for a few well

characterized bacterial promoters, connecting the kinetic mecha-

nism of gene regulation that we believe applies for these promoters

in vivo with single-cell gene expression data. Direct comparison

between the model and experimental data offers an opportunity to

validate these kinetic mechanisms of gene regulation.

Intrinsic and extrinsic noise
There are two different classes of sources of cell-to-cell

variability in gene expression. The first class has its origins in

the intrinsically stochastic nature of the chemical reactions leading

to the production and degradation of mRNAs and proteins,

including the binding and unbinding of transcription factors,

transcription initiation, mRNA degradation, translation, and

protein degradation. The noise coming from these sources is

known as intrinsic noise [79]. A different source of variability

originates in cell-to-cell differences in cell size, metabolic state,

copy number of transcription factors, RNA polymerases, ribo-

somes, nucleotides, etc. This second kind of noise is termed

extrinsic noise [79]. The contributions from intrinsic and extrinsic

sources can be separated experimentally, and the total noise can

be written as the sum of intrinsic and extrinsic components [3]. In

this paper we focus exclusively on intrinsic noise, and the emphasis

is on bacterial promoters. This double focus requires us to discuss

to what extent intrinsic noise is relevant in bacteria.

The experimental evidence gathered so far indicates that

intrinsic noise is the dominant source of cell-to-cell variability in

bacteria of the mRNA copy number. In a recent single-molecule

study, transcription was monitored in real time for two different E.

coli promoters, PRM and Plac/ara [4]. The authors measured the

rates of mRNA synthesis and dilution, as well as the rates of

promoter activation and inactivation in single cells. The intrinsic

noise contribution was calculated from all of these rates. It was

found to be responsible for the majority of the total cell-to-cell

variability, accounting for over 75% of the total variance. Another

recent experiment in B. subtilis [7] found that mRNA expressed

from the ComK promoter is also dominated by intrinsic noise.

Furthermore, this study indicated that intrinsic mRNA noise is

responsible for activation of a phenotypic switch that drives a

fraction of the cells to competence for the uptake of DNA [7]. A

third recent report investigated the activation of the genetic switch

in E. coli, which drives the entrance of a fraction of cells into a

lactose metabolizing phenotype [23]. The authors of the study

found evidence that stochastic binding and unbinding of the Lac

repressor to the main operator was responsible for the observed

cell-to-cell variability in gene expression and, consequently the

choice of phenotype. Furthermore, the authors discovered that the

deletion of an auxiliary operator that permits transcriptional

repression by DNA looping, leads to a strong increase in the level

of cell to cell variability in the expression of the lactose genes,

indicating that promoter architecture plays a big role in

determining the level of noise and variability in this system.

Taken all together, these experiments suggest that intrinsic mRNA

noise is dominant and may have important consequences for cell

fate determination. In addition, at least in one case, promoter

architecture has been shown to be of considerable importance.

At the protein level, the contribution of extrinsic and intrinsic

noise to the total cell-to-cell variability has also been determined

experimentally for a variety of promoters and different kinds of

bacteria. The first reports examined intrinsic and extrinsic protein

noise in E. coli and found that extrinsic noise was the dominant

source of cell-to-cell variability in protein expressed from a variant

of the PL promoter in a variety of different strains [3]. However,

the intrinsic component was non-negligible and for some strains,

dominant [3]. A second team of researchers examined a different

set of E. coli promoters involved in the biosynthetic pathway of

lysine [80]. The authors found that the intrinsic noise contribution

was significant for some promoters (i.e. lysA), but not for others. In

a third study the total protein noise was measured for a Lac

repressor-controlled promoter in B. subtilis, and it was reported

that the data could be well explained by a model consisting only of

intrinsic noise [8]. The authors found that the rates of

transcription and translation could be determined by directly

comparing the total cell-to-cell variability to the predictions of a

simple stochastic model that considered only intrinsic sources of

noise. They also found that the model had predictive power, and

that mutations that enhanced the rate of translation or

transcription produced expected effects in the total noise.

In summary, all studies that have measured mRNA noise in

bacteria so far report that intrinsic noise contributes substantially

to the total cell-to-cell variability. This is further supported by

observations that most of the mRNA variability comes from

intrinsic sources in yeast [31] and mammalian cells [1]. The issue

is less clear for protein noise. Some reports indicate that it is mostly

extrinsic [3], but others suggest that intrinsic noise may also be

important [8,23,80]. It seems likely that the relative importance of

intrinsic and extrinsic noise depends on the context, and that for

some promoters and genes extrinsic noise will be larger, whereas

for others the intrinsic component may dominate. In any case, it is

clear that both contributions are important, and both need to be

understood.

Comparison with experimental results
The aim of this paper is to formulate a set of predictions that

reflect the class of kinetic models of gene regulation in bacteria that

one routinely finds in the literature [42,64,81–84]. Our analysis

indicate that if these models are correct, and if the kinetic and

thermodynamic parameters that have been measured over the

years are also reasonably close to their real values in live cells [85],

the effect of promoter architecture in cell-to-cell variability in

bacteria should be rather large and easily observable. In this sense,

our intention is more to motivate new experiments than to explain

or fit any currently available data. We only know of one published

report in which the effect of perturbing the architecture of a

bacterial promoter on the cell-to-cell variability in gene expression

has been determined [23]. Given that there are several examples

of promoters in bacteria for which a molecular kinetic mechanism

of gene regulation has been formulated [42,64,81–84,86], we hope

that the computational analysis in this paper may serve as an

encouragement for researchers to do for bacteria the same kind of

experiments that have been already performed in eukaryotes

[1,11,15,17,31]. Indeed, several different studies have examined

the effect of promoter architectural elements in cell-to-cell

variability in protein and mRNA in eukaryotic cells. Although

our efforts in this paper have focused on bacterial promoters rather

than eukaryotic promoters, it is worthwhile to discuss the findings

of these studies and compare them (if only qualitatively) with the

predictions made in this paper.

Two recent studies measured intrinsic mRNA noise in yeast

[31] and mammalian cells [1]. Both papers concluded that

stochastic promoter activation and inactivation was the leading

source of intrinsic noise. While stochastic chromatin remodeling is
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suspected to be the origin of those activation events, neither one of

these studies was conclusive about the precise molecular

mechanism responsible for promoter activation. However, both

studies found that promoter architecture had an important role

and strongly affected the level of total mRNA noise. In both

studies, the authors found that when the number of binding sites

for a transcriptional activator was raised from one to seven, the

normalized variance increased several-fold. This qualitative

behavior is in agreement with our prediction that dual activation

causes larger intrinsic mRNA noise than simple activation. It is

possible that this agreement is coincidental, since the actual

mechanism of gene regulation at these promoters could be much

more complicated than the simple description of gene activation at

a bacterial promoter adopted here.

Other studies [11,15,17] have measured the total protein noise

from variants of the GAL1 promoter in yeast, and found that their

data could be well explained by a model that considered only

intrinsic noise sources. These studies also concluded that the main

sources of intrinsic noise were stochastic activation and inactiva-

tion of the promoter due to chromatin remodeling. However, it

was also found that the stable formation of pre-initiation complex

at the TATA box and the stochastic binding and unbinding of

transcriptional repressors contributed to the total noise [11,15,17].

The authors of these studies found that for point mutations in the

TATA box of the GAL1 promoter in yeast, which made the box

weaker, the level of cell to cell variability went down significantly.

This is also in good agreement with our prediction that the

stronger the binding site of a transcriptional activator, the larger

the intrinsic noise should be. However, since this study measured

the total noise strength, and did not isolate the intrinsic noise, the

observed decrease in noise strength as a result of making the

TATA box weaker may have other origins. These experiments

were conducted under induction conditions that minimize

repression by nucleosomes and activation by chromatin remod-

eling. A more recent report by the same lab [11] found that the

copy number and location of a transcriptional repressor binding

site greatly affects the total protein noise. The authors found that

when they increased the number of repressor binding sites, the

noise went up. This is also in qualitative agreement with our

prediction that operator number positively correlates with intrinsic

noise in the case of dual repression. However, the same caveat

applies here as in the previous case studies, which is that only the

total noise was measured. Although the authors of this study

attributed all of the noise to intrinsic sources, it is still possible that

extrinsic noise was responsible for the observed dependence of

noise strength on operator number.

Finally, it is worth going back to bacteria, and discussing the

only study that has yet examined the effect of a promoter-

architecture motif on cell-to-cell variability in gene expression. In

this paper, the authors investigated the effect of DNA looping on

the total cell-to-cell variability for the PlacUV5 promoter in E. coli

[23]. Using a novel single-protein counting technique, Choi and

co-workers measured protein distributions for promoters whose

auxiliary operator had been deleted (leaving them with a simple

repression architecture), and compared them to promoters with

the auxiliary operator O3 present, which allows for DNA looping.

They report a reduction in protein noise due to the presence of

O3, which according to our analysis, may indicate that the

dissociation of the repressor from the looped state is faster than the

normal dissociation rate. The authors attributed this looping-

dependent decrease in noise to intrinsic origins, related to the

different kinetics of repressor binding and rebinding to the main

operator in the presence of the auxiliary operator, and in its

absence. However, their measurements also reflect the total noise,

and not only the intrinsic part, so the explanation may lie

elsewhere. These results emphasize the need for more experiments

in which the intrinsic noise is isolated and measured directly.

More recently, several impressive experimental studies have

measured the noise in mRNA in bacteria for a host of different

promoters ([87], and Ido Golding, private communication). In

both of these cases, simplified low-dimensional models which do

not consider the details of the promoter architecture have been

exploited to provide a theoretical framework for thinking about

the data. Our own studies indicate that the differences between a

generic two-state model and specific models that attempt to

capture the details of a given architecture are sometimes subtle

and that the acid test of ideas like those presented in this paper can

only come from experiments which systematically tune parame-

ters, such as the repressor concentration, for a given transcrip-

tional architecture.

Future directions
Some recent theoretical work has analyzed the effect of

cooperative binding of activators in the context of particular

examples of eukaryotic promoters [88,89]. The main focus of this

study is bacterial promoters. The simplicity of the microscopic

mechanisms of transcriptional regulation for bacterial promoters

makes them a better starting point for a systematic study like the

one we propose. However, many examples of eukaryotic

promoters have been found whose architecture affects the cell-

to-cell variability [1,11,17,31,32]. Although the molecular mech-

anisms of gene regulation in these promoters are much more

complex, with many intervening global and specific regulators

[90], the stochastic model employed in this paper can be applied to

any number of promoter states, and thus can be applied to these

more complex promoters. Recent experimental work is starting to

reveal the dynamics of nucleosomes and transcription factors with

single-molecule sensitivity [91,92], allowing the formulation of

quantitative kinetic and thermodynamic mechanistic models of

transcriptional regulation at the molecular level [73,77]. The

framework for analyzing gene expression at the single-cell level

developed in this paper will be helpful to investigate the kinetic

mechanisms of gene regulation in eukaryotic promoters, as the

experimental studies switch from ensemble, to single-cell.

Shortcomings of the approach
Although the model of transcriptional regulation used in this

paper is standard in the field, it is important to remark that it is a

very simplified model of what really happens during transcription

initiation. There are many ways in which this kind of model can

fail to describe real situations. For instance, mRNA degradation

requires the action of RNases. These may become saturated if the

global transcriptional activity is very large, and degradation the

becomes non-linear [55]. Transcription initiation and elongation

are assumed to be jointly captured in a single constant rate of

mRNA synthesis for each promoter state. This is an oversimpli-

fication also. When considered explicitly, and in certain parameter

ranges, the kinetics of RNAP-promoter interaction may cause

noticeable effects in the overall variability [46]. Similarly, as

pointed out elsewhere [93,94,95], translational pausing, back-

tracking or road-blocking may also cause significant deviations in

mRNA variability from the predictions of the model used in this

paper. How serious these deviations are depends on the specifics of

each promoter-gene system. The model explored in this paper also

assumes that the cell is a well-mixed environment. Deviations from

that approximation can significantly affect cell-to-cell variability

[56,96]. Another simplification refers to cell growth and division,

which are not treated explicitly by the model used in this paper:
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cell division and DNA replication cause doubling of gene and

promoter copy number every cell cycle, as well as binomial

partitioning of mRNAs between mother and daughter cells [3]. In

eukaryotes, mRNA often needs to be further processed by the

splicing apparatus before it becomes transcriptionally active. It

also needs to be exported out of the nucleus, where it can be

translated by ribosomes.

To study the effect of transcription factor dynamics on mRNA

noise we assume that the unregulated promoter produces mRNA

in a Poisson manner, at a constant rate. This assumption can turn

out to be wrong if there is another process, independent of

transcription factors, that independently turns the promoter on

and off. In eukaryotes examples of such processes are nucleosome

positioning and chromatin remodeling, while in prokaryotes

analogous processes are not as established, but could include the

action of non-specifically bound nucleoid proteins such as HU and

HNS, or DNA supercoiling. Experiments that measure cell-to-cell

distributions of mRNA copy number in the absence of

transcription factors (say without Lac repressor for the lac operon

case) can settle this question. In case the Fano factor for this

distribution is not one (as expected for a Poisson distribution) this

can signal a possible transcription factor-independent source of

variability. The stochastic models studied here can be extended to

account for this situation. For example, the promoter can be made

to switch between an on and an off state, where the transcription

factors are allowed to interact with promoter DNA only while it is

in the on state. In this case the mRNA fluctuations produced by an

unregulated promoter will not be Poissonian. One can still

investigate the affect of transcription factors by measuring how

they change the nature of mRNA fluctuations from this new base-

line. Comparison of this extended model with single-cell

transcription experiments would then have the exciting potential

for uncovering novel modes of transctriptional regulation in

prokaryotes.

For the purpose of isolating the effect of individual promoter

architectural elements on cell-to-cell variability in gene expression,

we have artificially changed the value of one of those parameters,

while keeping the other parameters constant. For instance, we

have investigated the effect of altering the strength of an operator

on the total cell-to-cell variability. In order to do this, we ask how

changes in the dissociation rate of the transcription factor alter the

cell-to-cell variability, given that all other rates (say the rate of

transcription, or mRNA degradation) remain constant. This

assumption is not necessarily always correct, since very often the

operator sequence overlaps the promoter, and therefore changes

in the sequence that alter operator strength also affect the

sequence from which RNAP initiates transcription, which can

potentially affect the overall rates of transcription. As is usually the

case, biology presents us with a great diversity of forms, shapes and

functions, and promoters are no exception. One needs to examine

each promoter independently on the basis of the assumptions

made in this paper, as many of these assumptions may apply for

some promoters, but not for others.

For the same reason of isolating the effect of promoter

architecture and cis-transcriptional regulation on cell-to-cell

variability in gene expression, when we compare different

architectures we make the simplifying assumption that they are

transcribing the same gene, and therefore that the mRNA

transcript has the same degradation rate. Care must be taken to

take this into account when promoters transcribing different genes

are investigated, since the mRNA degradation rate has a large

effect on the level of cell-to-cell variability.

We have also assumed that when transcription factors dissociate

from the operator, they dissociate into an averaged out, well-

mixed, mean-field concentration of transcription factors inside the

cell. The possibility of transcription factors being recaptured by the

same or another operator in the promoter right after they fall off

the operator is not captured by the class of models considered

here. Recent in vivo experiments suggest that this scenario may be

important in yeast promoters containing arrays of operators [31].

In spite of all of the simplifications inherent in the class of

models analyzed in this paper, we believe they are an adequate

jumping off point for developing an intuition about how promoter

architecture contributes to variability in gene expression. Our

approach is to take a highly simplified model of stochastic gene

expression, based on a kinetic model for the processes of the

central dogma of molecular biology, and add promoter dynamics

explicitly to see how different architectural features affect

variability. This allows us to isolate the effect of promoter

dynamics, and develop an intuitive understanding of how they

affect the statistics of gene expression.

It must be emphasized, however, that the predictions made by

the model may be wrong if any of the complications mentioned

above are significant. This is not necessarily a bad outcome. If the

comparison between experimental data and the predictions made

by the theory for any particular system reveals inconsistencies,

then the model will need to be refined and new experiments are

required to identify which of the sources of variability that are not

accounted for by the model are in play. In other words,

experiments that test the quantitative predictions outlined stand

a chance of gaining new insights about the physical mechanisms

that underlie prokaryotic transcriptional regulation.

Supporting Information

Text S1 Mathematical derivations and supplementary informa-

tion. A derivation of all equations in the text is presented, together

with its corresponding tables and figures.

Found at: doi:10.1371/journal.pcbi.1001100.s001 (2.04 MB

DOC)
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