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Abstract

Stochastic channel gating is the major source of intrinsic neuronal noise whose functional consequences at the microcircuit-
and network-levels have been only partly explored. A systematic study of this channel noise in large ensembles of
biophysically detailed model neurons calls for the availability of fast numerical methods. In fact, exact techniques employ
the microscopic simulation of the random opening and closing of individual ion channels, usually based on Markov models,
whose computational loads are prohibitive for next generation massive computer models of the brain. In this work, we
operatively define a procedure for translating any Markov model describing voltage- or ligand-gated membrane ion-
conductances into an effective stochastic version, whose computer simulation is efficient, without compromising accuracy.
Our approximation is based on an improved Langevin-like approach, which employs stochastic differential equations and
no Montecarlo methods. As opposed to an earlier proposal recently debated in the literature, our approximation reproduces
accurately the statistical properties of the exact microscopic simulations, under a variety of conditions, from spontaneous to
evoked response features. In addition, our method is not restricted to the Hodgkin-Huxley sodium and potassium currents
and is general for a variety of voltage- and ligand-gated ion currents. As a by-product, the analysis of the properties
emerging in exact Markov schemes by standard probability calculus enables us for the first time to analytically identify the
sources of inaccuracy of the previous proposal, while providing solid ground for its modification and improvement we
present here.
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Introduction

Ion channels are the fundamental elements underlying neuronal

excitability and information transfer, inter- and intracellularly.

These protein pores, found also in other excitable cell types,

undergo fast conformational modifications (hereafter referred to as

channel gating) induced by a change in the electric field or by the

binding of ligand molecules. By doing so, channels selectively

affect the ionic conductances of the membrane and enable ions to

flow according to their electrochemical potentials [1]. The impact

of the first quantitative deterministic description of conductance

gating [2] was extremely significant, as testified by its wide use up

to today [3]. Since the 1970s however, the stochastic nature of the

single ion channels gating has been fully recognised. The resulting

random fluctuations in the membrane conductances (which are

known as channel noise) have been the subject of intense theoretical

and experimental research [4–12]. Nevertheless, only recently

channel noise was emphasised to have a significant impact on

neuronal signals generation, propagation and integration, and it

was suggested for consideration in realistic models of single

neurons [13–19]. In some parts of the peripheral nervous system,

channel noise has been demonstrated to be prominent for

information transfer and perception (e.g., see [20] and references

therein). However, in the central nervous system whether or not

channel noise plays a role at the level of large networks of interacting

neurons, how heterogeneous ion channel types contribute to

spontaneous network firing, and whether channel noise combines or

interferes with other sources of noise (synaptic, for instance)

remain open questions.

Towards addressing these questions, the increasing availability

of cheap parallel computing resources and improved algorithms

[21,22] allow one to approach in silico the study of networks of

thousands of morphologically detailed multi-compartmental

model neurons [23]. In addition, a diversity of voltage- and

ligand-gated ion channel types can be included in these large

models with biophysical realism [24]. Unfortunately, channel noise is

rarely considered for large network simulations or detailed multi-

compartmental models [25], due to its heavy computational load.

Implementing single-channel stochastic models explicitly, for each

of the thousands of channels per ion conductance type and per
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neuron, requires Montecarlo simulation techniques [5,14,15,26]

that are computationally intensive even for single compartmental

neurons, regardless of excellent speed-up techniques [14].

Throughout this paper, we refer to such explicit and exact

simulation methods by the term microscopic, regardless of the

details of their actual numerical implementation [27].

For the specific case of the Hodgkin-Huxley (HH) equations,

Fox and collaborators proposed an alternative approximate

method to mimic channel noise, avoiding a microscopic description

of the individual channels [28,29]. This method relies on the use of

stochastic differential equations to macroscopically account for the

fluctuations in the overall conductance of sodium and potassium

channels, with formal analogies to the Langevin equation [14,30].

Although this approach is very attractive and was employed widely

in the literature (see references in [31]), its accuracy was recently

challenged and debated by several authors [27,31–33]. These

authors compared numerical simulations of the exact microscopic

descriptions of the HH model with those obtained by Fox’s,

finding some inconsistencies. It was however only with the work by

Bruce (2009), that a straightforward test and framework were

proposed to quantify the accuracy of Fox’s algorithm. Simulating a

voltage-clamp experiment, while recording ion currents, clearly

shows that Fox’s approximation does not capture correctly the

microscopic statistical properties, regardless of how large the

number of single ion channels to be approximated is. An ad hoc

partial correction of Fox’s algorithm - based on the simultaneous

Montecarlo simulations of single channels - was also proposed for

some activity regimes [31], but it cannot be generalised to

arbitrary simulation conditions.

In this paper we introduce and operatively define a general

method, based on the diffusion approximation [30], to transform

any deterministic model neuron into its effective stochastic version,

for an arbitrary set of ion conductances. As in previous studies, we

focus on discrete Markov processes [8,34], routinely employed in

the experimental identification of voltage-gated channels and

synaptic receptors. Our purpose is to reintroduce channel noise in

deterministic conductance-based models with limited computa-

tional overhead. We also aim at accurately replicating the

statistical properties of ion conductances, as predicted by the

exact microscopic description, while avoiding the use of any ad hoc

correction or heuristics in the choice of the parameters [35]. Our

approach is related to previous Langevin-based formulations,

although with a significant difference in the way channel

fluctuations are reintroduced in model equations. It can be

considered as an accurate and systematic generalisation of Fox’s

algorithm, to the case of voltage-, ion-, and ligand-gated channels

with arbitrary complexity. We numerically compare our approach

to that by Fox and we provide, as a Supporting Information, some

analytical results showing where it fails. We validate our approach

for single-compartmental neuronal simulations, incorporating HH

fast inactivating sodium channels and delayed rectifier potassium

channels, analogously to previous works. By comparing our

effective method to the exact simulations of the stochastic channel

kinetic schemes, we obtain satisfying agreement.

Materials and Methods

In this section, we briefly review the deterministic HH model

and then introduce our algorithm. We present our method for ion

channels whose microscopic correlate is represented by a

population of identical 2-state channels. Only in this specific case,

our method coincides with Fox’s approach. We then generalise the

method to channels characterised by M-state kinetics and show

that, for the special case of multiple independent subunits, each

composed by 2-state gating mechanisms as in HH-like currents,

the mathematical expressions underlying our algorithm greatly

simplify.

Neuron model
We consider a single-compartmental conductance-based neuron

model [36]. For this class of models, the membrane potential V
obeys the following current balance equation [1]

Cm
_VV~

X
k

Ik zILzIext,

where Cm is the specific membrane capacitance and Iext is an

externally applied current density (expressed in mA
�

cm2). These

models comprise a leak current IL~gL(EL{V ) and a number of

intrinsic (as well as synaptic) currents that can be similarly

expressed by an ohmic relationship Ik~gk(t) (Ek{V ), which links

the current to the membrane potential. Each ionic conductance

gk(t) ~ �ggk no,k(t) is completely determined by the fraction of

corresponding channels no,k(t) in the open state (see Fig. 1A–D).

For reference to previously published papers [9,10,12,15,18,29],

we consider here the HH voltage-gated currents INa and IK

with standard parameters [2]. Therefore, we consider

gNa(t)~�ggNa no,Na(t) and gK(t)~�ggK no,K(t). In the deterministic

model, no,Na(t) and no,K(t) are expressed phenomenologically

as a product of activation and inactivation deterministic variables

[37–40]:

INa~�ggNam3h(ENa{V )

IK~�ggKn4(EK{V ):

(

Each of these variables obeys a first-order ordinary differential

equation of the form

_uu~au(V ) (1{u){bu(V ) u, ð1Þ

where u~ fm,h,ng and au, bu are kinetic parameters. All the

model parameters are summarised in Table 1.

Author Summary

A possible approach to understanding the neuronal bases
of the computational properties of the nervous system
consists of modelling its basic building blocks, neurons
and synapses, and then simulating their collective activity
emerging in large networks. In developing such models, a
satisfactory description level must be chosen as a
compromise between simplicity and faithfulness in repro-
ducing experimental data. Deterministic neuron models –
i.e., models that upon repeated simulation with fixed
parameter values provide the same results – are usually
made up of ordinary differential equations and allow for
relatively fast simulation times. By contrast, they do not
describe accurately the underlying stochastic response
properties arising from the microscopical correlate of
neuronal excitability. Stochastic models are usually based
on mathematical descriptions of individual ion channels, or
on an effective macroscopic account of their random
opening and closing. In this contribution we describe a
general method to transform any deterministic neuron
model into its effective stochastic version that accurately
replicates the statistical properties of ion channels random
kinetics.
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Exact simulation of the microscopic models
Montecarlo methods represent the most commonly adopted

way to simulate the random temporal evolution of ion conduc-

tances in a membrane patch, populated by a set of identical

independent channels. Due to spatial proximity, channels are

assumed to be coupled together by a common gating variable,

such as the membrane potential or the local neurotransmitter

concentration. Then, the full knowledge of the Markov kinetic

scheme (see Fig. 1A–D) describing the distinct conformational

states of each ion channel, as well as the transition probabilities

across states, are needed [41,42]. The kinetic scheme is employed

to simulate the random transitions of the state of each individual

ion channel, by repeated pseudo-random number generation (see

[5,14,15,26] and references therein). Although refined fast-

computation techniques have been proposed [14], we employ

here a basic numerical implementation. Briefly, instead of tracking

the state of each channel, the number of channels in a given state

is tracked and updated at each time step (dt ~1{5 ms), with

conditional probabilities that depend on the transition rates of the

Markov scheme, as exemplified in Fig. 1A. We recall that

simulating the occurrence of a random event with probability p

can be achieved by generating a pseudo-random number D,

uniformly distributed between 0 and 1, and testing whether or not

D v p [43]. In the simulations reported here, we set the single-

channel conductance for both sodium and potassium channels to

g1 ~20 pS, unless specified otherwise, and we consider a fixed

channel density of 60 channels
�
mm2 and 18 channels

�
mm2 for

sodium and potassium currents, respectively. In all simulations, a

cylindrical single compartment was used with length and diameter

equal to 30 mm, unless otherwise noted. Albeit conceptually

simple, these algorithms require a great amount of computational

power, which increases with the number of channels that are to be

simulated and with the probability of their activation. Simulation

code and analysis scripts, developed in C++ and in NEURON

[44], are available from ModelDB [45] at http://senselab.med.

yale.edu/modeldb via accession number 127992.

Population of two-state channels
We examine the case of a ion current whose microscopic

correlate is represented by a population of N ion channels. The

single-channel kinetics is a 2-state scheme: open and closed, as shown

in Fig. 1A. This is the simplest kinetic scheme and is often

employed, for instance, for the minimal description of ionotropic

AMPA-receptors [46]. The symbols a and b in Fig. 1A represent

the transition probabilities between states, expressed per time unit

(i.e., as rates). They are functions of the channel gating variable(s) –

such as membrane voltage, intracellular calcium concentration,

extracellular magnesium concentration, extracellular glutamate

concentration, etc. [8] – and are experimentally identified by

routine electrophysiological techniques [7] and optimisation

methods [34].

For the definition of our effective simulation technique for

channel noise, we consider five realistic assumptions: (i) the channels

are identical and statistically independent; (ii) for simplicity, only

one conformational state is associated to a non-zero ion

conductance g1; (iii) N is large and is known; (iv) the single-

channel kinetics is described by a Markov process, where

transition probabilities depend only on the current state and on

the gating variable(s), and not on the previous occupancy history;

and (v) the gating variables (e.g., V (t)) change slowly, compared to

the channel kinetics, with time constant (azb){1 [1].

Because of (i)–(ii), the maximal ion conductance associated to

the channels can be expressed as �gg ~ N g1. Then, the time-

varying conductance g(t) depends only on no(t), the fraction of

channels in the open state:

g(t) ~ �gg no(t): ð2Þ

Since individual channels undergo random transitions between

states [7], no(t) is a non-stationary random variable, whose

instantaneous value is distributed according to a binomial

probability function: the number of open channels, N no(t) (with

N constant), is a binomial random variable. As a consequence, the

statistical properties of no(t) are fully specified by po(t), the

probability of occupancy of the open state [6]. By assumption (iii),

the binomial distribution of no(t) can be approximated by a Gauss

Table 1. Parameters employed for the deterministic
simulations.

Symbol Description Value

Cm Membrane capacitance 1 mF
�

cm2

gL Leak conductance 0:3 mS
�

cm2

EL Leak reversal potential {54:3 mV

�ggNa Max sodium conductance 120 mS
�

cm2

ENa Sodium reversal potential 50 mV

�ggK Max potassium conductance 36 mS
�

cm2

EK Potassium reversal potential {77 mV

am(V ) Kinetic parameter of m gates
{0:1

Vz40

exp {0:1(Vz40)ð Þ{1

bm(V ) Kinetic parameter of m gates 4exp {(Vz65)=18ð Þ
ah(V ) Kinetic parameter of h gates 0:07exp {(Vz65)=20ð Þ
bh(V ) Kinetic parameter of h gates 1

exp {0:1(Vz35)ð Þz1

an(V ) Kinetic parameter of n gates
{0:01

Vz55

exp {0:1(Vz55)ð Þ{1

bn(V ) Kinetic parameter of n gates 0:125exp {(Vz65)=80ð Þ

doi:10.1371/journal.pcbi.1001102.t001

Figure 1. Markov kinetic schemes. In the simplest 2-state kinetics (A), a single channel can be in one of two configurations with only one of them
associated to a non-zero conductance (filled grey circle). The kinetic parameters a and b are rates, as they represent the transition probabilities
between states, expressed per time unit. In a more general case, single-channel kinetics is described by an M-state scheme. Voltage-gated fast-
inactivating sodium (B) and delayed-rectifier potassium channels (C) are two examples, where only one state corresponds to a non-zero channel
conductance (filled grey circle). An alternative model for sodium channels (D) (Vandenberg and Bezanilla, 1991) is also shown for comparison. We
point out that our method can be applied to any kind of kinetic schemes, where the transition rates are known. For (B–C), each state is identified by
an arbitrary name convention (m0h0 , m2h1, n3 , etc.), referring to the underlying mapping of these 8- and 5-state channels into multiple 2-state gated
subunits (panel E). Indeed, some M-state kinetic schemes may be mapped into, or experimentally identified as, a set of independent 2-state gates:
the open state of the full scheme corresponds to all the elementary gates in the open states, simultaneously. For instance, the kinetic scheme (B)
could be mapped into a set of four independent 2-state gates (E) (i.e., the familiar activation gates and the inactivation gate of sodium fast-
inactivating currents), three of whom are identical.
doi:10.1371/journal.pcbi.1001102.g001
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distribution, invoking the de Moivre-Laplace (or central limit)

theorem, valid when N po(t) (1{po(t)) ww 1 [47]. By (iv), po(t)
can be numerically computed as the solution of the following

linear differential equation [6], formally equivalent to the

deterministic kinetic Eq. 1 [48]:

to _ppo(t) ~ p? { po(t), ð3Þ

with to ~ (azb){1 and p? ~ a (azb){1. Finally, under

assumption (v), Eq. 3 can be solved analytically and po(t) is

expressed as an exponential function. Under these approxima-

tions, no(t) is Gauss-distributed and completely described by its

mean �nno(t) and by its (auto)covariance function Wno (t,D), which at

the steady-state has an exponentially decaying profile:

Wno (D) & s2
ne{ Dj j=to [6,49]. In the theory of stochastic processes,

no(t) is called a diffusion process, with s2
n and to its steady-state

variance and autocorrelation time constant, respectively [30].

By these considerations, it follows that no(t) can be approxi-

mated and computer-simulated by an efficient method, alternative

to the exact Montecarlo simulation of the discrete kinetic scheme

[14]. This method consists in generating a realisation of an

Ornstein-Uhlenbeck’s process [30], with time-varying mean �nno(t),
steady-state variance s2

n, and autocorrelation time constant to:

g(t) & �gg �nno(t) z go(t)½ �: ð4Þ

to _ggo(t) ~ { go(t)zsn

ffiffiffiffiffiffiffiffi
2 to

p
j(t), ð5Þ

where j(t) is a D-correlated Gauss-process with zero mean [47]

(see also Eq. 20).

Since �nno(t) ~ po(t) [6,49], the deterministic component of g(t)
evolves as Eq. 3, which is the familiar equation one expects by the

mass-action law (i.e., Eq. 1), while interpreting as deterministic the

scheme of Fig. 1A [2,38]. For clarity, we rewrite such an equation

as

tn _�nn�nno(t) ~ n? { �nno(t), ð6Þ

with n? ~ p? ~ a (azb){1, and tn ~ to ~ (azb){1.

As opposed to the deterministic HH formalism however, the

stochastic nature of g(t) is now explicitly captured by go(t),
algorithmically generated as a pseudo-random process by iterat-

ing the discrete-time version of Eq. 5 [50], reported for the

sake of completeness in Eqs. 23–24. Thus, by setting sn~ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N{1 n? (1 { n?)

p
, Eqs. 4, 5, and 6 reproduce both the time-

varying mean and the steady-state covariance of no(t). More

precisely, Wno
(t,D) and the covariance of the term go(t) relax to

the same analytical expression s2
n e{ Dj j=tn , after a transient of the

order of tn.

Finally, the clipping of negative conductance values for g(t) may

be necessary but, if lacking, it will not affect by accumulation the

numerical integration of �nno in the present form of Eq. 4.

We remark that we do not (heuristically) add a noise term in the

right-hand-side of Eq. 6, as in previous Langevin-based algo-

rithms. Instead, a precise approximation procedure is employed to

statistically mimic the effect of channel noise fluctuations in g(t).
Although for 2-state channels Eqs. 4–6 are indeed equivalent to

Fox’s formulation (see the Text S1), our approach differs

considerably from that by Fox as soon as multiple-state channels

are considered, e.g., the sodium fast-inactivating and the

potassium delayed-rectifier channels.

Population of M-state channels
We now generalise the diffusion approximation (Eqs. 4–6) to the

more general case of a large population of identical independent

channels, whose single-channel dynamics is described by an M-

state Markov scheme. Under the same assumptions (i)–(v), the

probability po(t) of occupancy of the open state fully describes the

fraction of open channels (see Eq. 2). However, now po(t) is a

particular (say, the k-th) element of the M|1 probability vector

p(t) of state occupancy, and each element of p(t) corresponds to a

distinct state of the kinetic scheme. By assumption (iv), p(t) satisfies

a system of M linear ordinary differential equations, which can be

written in compact form as

_pp(t)~A p(t)

po(t)~C p(t)

�
ð7Þ

The M|M transition matrix A is filled with the appropriate

combinations of the individual transition rates between all the

possible states [51]. C is a 1|M vector with only one (the k-th)

non-zero element, set to 1. Under assumption (v), po(t) can be

computed analytically as a linear combination of a steady-state

value po,?(t) and of M-1 exponentials with time constants

t1, . . . ,tM{1, each being the inverse of the absolute value of a

non-zero eigenvalue of A [51]. As for the 2-state kinetics, the

statistical properties of the fraction of open channels no(t) are fully

specified by po(t) and by the binomial distribution [6]. By

assumption (iii), the distribution of no(t) can be approximated by a

Gauss-distribution [47], and no(t) can be numerically simulated by

an equivalent diffusion process. However, differently from the

previous case, the steady-state covariance Wno (D) contains a

weighted sum of M-1 exponentials [6,49] and not a single term:

Wno (D) ~
XM{1

i~1

s2
i e{ Dj j=ti : ð8Þ

Therefore, Eq. 4 no longer approximates no(t), and it must be

extended to a linear combination of M-1 Ornstein-Uhlenbeck’s

independent processes gi(t), with appropriate coefficients and time

constants:

g(t) & �gg �nno(t) z
XM{1

i~1

gi(t)

" #
ð9Þ

ti _ggi(t) ~ {gi(t)zsi

ffiffiffiffiffiffiffiffi
2 ti

p
ji(t), i ~ 1, . . . , M{1: ð10Þ

As for the 2-state model, �nno(t) ~ po(t). Then, one always recovers

the deterministic description of the M-state channels, formally

coincident with Eq. 7. The derivation of the analytical expressions

for si and ti is necessary, as they depend on the values of the

gating variable(s) (e.g., V (t)), and requires the full expression of

Wno (D) [6,49],

Wno (D) ~ N{1 �nno,? C e{ Dj jA CT{�nno,?
� �

, ð11Þ

which can be obtained by Laplace-transforms or linear algebraic

methods [52].

We remark that, for our purposes, the derivation of Eq. 11 is

important mainly to introduce Eqs. 8–10. Indeed, Eq. 11

considerably simplifies in the case of ion channels whose M-state

kinetics can be mapped into, or have been experimentally

Fast Simulation of Channel Noise in Neurons
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identified as, the composition of several 2-state subunits. For

instance, the scheme of Fig. 1B can be mapped into the equivalent

kinetic scheme shown in Fig. 1E. This is very common in the

computational neuroscience literature for voltage- and ligand-

gated ion channels, whose single-channel open state corresponds

to the simultaneous active state of a multiple number of

independent subunit types. To illustrate how Eq. 11 simplifies,

we discuss a specific example where three different subunit types

are present [37,38], although our considerations hold for any

number of different subunit types. We name these three subunit

types as m, h, and s, and for each of them we compute the steady-

state probabilities of the active state and the gating time constants,

following from the solution of Eq. 3:

px,? ~ ax (axzbx){1 tx ~ (axzbx){1 , x~m,h,s: ð12Þ

We further assume that the overall single-channel conductance

results from the composition of a given number of elements of each

subunit type: say, q, r, and w subunits of the type m, h, and s,

respectively. For instance, in the kinetic scheme of Fig. 1E, we

have q~3, r~1, and w~0. Since each subunit is described by 2-

state kinetics, the total number M of states is (qz1) (rz1) (wz1).
By this definition, the process no(t) is binomial and described by

the joint probability that all subunits are simultaneously in their

open state. Because of the statistical independence of each subunit,

the joint probability is the product of elementary probabilities [6].

Under the same assumptions of previous section, no(t) can be

approximated by a diffusion stochastic process, combining

deterministic and stochastic terms, as in Eq. 4. Being

�nno(t)~�mmq(t) �hhr(t) �ssw(t), we can rewrite Eq. 9 as follows:

g(t) & �gg �mmq(t) �hhr(t) �ssw(t)z
XM{1

i~1

gi(t)

" #
, ð13Þ

tx _�xx�xx(t) ~ px,?{�xx(t) , x~m,h,s: ð14Þ

Since in this case the covariance of a product is the product of

covariances, Eq. 11 reduces to [6,49]

Wno (D) ~

N{1 Wm(D)zp2
m,?

� �q

Wh(D)zp2
h,?

� �r

Ws(D)zp2
s,?

� �w

{ p2q
m,? p2r

h,? p2w
s,?

h i
,
ð15Þ

with Wx(D) ~ px,? 1{px,?ð Þ e{ Dj j=tx , and x [ fm,h,sg. Expand-

ing the powers and products of Eq. 15 and obtaining the

expressions for the M{1 distinct coefficients s2
i and time

constants ti, needed for Eqs. 9 and 10, is easier than manipulating

the matrix exponential of Eq. 11.

In the specific case of HH fast-inactivating sodium (i.e., q~3,

r~1, and w~0) and delayed rectifier potassium channels (i.e.,

q~4, and r~w~0) (Fig. 1B–C), s2
i and ti take the expressions

reported in Table 2.

Approximate reduction to a single noise term
In order to further gain in computational efficiency, while

numerically implementing our diffusion approximation of channel

noise (Eqs. 9–10), it is possible to reduce to one the number of

required independent Ornstein-Uhlenbeck’s stochastic processes.

This additional approximation consists in interpolating the

covariance of no(t) by a single decaying exponential, by replacing

Eq. 9 with Eq. 4. Indeed, since Eq. 8 is the weighted sum of M{1
exponentials, one should not privilege any of those terms a priori

and appropriately choose sn (in Eq. 4) and tn (in Eq. 5) as best-fit

parameters for each value of the gating variable(s), so that

s2
n(V ) e{jDj=tn(V ) &

XM{1

i~1

s2
i (V ) e{jDj=ti (V ): ð16Þ

Alternatively, by expanding both sides of Eq. 16 by the Taylor

series, extended to the first-order (or higher), the dominant term

around D~0 can be approximated by setting

s2
n ~

XM{1

i~1

s2
i tn ~

PM{1

i~1

s2
i

PM{1

i~1

s2
i =ti

: ð17Þ

In investigating the impact of channel noise on the computa-

tional properties of single-neurons and networks, such a

systematic and controlled reduction procedure should replace

heuristic methods and may be extremely useful to dissect

whether or not each of the M{1 terms is needed in accounting

for a particular observation.

Table 2. Values of the coefficients si and of the time constants ti for fast-inactivating sodium and delayed-rectifier potassium
channels to be used in Eqs. 9–10.

Coefficient Sodium Potassium Time constant Sodium Potassium

s2
1

1
N

�mm6�hh (1{�hh) 4
N

�nn7 (1{�nn) t1 th tn

s2
2

3
N

�mm5�hh2 (1{�mm) 6
N

�nn6 (1{�nn)2 t2 tm tn=2

s2
3

3
N

�mm4�hh2 (1{�mm)2 4
N

�nn5 (1{�nn)3 t3 tm=2 tn=3

s2
4

1
N

�mm3�hh2 (1{�mm)3 1
N

�nn4 (1{�nn)4 t4 tm=3 tn=4

s2
5

3
N

�mm5�hh (1{�mm)(1{�hh) – t5
tmth

tmzth

–

s2
6

3
N

�mm4�hh (1{�mm)2(1{�hh) – t6
tmth

tmz2th

–

s2
7

1
N

�mm3�hh (1{�mm)3(1{�hh) – t7
tmth

tmz3th

–

The steady-state symbol (?) was omitted for the sake of notation, from all occurrences of �mm and �hh.
doi:10.1371/journal.pcbi.1001102.t002

ð15Þ
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The complete effective model
Following Eqs. 9–10 and Table 2, we now formulate the

effective stochastic model, corresponding to the deterministic HH

model introduced earlier:

Cm
_VV~{IL{INa{IKzIapp

IL~gL(V{EL)

INa~�ggNa(m3hz
P7
i~1

xi)(V{ENa)

IK~�ggK(n4z
P4
i~1

fi)(V{EK)

8>>>>>>>><
>>>>>>>>:

ð18Þ

The deterministic gating variables u~fm,h,ng still obey Eq. 1,

while each of the 11 new stochastic variables (xi and fi) is

described by Eqs. 9 and 10:

tNa,i _xxi(t)~{xi(t)zsNa,i

ffiffiffiffiffiffiffiffiffiffiffiffi
2tNa,i

p
jNa,i(t)

tK,i
_ffi(t)~{fi(t)zsK,i

ffiffiffiffiffiffiffiffiffiffi
2tK,i

p
jK,i(t)

(
ð19Þ

where sNa,i, sK,i, tNa,i, and tK,i are the coefficients given in

Table 2, while jNa,i(t), jK,i(t) are independent, identical, d-

correlated, Gauss-distributed processes with zero means and

unitary variances (see Eqs. 23–24).

We emphasise that the procedure leading to Eq. 18 is general

and can be easily applied to more complex (single- and multi-

compartmental) neuron models, which incorporate arbitrary ionic

currents.

The Ornstein-Uhlenbeck’s stochastic process
Since the Ornstein-Uhlenbeck’s stochastic process has been

referred to repeatedly in the previous sections, we concisely review

its definition and its practical numerical simulation. A realisation

of this process, say x(t), can be operatively defined as the

exponential filtering of a Gauss-distributed white noise. Abusing

the notation of ordinary differential equations, x(t) is the solution

of

tx _xx ~ { xzsx

ffiffiffiffiffiffiffiffi
2 tx

p
j(t): ð20Þ

The term j(t) represents a stationary Gauss-distributed stochastic

process, which is a white-noise, fully specified by its mean �jj ~ 0
and covariance Wj(D) ~ d(D).

By linearity, x(t) is also Gauss-distributed [47] and charac-

terised by non-stationary mean �xx(t) and covariance Wx(t,D):

�xx(t) ~ vx(t)w ~ x0e{ t{t0ð Þ=tx ð21Þ

Wx(t,D) ~ v x(tzD){�xx(tzD)ð Þ x(t){�xx(t)ð Þw ~

~ sx
2 1{e{2(t{t0)=tx
� �

e{jDj=tx :
ð22Þ

These quantities converge to stationary values after a time of the

order of tx, so that at the steady-state x(t) has mean and variance

equal to zero and s2
x, respectively, and an exponentially-decaying

autocorrelation function, with time constant tx.

For the purpose of obtaining independent realisations of x(t) in

computer simulations, a discrete-time equivalent of Eq. 20 must be

employed to generate a sequence of values y(t0),y(t1),:::,y(tk),:::.
A simple iterative update formula is available,

y(tzdt) ~ e{dt=tx y(t)z sx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{e{2dt=tx

p
~jj, ð23Þ

which requires the generation of a Gauss-distributed pseudo-

random number ~jj at each iteration, with zero mean and unitary

variance [43]. Such an iterative expression is exact, in the sense

that dt neither needs to be uniform nor infinitesimal for fy(tk)g to

approximate the statistical properties of x(t) [50]. For very small

dt compared to tx, Eq. 23 can be also approximated by a first-

order Taylor expansion, leading to

y(tzdt) & (1{dt=tx) y(t)z sx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dt=tx

p
~jj: ð24Þ

Results

In the Materials and Methods section, we have motivated and

operatively defined a procedure to derive an effective stochastic

version for each ion current composing a conductance-based

model neuron. This approximation is entirely based on probability

calculus and on analytical expressions derived earlier for

experimental channel-noise analysis [6], and it does not require

the Fokker-Planck formalism [28,29]. We have applied here these

expressions for synthetic purposes, based on the a priori knowledge

of the Markov kinetic scheme underlying each voltage- and ligand-

gated membrane conductance. The overall conductance associat-

ed to each current is modified to include the very same

deterministic variables and additive noise term(s), as opposed to

previous Langevin-based approaches to channel noise macroscopic

simulation, where noise terms are (heuristically) applied to the

differential equations describing activation and inactivation

variables. In addition, the variance and the spectral properties of

the extra noise terms are chosen accurately to reproduce the

statistical properties of the corresponding microscopic model [6].

In order to assess the validity and accuracy of our approxima-

tion procedure, we choose a single-compartmental model neuron

and the fast-inactivating and delayed-rectifier sodium and

potassium HH currents. We perform Montecarlo microscopic

simulations of the exact full Markov model associated to each

current, and compare the results to those obtained by its effective

macroscopic description. First we test individual ion currents

separately as in voltage-clamp experiments, upon clamping their

gating variable V (t), and then we study some passive and active

membrane properties, as in current-clamp experiments.

Statistical properties under voltage-clamp
We keep the membrane voltage V fixed in time, while

numerically simulating Eqs. 18, 19. We then study the dependence

of the fraction of open channels on V at the steady-state,

computing mean, variance and autocorrelation time length of

Ix=½�ggx(V{Ex)�, x ~ Na,K. The results confirm that our effective

reduction allows one to match accurately the statistical features of

the microscopic models, obtained by Montecarlo simulations of

the Markov-schemes. Fig. 2 summarises these results for a range of

clamped membrane potentials and different total numbers of ion

channels. Panels A–C refer to the steady-state properties of HH

potassium currents and panels D–F refer to sodium currents. In

each panel, black and red markers refer to the actual numerical

simulation of the microscopic and the effective models, respec-

tively, whereas solid lines represent the theoretical steady-state

values. The mean of the fraction of open channels accurately

matches the theoretical predictions (n4
? and m3

?h? for panels A,
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D - see Eqs. 13–14) and, as expected, it is independent of the

number of channels N . The variance inversely depends on N and

no difference is evident by comparing microscopic and effective

simulations. The solid lines of panels B,E are obtained by plottingP7
i~1 s2

Na,i and
P4

i~1 s2
K,i (see Table 2).

For each value of V , the covariance has a decaying profile

characterised by multiple time constants (see Eq. 8 and Table 2).

In order to represent concisely how such a decaying profile

changes for distinct values of V , panels C and F show (magenta

curves) the values t(V ) obtained by best fitting with a single

exponential e{D=t function the autocorrelation function of no(t).
The agreement between microscopic and effective simulations is

satisfying and demonstrates that, when predicting and mimicking

the autocorrelation properties of channel-noise fluctuations, the

kinetic terms tm(V ), th(V ), and tn(V ), emerging in previous

Langevin-based approaches as effective autocorrelation time

constants, fail significantly. When a single Ornstein-Uhlenbeck

process is used to increase the computational efficiency, the single

noise term approximation given in Eqs. 16–17 turns out to be

more accurate than the heuristics based on the kinetic time

constants tm(V ), th(V ), and tn(V ) or the submultiples tm(V )=3,

and tn(V)=4 (see also Text S1).

In the lower part of Fig. 2 (panels G–L), the same analysis is

repeated, comparing the microscopic Markov-scheme simulations

and the results obtained by the Langevin-based approximation

proposed by Fox and coworkers [28,29]. According to the

mathematical expressions reported in the Supporting Information,

numerical simulations of the Fox’s model show that, regardless of

the number of channels, the variance of potassium currents is

overestimated (panel H), whereas the variance of sodium currents

is underestimated (panel K). Because of the inherent limitations of

the Langevin-based approach, where a single noise term is added

to the differential equations describing activation and inactivation

variables, the autocorrelation properties of channel noise fluctu-

ations (panels I,L) are mismatched.

Finally, Fig. 3 illustrates for V~{40 mV the agreement

between the microscopic model and our effective approximation

(panels A–F), as well as the mismatch of Fox’s algorithm (panels

G–L), displaying sample time series of channel noise. Both

histograms of fluctuations amplitude (panels B,E,H,K) and

autocorrelation functions (panels C,F,I,L) confirm and further

support the results of Fig. 2.

Spontaneous action potential generation
As the steady-state properties of the fractions of open channels

are equivalent in the microscopic and effective models, we tested

the full model as in a current-clamp experimental protocol. In this

case, the gating variable V is not clamped to a fixed value and

both passive and active membrane properties arise by the interplay

between ion currents. Once injected with a weak depolarising DC

current Iext~10 pA, both the microscopic and the effective model

neurons fire irregular action potentials [14], as shown in Fig. 4A.

In the absence of channel noise (i.e., for NNa?? and NK??),

10 pA is not strong enough to elicit spiking activity as it is below

threshold for (deterministic) excitability.

In order to quantify more accurately this phenomenon, we show

in Fig. 4B the coefficient of variation (CV) of the interspike interval

distribution obtained simulating the microscopic, effective and

Fox’s models (black, red and blue traces, respectively), for

increasing values of the membrane patch area (i.e., of the number

of ion channels). Note that Fox’s model exhibits no spontaneous

activity for larger cell sizes. On the other hand, the CV of the

microscopic and effective models are very close. Fig. 4C shows the

corresponding spontaneous mean firing rates: the presence of an

‘‘offset’’ in the results obtained by the effective model is evident,

which is greatly reduced as the membrane area increases. This is

due to the small number of channels in the membrane patch when

the area is very small, against assumption (iii).

Firing efficacy, latency and jitter in response to
monophasic and preconditioned stimuli

In order to perform a direct comparison with the analysis

carried out in [27], a monophasic current pulse of fixed duration

and increasing amplitude was applied 10000 times to probe the

impact of channel noise on neuronal evoked responses. In Fig. 5,

panel A displays the firing efficacy (i.e., the fraction of trials where

a spike was elicited), panel B shows the average latency of the

evoked action potential with respect to the stimulation time, and

panel C displays the standard-deviation (i.e., the jitter) of the firing

latency. Black and red traces and dots result from the simulations

of the exact kinetic schemes and from our diffusion approxima-

tion, respectively, while in blue we indicate the results from the

simulation of the Langevin-approximation introduced by Fox. The

satisfactory agreement between microscopic and effective models

is apparent, whereas simulations according to Fox’s algorithm

differ considerably. Panel D shows the distribution of spike

occurrence times, evoked by a biphasic stimulus over 10000 trials.

The distributions of spike times obtained by the microscopic and

effective models almost overlap, while Fox’s distribution has a

significantly different shape.

The results we present here for the microscopic and Fox’s

models are in close agreement with those discussed in greater

detail in [27].

Reliability of evoked spike timing and response latency
The results shown in Fig. 5 refer to the application of either a

mono- or biphasic stimulus of short duration, in the order of

milliseconds. Here, we extend the previous analysis to the case of

significantly longer stimulations: our objective is to study the so-

called reliability of spike timing along the lines of the experimental

protocol defined in [13]. It is well known that, as a consequence of

channel noise, the reliability of evoked spike timing is higher for

current stimuli Iext fluctuating in time than for DC current pulses

[13,15,17]. Indeed, larger fluctuations induced in the membrane

Figure 2. Steady-state statistical properties of the fraction of open channels no, under voltage-clamp. Panels A–C refer to delayed-
rectifier potassium channels (see Fig. 1B and Table 2), whereas panels D–F refer to fast-inactivating sodium channels (see Fig. 1A and Table 2). Black
and red dots result from the simulations of the exact kinetic schemes and from our diffusion approximation, respectively. The continuous traces in
A,B,D,E are drawn by the analytical expressions derived in the text, and refer to an increasing number of simulated channels (namely, 360, 1800,
3600). The dependence on the membrane-patch voltage V is studied for the mean of no (A,D) and for its variance (B,E). For an increasing number N
of channels, the variance decreases, as expected. Panels C,F show the time constant of the best-fit single-exponential, which approximates the
covariance of no (see Eq. 17). The mismatch between actual best-fit values and the characteristic subunit gating time-constants (tm(V ), th(V ), tn(V ),
shown for comparison), clearly indicates that great care should be taken in deriving accurate Langevin-kind formulations. Panels G–L repeat the very
same comparisons presented in panels A–F, for the Langevin-approximation introduced by Fox and coworkers (Fox, 1997; Fox and Lu, 1994): the
variance of potassium currents is overestimated (H), whereas the variance of sodium currents is underestimated (K). In addition, the autocorrelation
properties are not reproduced correctly (I,L).
doi:10.1371/journal.pcbi.1001102.g002
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potential by the driving stimulus transiently hyperpolarise the cell,

thus reducing the variance of channel noise (see Fig. 2B,E). A similar

phenomenon has been described in the case of inhibitory autapses

in the cerebral cortex [53] and it could also be represented at

microcircuit-level by the role of disynaptic inhibition [54]. A

single-compartmental model simulation incorporating channel noise

can replicate this effect [15] and constitutes a further benchmark

to compare microscopic and effective models. We note that for this

analysis, we have chosen the neuron parameters in order to

reproduce the results presented in [13]. The agreement between

models is very good as shown in Fig. 6, where black (red) traces

and markers refer to the microscopic (effective) model. The spike

responses to two repeated identical stimuli were considered: a DC

pulse (panel A) and a realisation of an exponentially-filtered white

noise (panel B). The raster diagrams of the spike times (upper

plots), as well as the corresponding time histograms (lower plots),

demonstrate that the two models perform in the same way as the

spread and latency of the spike times, in response to the repeated

identical stimulation, are practically identical. Finally, a quantita-

tive measure of both precision and reliability (computed according

to [13]) provides values similar to those measured in in vitro

experiments (see figure caption).

Frequency-current (f {i) response curves
For stronger depolarising DC currents Iext, the firing of both the

microscopic and the effective models becomes more regular. The

mean firing rate, as a function of Iext was studied to test the

agreement between their evoked response properties. Fig. 7 shows

the f {i curves computed over 10 s-long evoked spike-trains. For

each current amplitude, the simulation was repeated 10 times, and

firing rates obtained in each repetition were averaged. Error bars

indicate the standard deviation of the firing rate across repetitions.

Responses of both the microscopic and the effective models result

in almost identical variability across repetitions and in both cases

the type-II behaviour, typical of the deterministic HH model, fades

away. This is a known consequence of the presence of channel noise,

which smooths what would be an abrupt transition from a

quiescent to a spiking regime. These irregular transitions occur for

both models in the very same range of input currents (green-

shaded region in the figure), where the membrane potential

Figure 4. Spontaneous firing in the microscopic and effective models. When weakly depolarising DC currents (A, I~10 pA) are applied to
both the microscopic (black sample trace) and the effective models (red sample trace), the increase in channel noise variances (see Fig. 2C,F) induces
a highly irregular spontaneous emission of action potentials, with qualitatively very similar properties. In these simulations, both length and diameter
of the neuron are set to 10 mm, and the single channel conductance for both sodium and potassium channels is 10 pS. Panels B,C show respectively
the CV of the ISI distribution and the mean firing rate as a function of cell diameter: results are reported for the microscopic, effective and Fox’s
models (black, red and blue traces, respectively). The results of panels B,C refer to spontaneous activity (i.e., no injected current) with neuron length
held fixed at the value 10 mm.
doi:10.1371/journal.pcbi.1001102.g004

Figure 3. Sample time-series of the fraction of open channels no, under voltage-clamp (V~{40 mV). Panels A–C refer to delayed-
rectifier potassium channels (see Fig. 1B and Table 2), and panels D–F to fast-inactivating sodium channels (see Fig. 1A and Table 2). Black and red
traces and dots result from the simulations of the exact kinetic schemes and from our diffusion approximation, respectively. The continuous traces in
A,D are steady-state realisations of the fraction of open potassium and open sodium channels, respectively, while panels B,E display the amplitude
histogram. Under the conditions considered here (360 potassium and 1200 sodium channels), the Gauss-distributed effective stochastic process
approximates well the microscopic model. Panels C,F report the autocorrelation function of channel noise fluctuations, demonstrating an excellent
agreement of the effective and microscopic simulations (see also Fig. 2C,F). Panels G–L repeat the same comparisons presented in panels A–F, for
the Langevin-approximation introduced by Fox and coworkers (Fox, 1997; Fox and Lu, 1994). As in Fig. 2H,K the variance of potassium currents is
overestimated (G–H) while the variance of sodium currents is underestimated (J–K). In addition, the autocorrelation properties are not reproduced
correctly (I,L). Additional simulations, for distinct values of the holding membrane potential, are provided as Supporting Information (Figures 5–10 in
Text S1).
doi:10.1371/journal.pcbi.1001102.g003
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repeatedly switches between a resting equilibrium point and a

spiking limit cycle (see [15] for an extended discussion).

Power-spectral density of membrane voltage
fluctuations

We finally compare the power-spectral densities of subthreshold

membrane potential trajectories, obtained in simulations of the

microscopic and effective models. We followed closely the

numerical analysis of [18], where a comparison between the

microscopic model and a quasi-active linearised model with

phenomenological inductances was instead presented. Once more,

the agreement between the two models is satisfactory: in Fig. 8 we

show the results, indicating by thick shaded curves the power

spectra computed from the microscopic model, and by thin solid

lines the power spectra computed from the effective model. The

agreement is good over the entire frequency domain, reproducing

some of the features that have been experimentally measured in

cortical neurons and related to channel noise [19].

Discussion

In this paper, we introduced the systematic generalisation and

improvement of previous Langevin-based channel-noise effective

simulation techniques. By the diffusion approximation of ion

channels population dynamics, we aimed at efficient and accurate

Figure 5. Comparison of firing efficacy, latency and jitter of a sharp current pulse. Panels A, B and C display the firing efficacy, the average
latency and the jitter of the evoked responses, respectively, after the application of a monophasic stimulus of duration 1 ms repeated for 10000 trials.
Black and red traces and dots result from the simulations of the exact kinetic schemes and from our diffusion approximation, and in blue we indicate
the results from the simulation of the Langevin-approximation introduced by Fox. Panel D shows the distribution of spike occurrence times, evoked
by a biphasic stimulus over 10000 trials: the duration and amplitude of the preconditioning part are 2 ms and 10 pA, respectively, the duration and
amplitude of the second part are 0:5 ms and 20 pA. In all panels, the neuron is simulated as a single cylindrical compartment of length and diameter
equal to 10 mm and single channel conductances equal to 10 pS, for both sodium and potassium channels. The integration time step was set to 5 ms.
doi:10.1371/journal.pcbi.1001102.g005
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computer simulation of channel noise. Our method approximates

correctly the statistical properties of individual ion conductances

(their mean and autocovariance function), matching those

emerging from the Montecarlo simulation of their corresponding

Markov schemes. In addition, both passive and active properties of

neuron model simulations are replicated with satisfying accuracy.

While simulating 50 s of model time by a conventional

Montecarlo algorithm takes about 22 hours for completion, the

same simulation with very similar statistical features is replicated

by the effective model in only 124 seconds, on a machine equipped

with a 2:8 GHz Intel Core i7, with 16 Gb of RAM, running

Ubuntu Linux 9.10. When relating the computation times to the

benchmarking provided by [27], our diffusion approximation is

only 1.5 times slower than Fox’s algorithm and therefore more

than 4.5 times faster than the fastest available algorithm for exact

microscopic simulations [14]. Our results have been obtained by

custom C++ and NEURON model simulations (see the Materials

and Methods section), but the implementation of the method in

other languages (MATLAB, Python) or other simulation environ-

ments (Genesis, NEST, Brian) is straightforward. Besides the speed

increase, the value of our contribution is threefold: i) mean,

variance and spectral properties of fluctuations induced by the

stochasticity of individual ion currents are correctly approximated,

regardless of the number of channels; ii) our method is presented

operatively, allowing any deterministic neuron model, whose ion

conductance kinetics is described by a Markov scheme, to be

quickly converted into an equivalent stochastic version without

involving any heuristics on the choice of the parameters for extra

noise sources; iii) the underlying assumptions for the validity of our

approximation are also indicated with full details.

The earlier proposals of [28,29], recently challenged for their

accuracy, are indeed very similar to our method, although focused

only on the HH model. In these papers, the equations that state

variables m, h, and n obey to are modified by adding a single noise

term g(t), as follows:

_uu~au(V ) (1{u){bu(V ) u z g(t), ð25Þ

where u~fm,h,ng and g(t) is a Gauss-distributed noise term with

zero mean and covariance given by

Sg(t)g(tzD)T~
2

N

au bu

auzbu

d(D) ð26Þ

By direct inspection and comparison of Eqs. 4, 5, 6, and 20, it is

possible to show that Eq. 25 and Eqs. 4–5 are equivalent (see Text

Figure 6. Raster plots and peristimulus time histograms (PSTH) for the timing of spiking responses to repeated identical DC pulses
(A) and fluctuating currents (B). Red traces and markers refer to Montecarlo microscopic simulations of the full model, while black traces and
markers refer to the effective model. The values of reliability (r) and precision (p) are in accordance with those measured in in vitro experiments. In
particular, in panel A: r~0:9, p~0:59 ms for the microscopic model, r~0:9, p~0:6 ms for the effective model. Panel B: r~0:99, p~0:31 ms for the
microscopic model, r~0:99, p~0:33 ms for the effective model. The DC pulse has an amplitude of 0:25 nA, whereas the noisy stimulus is the same
realisation of an Ornstein-Uhlenbeck’s process, with mean and standard deviation set to 0:15 nA, and with autocorrelation time length set to 100 ms.
doi:10.1371/journal.pcbi.1001102.g006
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S1). In other words, for 2-state kinetics the approximation given by

Eq. 25 is correct but fails when the powers m3, h, and n4 are

computed and when they are combined in the product m3h.

Under these circumstances, mean, variance and covariance

function indeed deviate considerably from the correct dependence

on V , emerging from the microscopic simulations or computed

analytically (see Text S1). Briefly, the potassium current simulated

by the fourth power n4 overestimates the correct variance, does

not share the correct mean and has qualitatively different

autocorrelation properties. The sodium current simulated by the

third power m3 and the product by h instead underestimates the

correct variance, does not share the correct mean and has

quantitatively different autocorrelation properties. The interested

reader can find all the details in the Supporting Information. We

believe that the reason for the success of our approximation,

compared to Fox’s approach, lies not only in the correct

agreement of fluctuations mean and variance, validated by direct

comparison with the theoretical and numerical results of the

microscopic description [31], but also in the fact that the covariance

function of those fluctuations must be precisely matched and

should be approximated by a sum of white-noise terms and not by

adding noisy terms to the deterministic kinetic equations for

activation and inactivation variables. However, we note that under

current-clamp condition, there is no a priori guarantee that any

Langevin-based approach, including our diffusion approximation,

works faithfully [55]. In fact, our assumption (v), that the gating

variable (e.g., V (t)) changes slowly compared to channel kinetics,

may not be instantaneously satisfied during very fast transients.

Although the same condition is anyway employed for obtaining

numerical speed-up in deterministic conductance-based models

[1,56,57], the instantaneous channel noise fluctuations might lag

behind what predicted by microscopic exact models (see Figs. 11–

12 in Text S1). Nevertheless, owing to the satisfying results we

obtained in terms of firing-rate properties, firing time reliability,

precision, efficacy, latency, jitter as well as subthreshold membrane

fluctuations, we speculate that inaccuracies during very fast

transients might still be compatible with accurate model

performances (perhaps due to the low-pass properties of the

membrane), provided that first- and second-order voltage-clamp

statistics are correctly matched.

A very similar reduction procedure is implicitly mentioned in

[18], where the authors developed a quasi-active membrane

potential equation employed only for the spectral analysis of

subthreshold voltage noise, but not for its actual numerical

Figure 7. Frequency-current (f {i) response curves. Mean firing rate, in response to a DC current injection, studied for increasing stimulus
intensities in both Montecarlo microscopic (black trace) and effective model (red trace) simulations. Single-channel conductance for both sodium and
potassium channels set to 10 pS.
doi:10.1371/journal.pcbi.1001102.g007
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simulations. The authors state clearly that their approximation can

be viewed as a linearised approximation of the Fokker-Planck

master equation [29]. As opposed to our method, which requires

adding multiplicative noise terms to the membrane potential

equation, their quasi-active model includes only additive noise,

upon linearisation, resulting in the definition of electrical circuit

analogs (capacitances and inductors) useful for the intuitive

understanding of channel noise for subthreshold passive membrane

properties, and for the analytical prediction of the spectral

properties of membrane potential fluctuations. The authors,

however, do not explicitly provide any derivation of their

approach and do not test it for the excitable response neuronal

properties as a replacement of microscopic simulations.

One further approach to channel noise modelling has been

proposed in [35]. We share the motivation of performing accurate

and fast simulation by a Langevin-based approach, but we use

stochastic processes with precise and defined statistical properties,

coincident with those emerging from the microscopic description

of the stochastic behaviour of channels. In the proposal by [35],

the effective stochastic term is modelled as Brownian motion, i.e.,

as a Gauss-distributed process with independent increments and

heuristically fixed constant variance, ignoring its voltage-depen-

dence and the variety of autocorrelation time constants. Since the

analytical derivation of the accurate statistical properties of channel

noise is possible, and its implementation straightforward as we

showed here, there is no need to use arbitrary parameters for

simulating the stochastic components of ion currents gating.

It is worth mentioning that population density approaches,

proposed for integrate-and-fire as well as conductance-based

models [58–61], share to some extent the motivations of our work:

exploring the impact of endogenous or exogenous noise sources

while developing tools to capture or effectively simulate popula-

tion-level dynamics [62,63]. Those works also aim at correctly

mimicking actual network interactions in terms of an equivalent

stochastic additive input to a generic unit of the network [64], as in

the mean-field approximation of synaptic interactions [65]. Since

Figure 8. Voltage power spectral densities of subthreshold membrane potential trajectories. Comparison between the microscopic
(thick shaded lines) and the effective (thin solid lines) models. 50 s of simulated recordings of the membrane potential were obtained under weak
holding currents ({{0:15, 0, 0:15g nA), resulting in membrane potential traces fluctuating around an offset ({{72:6, {65, {61:5g mV). Rare
spontaneous spikes were removed from the analysis, excluding the 150 ms preceding and the 250 ms following each spike. The spectra have been
obtained by applying the Welch method, on moving windows of duration 1 s and overlapping by 0:5 s, and subsequently averaging the results.
doi:10.1371/journal.pcbi.1001102.g008
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our work provides an accurate effective description of an intrinsic

(multiplicative) noise source, our formulation could be very

relevant for those approaches, in extending population density

descriptions to incorporate endogenous channel noise.

In conclusion, we believe that our method could open new

possibilities for the investigations of channel noise impact in

morphologically detailed conductance-based model neurons, as

well as in large networks models, where realism cannot be

compromised by computational parsimony. Spike timing compu-

tation in neural networks [66] with specific microcircuit architec-

tures [54] might be for instance easily complemented by stochastic

components of neural excitability, employing detailed neuron

models. Finally, the possibility of further increasing the level of

approximation, involving only a modification of the spectral

properties of channel noise without affecting the accuracy of its

variance, may lead to an in depth understanding of what temporal

correlation properties are relevant for specific computational

neuronal properties and how channel noise interacts with other noise

sources.

Supporting Information

Text S1 This supporting information reviews a few results of the

theory of stochastic processes, useful for supporting our discussion

and for the comparison between Fox’s and our method. It also

contains Figures where extended numerical comparisons between

Fox’s and our method are presented.

Found at: doi:10.1371/journal.pcbi.1001102.s001 (2.06 MB PDF)
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