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Abstract

Tumor necrosis factor a (TNF-a) is a key regulator of inflammation and rheumatoid arthritis (RA). TNF-a blocker therapies can
be very effective for a substantial number of patients, but fail to work in one third of patients who show no or minimal
response. It is therefore necessary to discover new molecular intervention points involved in TNF-a blocker treatment of
rheumatoid arthritis patients. We describe a data analysis strategy for predicting gene expression measures that are critical
for rheumatoid arthritis using a combination of comprehensive genotyping, whole blood gene expression profiles and the
component clinical measures of the arthritis Disease Activity Score 28 (DAS28) score. Two separate network ensembles, each
comprised of 1024 networks, were built from molecular measures from subjects before and 14 weeks after treatment with
TNF-a blocker. The network ensemble built from pre-treated data captures TNF-a dependent mechanistic information, while
the ensemble built from data collected under TNF-a blocker treatment captures TNF-a independent mechanisms. In silico
simulations of targeted, personalized perturbations of gene expression measures from both network ensembles identify
transcripts in three broad categories. Firstly, 22 transcripts are identified to have new roles in modulating the DAS28 score;
secondly, there are 6 transcripts that could be alternative targets to TNF-a blocker therapies, including CD86 - a component
of the signaling axis targeted by Abatacept (CTLA4-Ig), and finally, 59 transcripts that are predicted to modulate the count
of tender or swollen joints but not sufficiently enough to have a significant impact on DAS28.
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Introduction

Rheumatoid arthritis (RA) is a common autoimmune disease

that is characterized by inflammation and destruction of the joints

[1]. Inflammation is caused by the infiltration of inflammatory

cells, including neutrophils, macrophages, B- and T-cells into the

normally acellular synovial tissue that lines the junction of bones.

A key feature of the inflammatory process is the release by the

infiltrating cells of proinflammatory cytokines, including TNF-a,

interleukin-1 (IL-1), interleukin-6 (IL-6), and others. These

cytokines promote further inflammation and joint destruction by

activating infiltrating immune cells as well as resident bone cells

and promoting the release of degradative enzymes such as matrix

metalloproteases and cathepsins. Another key feature of the

disease is the presence of autoantibodies directed against

citrullinated proteins and other targets that contribute to joint

damage as well as systemic manifestations of RA [2]. Like other

autoimmune diseases, RA is caused by complex interactions

between genes and environment [3].

RA is treated with small molecule, disease-modifying anti-

rheumatic drugs (DMARDs) including Methotrexate, Sulfasala-

zine, Leflunomide and others [4]. Biologic agents include several

tumor necrosis factor alpha (TNF-a) blockers such as Etanercept,

Infliximab and Adalimumab, co-stimulation blockers (abatacept

or CTLA4-Ig) and B-cell depleters (rituximab). DMARDs are

often combined with tumor necrosis factor alpha (TNF-a)

blockade. For many patients, TNF-a blockade effectively relieves

arthritis symptoms as measured by American College of

Rheumatology (ACR) or Disease Activity Score (DAS) scoring

systems that measure numbers of tender and swollen joints as well

as other clinical parameters. Typically 39% of patients score

better than ACR 50 in etanercept trials when dosed at 10 mg or

25 mg twice weekly, and 64% of patients scored better than ACR

20 [5]. However, for particular subsets of rheumatoid arthritis

patients, TNF-a blockade does not appear to relieve the

symptoms of RA.

A genetic component to RA has been established from twin and

family studies. The estimated heritability of RA is about 60%, and

the genetic basis is complex with consistent association of HLA,

PTPN22, TRAF1-C5, and several other loci [6]. Some of these

genetic variants have also been associated with differential

response to treatment with TNF-a blockers [7]. However,
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establishing the causal molecular mechanisms by which genetic

variants affect RA phenotypes or differential response to TNF-a
blocker to inform rational selection of molecular intervention

targets for RA remains a challenging problem.

Establishing causal mechanisms, particularly in clinical data, is a

difficult exercise and is often assessed using two popular

approaches [8]. One approach uses probabilistic evidence from

cross-sectional population studies and discovers new stable

statistical associations between the measurements. However,

discovering statistical links between the measurements alone

cannot determine the causal direction. Another uses mechanistic

evidence arising from knowledge of an existing physical property

and establishes a predictable dependency over time. However,

discovering new mechanistic knowledge demands experimentation

and leads directly to the first approach of statistical, probabilistic

analysis of the collected data.

Probabilistic or mechanistic causality models alone appear to be

at once insufficient and irreconcilable. Scientific inferences from

approaches that are unable to effectively reconcile these two

notions of causality typically experience delays in their acceptance.

There have been many instances of strong probabilistic links in

clinical data that have not been accepted until the mechanism had

been discovered. Rigorous clinical science correctly requires that

both probabilistic and mechanistic arguments need to be met

simultaneously before a particular claim can be accepted as causal

[8].

The scientific method provides a framework to address both

aspects of causality simultaneously [8]. First, existing evidence is

used to propose a constrained rational mechanism. Second, controlled

experiments or perturbations are designed to test the mechanism,

and relevant data are collected on the proposed mechanistic

molecules. Finally, an appropriate systematization of the collected

data deduces probabilistic reflections of known mechanisms and infers

new aspects of the mechanism that can be directly tested. If the

inferred aspects are confirmed, the proposed mechanism is

accepted as causal.

To develop a causal data analysis approach to rational drug

target and biomarker discovery in RA, we used published data

from the Autoimmune Biomarkers Collaborative Network (AB-

CoN) [9]. The ABCoN recruited more than 100 patients naı̈ve to

anti-TNF treatment for systematic clinical and molecular analysis.

Clinical data for calculating Disease Activity Score 28 (DAS28),

and blood samples for genetic (SNP) and expression profiling

analysis, were collected at baseline (pretreatment), as well as 6

weeks and 14 weeks after starting therapy for one of three anti-

TNF molecules (Etanercept, Infliximab or Adalimumab). In our

analysis of ABCoN data, we assume a rational mechanism that

genetic variation arising from meiosis in this study population

together with drug therapy are systematic perturbations that

impact RA through multiple molecular and physiological

interactions that are probabilistically reflected in the blood

transcription profile data. Systematization of the gene expression

and clinical data enable us to distinguish transcripts that play a

role in modulating RA phenotypes from those that are either

simply correlated with or secondary to the phenotypes.

Bayesian networks provide a convenient framework for

systematizing data to deduce probabilistic orderings and modeling

large systems of interacting variables [10,11,12,13,14]. Most

previous studies have concentrated on either estimating the

structural connections in the system under study or on the

identification of disease associated genetic polymorphisms. Simu-

lation of Bayesian networks can be used to predict the effect of

specific interventions. Whereas some previous studies make

predictions based on a single network topology [15,16,17,18,19],

our approach adds to these in two important ways. First it

generates a statistical sample, or ensemble, of network structures

that are consistent with data collected [20,21]. Second, it enables

quantitative prediction of the effects of perturbations [22] that

account for uncertainty about network topology.

With the ability to predict the impact of specific interventions

that were not part of the collected data in defined study subjects,

the ensemble organizes the data into a rational model and also

predicts unseen events. In this regard, these simulation-ready

integrative genomic ensembles capture the essence of the scientific

method described previously.

Here we concentrate on the prediction of gene expression levels

that are critical to explaining the number of swollen joints (SJ), the

number of tender joints (TJ), the amount of pain and the plasma

concentration of C-reactive protein (CRP) in the subjects enrolled

in the ABCoN trial with and without TNF-a blocker treatment.

Sets of biomarkers predictive of TNF-a blocker response have

been identified [23,24]. This should serve as an important

diagnostic tool to help determine who would or would not benefit

from a TNF-a blocker therapy. While there are treatment options

for those who do not respond to TNF-a blocker therapies,

identifying those patients before they begin biologics or early in

their treatment would help rationalize their treatment. Addition-

ally, uncovering molecular alterations underlying TNF-a blocker

response will be critical to discovering new and effective therapies

for RA.

Results

Using ABCoN study data to explore mechanisms of
differential response to TNF-a blockade

While DMARDs, TNF-a blockers and other treatments are

available for RA patients [1,25], there is still a need to identify new

drug targets for patients whose disease does not respond to

available therapies. If the molecular mechanism for TNF-a
blocker failure were understood, the knowledge would allow drug

researchers to more effectively select molecules that could target

this particular subgroup of patients. Simulation-capable ensemble

Author Summary

The collection and analysis of clinical data has played a key
role in providing insights into the diagnosis, prognosis and
treatment of disease. However, it is imperative that
molecular and genetic data also be collected and
integrated into the creation of network models, which
capture underlying mechanisms of disease and can be
interrogated to elucidate previously unknown biology.
Bringing data from the clinic to the bench completes the
cycle of translational research, which we demonstrate with
this work. We built disease models from genetics, whole
blood gene expression profiles and the component clinical
measures of rheumatoid arthritis using a data-driven
approach that leverages supercomputing. Genetic factors
can be utilized as a source of perturbation to the system
such that causal connections between genetics, molecular
entities and clinical outcomes can be inferred. The existing
TNF-a blocker treatments for rheumatoid arthritis are only
effective for approximately 2/3 of the affected population.
We identified novel therapeutic intervention points that
may lead to the development of alternatives to TNF-a
blocker treatments. We believe this approach will provide
improved drug discovery programs, new insights into
disease progression, increased drug efficacy and novel
biomarkers for chronic and complex diseases.

Targets for Rheumatoid Arthritis
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network models of cause and effect are theoretically capable of

providing clues to the reasons some patients do not respond.

The ideal strategy to learn the probabilistic mechanisms of non-

response would be to integrate circulating drug concentrations

(pharmacokinetic data), measures of the effectiveness of the drug

(pharmacodynamic data), genetic variation, relevant molecular

measures from the disease-affected tissues and finally, components

of DAS28 into a single network ensemble model. Differences in all

these measures would lead to an ensemble model that could

effectively recover TNF-a blockade response in genetically defined

subjects. To recover non-response targets, molecular measures for

non-responding subjects would be set in the ensemble and

systematic in silico perturbations for each non-responding subject

would be completed to give a set of intervention points for these

particular subjects. For alternative targets to TNF-a in non-

responding subjects, the pharmacokinetic variables would be set to

mimic a TNF-a blocker concentration of zero. If the focus were to

find combination therapies, the simulations would be completed

where the pharmacokinetic variables mimicked realistic circulating

doses.

For the ABCoN study, there are no pharmacokinetic or

pharmacodynamic measures, such as phospho-proteomic data

available to enable the modeling strategy outlined. In addition,

and as seen in this data set and other studies [26], TNF-a
transcript levels vary so little in whole blood that they cannot be

considered as a surrogate for pharmacokinetic or pharmacody-

namic measures. This means that the data cannot be used to

effectively understand the probabilistic mechanisms of response, or

non-response, to TNF-a blocker therapy.

However, while a mechanistic analysis is difficult within the

current study design, we can investigate transcription variation

with and without an undefined amount of circulating TNF-a
blocker activity with the expectation that models built using data

collected before TNF-a blocker therapy will be informative for

untreated RA and mainly reflect TNF-a dependent mechanisms.

Additionally, models built using data collected from treated

subjects are expected to reveal aspects of RA that are still

important even after TNF-a signaling has been interdicted.

Critical transcripts identified from the network ensemble built

from data collected after treatment could represent both starting

points for drug target identification for subjects who will not

respond and combination therapy targets that are only important

when TNF-a blocker is circulating in the patient.

Reverse-Engineer and Forward-Simulate (REFS) predictive
framework

Our method works by considering all possible associations

between DNA variation, gene expression, and RA clinical data,

resulting in a collection of network fragments derived from these

measurements and reflecting not only associations between the

traits, but how the different variables are causally associated as

well. Each network fragment defines a quantitative, continuous

relationship among all possible sets of 3 or fewer measured

molecular variables. Because of the experimental design, where

DNA variation is leveraged as the randomization mechanism

needed to make causal inferences, these fragments approximate

stable, probabilistic cause and effect relationships [11]. The

relationship is supported by a Bayesian probabilistic score that

deduces how likely the candidate relationship is given the

measurements and also penalizes the relationship for its mathe-

matical complexity (Figure 1B). By exhaustively scoring all of the

possible pairwise and three-way relationships inferred from the

DNA, expression, and RA clinical data, the most likely fragments

can be identified and held aside preferentially in the collection for

later use. Network fragments that include SNPs are constrained

such that the genotypes are always upstream of gene expression or

clinical outcome data, reflecting the assumption that genotypes are

systematic perturbations to the disease. However, network

fragments that are comprised of gene expression and clinical

outcome data alone could affect each other through multiple

causal mechanisms, and therefore we considered all possible

orderings of three or fewer variables. In addition to assessing the

probability of a particular relationship, the quantitative parame-

ters of the relationship are computed and stored, an important

departure from previous methods that have primarily focused on

structure. Rather than discarding this quantitative information, we

store it so that it can be queried to draw more complex inferences

later on in our process.

In the second phase, we estimate an ensemble of network

models based on data from the integrative genomics experiment.

A statistical definition of the ensemble is a sample of networks

drawn from all possible networks consistent with the data, and

whose properties are robust, regardless of either the actual

structures contained within it or the algorithmic starting conditions

that generated it. Even though a normally distributed random

variable can take on infinitely many values, sampling even as few

as 30 numbers from the distribution can provide reliable estimates

of the mean and standard deviation of the distribution, thereby

perfectly characterizing the behavior of the random variable. In

much the same way, our approach samples from the space of all

possible networks to approximate the distribution of that space,

enabling an effective characterization of that space. In the third

phase we use forward simulation of networks in the ensemble to

generate predictions of the effects of perturbations. The entire

process is summarized in Figure 1. The entire process is repeated

for data collected before and 14 weeks after TNF-a blocker

therapy, giving two distinct network ensembles that capture

untreated and treated aspects of RA mechanism.

Summaries of data processing, diagrams of the consensus

structure of the two models with respect to the DAS28

components (Figure 2) and the mathematical assessment of the

quality of the models generated by the framework are provided

(Table 1 in Text S1 and Figures S1–S3). Briefly, the untreated

network ensemble was built using 6,075 SNPs, which included

imputed genotypes for previously identified SNPs associated with

RA, 4,794 gene expression values and 4 DAS28 component

scores. The treated network ensemble was built using 6,076 SNPs,

4,512 gene expression values and 4 DAS28 component scores.

The network sample properties were assessed by completing three

independent network sampling procedures using different, random

starting conditions. There were no significant differences in the

sample properties regardless of the starting conditions demon-

strating that the sampling procedure had converged. The

predictive properties of the network sample were assessed using

simulations designed to measure how accurate the network

ensemble recovered the actual observed data (Text S1).

Model intervention simulations – Virtual clinical trials
Systematic in silico simulations of 10-fold knockdown of all 9,306

transcripts were completed to provide quantitative predictions of

how modulation of a particular gene expression measure would

affect the DAS28 score in every particular subject given their own,

individualized genotype and gene expression values before and

after treatment with TNF-a blocker. Simulated distributions of SJ,

TJ, Pain and CRP were compiled from 30 replicate gene

expression simulations for each subject and for each gene. A

single predicted DAS28 component score for each individual

patient was then estimated as the median of the 30 replicate

Targets for Rheumatoid Arthritis
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Figure 1. Schematic of Bayesian network reverse engineering and Monte Carlo simulation. A. Genetic, gene expression and phenotypic
data are prepared for modeling by formatting followed by investigation to select the appropriate data transformation for the particular data type.
Confounding factors and other explanatory variables are considered and modeled if appropriate. B. Likely fragments for network reconstruction are
identified by scoring all 2-, 3- and 4-variable combinations with the constraint that SNPs are causally upstream. There are too many scored
combinations to consider all during network reconstruction. The fragments that had the most likely Bayesian scores for each individual variable were
identified and retained for network reconstruction. C. Parallel global network sampling constructs an ensemble of 1024 network structures that
explain the data. The probabilistic directionality computed by the Bayesian framework allows inferences to be made about what lies upstream and
downstream of particular phenotypic variables D. Diversity in network structures identified during network reconstruction captures uncertainty in the
model. Hypotheses are extracted from the network ensemble by completing Monte Carlo simulations of ‘‘what-if’’ scenarios. Down-regulating the
blue transcript would be expected to impact both TJ and SJ, while leaving CRP unchanged. The change in these phenotypic parameters would
further predict reactive transcription changes in the liver. The separation of upstream and downstream components can identify potential
intervention points and markers.
doi:10.1371/journal.pcbi.1001105.g001

Targets for Rheumatoid Arthritis
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simulations to provide a robust point estimate of the range of

predicted values. The simulated and summarized SJ, TJ, Pain and

CRP scores were used to estimate a simulated DAS28 score using

the standard equation supplied to clinicians.

Gene expression perturbations were ranked by their ability to

sufficiently modulate RA clinical measures in a significant number

of patients using either a x2 test for TJ and SJ scores or a Student’s

t-test for Pain and CRP with respect to simulated untreated gene

expression DAS28 scores.

Identification of three classes of causal transcripts
78 transcripts from the untreated network ensemble (see Table

S1) and 97 transcripts from the TNF-a blocker treated network

ensemble (see Table S2) were predicted to significantly modulate

Figure 2. Consensus topology of network ensembles for pre-treated and TNF-a blocker treated data. A. Snapshot of the network ensemble
at 2.5% consensus topology generated from pre-treated subjects. Pain does not appear to be controlled by measures extracted from whole blood mRNA
profiling in pre-treated subjects. B. Snapshot of the network consensus topology at 2.5% consensus generated from TNF-a blocker treated data.
doi:10.1371/journal.pcbi.1001105.g002

Targets for Rheumatoid Arthritis
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any of the DAS28 component scores (p,0.05). The transcripts

identified can be assigned to one of three broad categories based

on their predicted efficacies and druggability, which was assessed

using Ingenuity Pathway Analysis (Ingenuity Systems, www.

ingenuity.com). Category 1 transcripts are defined as transcripts

that have a predicted novel role in RA (Tables 1 and 2), are not

directly related to TNF-a biology and have statistically significant

impacts on DAS28 and joint health. Category 2 transcripts are

potential alternatives to TNF-a therapies and have known

dependencies on TNF-a or are proteins that could be targeted

with a small molecule and are predicted to modulate DAS28 and

joint health (Tables 3 and 4). Category 3 transcripts are those that

are predicted to impact joint health but not DAS28 across the

subjects simulated (Tables 5 and 6).

Literature analysis of REFS identified intervention points
Intervention points identified by REFS were analyzed to

identify significantly enriched biological process using the GOstats

package from R/Bioconductor, an open source software for

bioinformatics [27,28]. Molecular processes associated with

nuclear factor kappa-B (NF-kappa-B) were identified from the

pretreatment gene list (Table 7). NF-kappa-B is a family of

transcription factors that are induced by TNF-a and other stimuli,

and are critically important for inflammatory processes [29].

Genes associated with myeloid cell differentiation are also

enriched in the untreated samples. Myeloid cells, including

neutrophils, monocytes and macrophages, are producers of

TNF-a. These cells also express TNF receptors, and on

stimulation with TNF-a can produce even more of this cytokine

as well as other pro-inflammatory molecules [30]. Terms relating

to T helper cell differentiation and IL-4 biosynthesis were also

among the significantly enriched molecular processes for tran-

scripts identified as important for RA under TNF-a blocker

therapy (Table 8), perhaps reflecting T-cell related pathways as

well as B-cell activations and affecting RA while TNF-a signaling

is therapeutically suppressed.

Network analysis predicts LASS5 and IL32 as TNF-a
dependent causal factors for swollen joint count

LASS5, longevity assurance homolog 5, is identified as a

modulator for number of swollen joints. It is a ceramide synthase

that synthesizes ceramide de novo. It has been shown that

overgrowth of rheumatoid synoviocytes leads to joint destruction,

and ceramide regulates cell growth by inhibiting pro-survival

signals such as those from AKT, MEK and ERK [31]. Ceramide is

also known as a pro-inflammatory signaling molecule and may

regulate several matrix metalloproteases that can degrade cartilage

tissue [32,33].

Simulation results suggest that LASS5 expression interacts with

the expression of interleukin 32 (IL32) to modulate the number of

swollen joints (Figure 3–4). In silico perturbations of IL32 are

predicted to affect number of swollen joints. IL32 is a cytokine

induced by TNF-a and may play a critical role in rheumatoid

arthritis. Injection of human IL-32 protein into knee joints of mice

Table 1. Category 1 Transcripts from the post-treatment model.

Gene Symbol Name TJ SJ DAS28

RAP2C RAP2C, member of RAS oncogene family X X X

ANXA1 Annexin A1 X X X

GON4L gon-4-like (C. elegans) X X X

CPVL carboxypeptidase, vitellogenic-like X X X

SMARCD2 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily d,
member 2

X X X

SLC6A6 solute carrier family 6 (neurotransmitter transporter, taurine), member 6 X X X

EID1 EP300 interacting inhibitor of differentiation 1 X X X

MALAT1 metastasis associated lung adenocarcinoma transcript 1 (non-coding RNA) X X X

EIF3D eukaryotic translation initiation factor 3, subunit D X X

CHCHD2 coiled-coil-helix-coiled-coil-helix domain containing 2 X X

NDE1 nudE nuclear distribution gene E homolog 1 (A. nidulans) X X

NCOA1 nuclear receptor coactivator 1 X X

ARHGAP25 Rho GTPase activating protein 25 X X

MBP Myelin basic protein X X

JMJD3 jumonji domain containing 3 X X

In Tables 1 and 2, these transcripts have a predicted novel role in either untreated or treated RA, are not directly related to TNFa biology and have statistically significant
impacts on DAS28 or joint health (denoted by X, p,0.05).
doi:10.1371/journal.pcbi.1001105.t001

Table 2. Category 1 Transcripts from the pre-treatment
model.

Gene Symbol Name TJ SJ DAS28

DOK3 Docking protein 3 X X

C15orf39 Chromosome 15 orf 39 X X

FLOT2 Flotillin 2 X X

RHOG Ras homolog gene family, member G
(rhoG)

X X

NBPF1 neuroblastoma breakpoint family,
member 1

X X

GLT1D1 glycosyltransferase 1 domain containing 1 X X

FLJ43663 hypothetical protein FLJ43663 X X

doi:10.1371/journal.pcbi.1001105.t002

Targets for Rheumatoid Arthritis
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leads to joint swelling as well as inflammation and cartilage

damage and this effect is dependent on the presence of TNF-a
[34]. The predicted effect of IL32 is not detected in the network

ensemble built from data from TNF-a blocker treated subjects,

agreeing with experimental data and further suggesting that the

treated network ensemble is capturing TNF-a independent

mechanisms in RA.

Network analysis predicts WARS as a TNF-a dependent
causal factor for tender joint count

Persistence of autoimmune activated T-cells is a feature of RA

[35]. Typically, T-cells can be suppressed by indoleamine 2,3-

doxygenase (IDO) signaling which triggers the catabolism of

tryptophan and subsequent suppression of T-cell response [36].

WARS is a tryptophanyl-tRNA synthetase whose gene expression

is significantly elevated in T-cells derived from the synovial fluid of

RA patients and leads directly to the sequestration of intra-cellular

tryptophan in the form of tryptophanyl-tRNA. With intra-cellular

stores of free tryptophan lowered by over-expression of WARS,

IDO signaling is now muted and can explain the persistence of

activated T-cells in RA patients and their resistance to IDO [37].

Simulations suggest that knockdown of WARS gene expression can

significantly affect the number of tender joints sufficiently and

strongly enough to modulate DAS28.

WARS gene expression is predicted to be a modulator of RA

only in pretreated subjects, suggesting that WARS mechanism is

TNF-a dependent (Figure 5). This assertion is confirmed because

enhanced gene expression of WARS that leads to tryptophan

sequestration is dependent on TNF-a in experimental systems

[37].

CD86 is a predicted to be a TNF-a independent causal
factor for joint health

CD86 (B7-2) is identified as a strong modulator of TJ, SJ and

DAS28 in the network analysis of TNF-a blocker treated patients

and should represent a particular TNF-a independent mechanism

that is active in RA patients (Figure 6).

CD86 is a type I membrane protein expressed by antigen-

presenting cells (APC) and is the ligand for CD28 and CTLA4 on

the surface of T-cells. Binding of this ligand to CD28 or CTLA4

provides co-stimulatory signals that can either positively or

negatively regulate T-cell activation that are independent of

TNF-a.

Abatacept (CTLA4-Ig) is an approved biologic drug that

exploits this mechanism by blocking the co-stimulatory signal

from CD80/CD86 thus preventing the full activation of T-cells

[38]. The drug is approved for patients that have shown

unsatisfactory response to TNF-a blocker drugs, clearly demon-

strating that network reconstruction and simulation of data

collected under TNF-a blocker treatment recovers TNF-a
independent mechanisms that could be used to identify drug

targets for the segment of the population that does not respond to

TNF-a blocker therapy.

RAP2C and GON4L are novel predicted TNF-a
independent causal factors for TJ and SJ

In silico perturbations further identified RAP2C (Figure 7) and

GON4L (Figure 8) as causal factors for TJ, SJ and DAS28 score.

Very little is currently known about either of these transcripts and

this is the first analysis that suggests a role for these transcripts as

TNF-a independent modulators of joint health in RA patients.

RAP2C is a novel member of Ras G-protein family and the

model predicts that perturbation of RAP2C leads to significant

changes of TJ, SJ and DAS28 score.

GON4L is a human ortholog of the Caenorhabditis elegans cell

lineage regulator of gonadogenesis GON4L. This gene is a putative

transcription factor that may regulate cell cycle control. GON4L

has been shown to be an essential regulator of B-cell development

[39]. Notably, B-cells are the target for rituximab, a monoclonal

antibody against CD20 that is approved for the treatment of RA

patients with insufficient response to TNF-a blockade [40]. B cells

produce IL-6 upon activation, and IL-6 blocking molecules have

also been approved for RA treatment [41]. Our analysis suggests

that GON4L may be a novel target for RA by modulating B-cell

differentiation.

Discussion

It is important to recognize that the network ensembles are built

from gene expression profiles of whole blood and are not directly

measured from diseased tissue in the joints, which complicates the

assessment of the transcripts identified as outright targets in RA.

Additionally, mRNA from whole blood had to be depleted of

hemoglobin mRNA and the resulting subtracted mRNA sample

was amplified using specialized PCR fluorescence labeling

protocols that may introduce bias in the measurements. The

unavoidable technical details meant that collected data were noisy

and there was a large amount of network structure diversity

recovered in the ensemble sample after network reconstruction.

However, the predicted magnitude of the effects of some of the

Table 3. Category 2 Transcripts from the post-treatment model.

Gene Symbol Name TJ SJ DAS28

TRAF3IP3 TRAF3 interacting protein 3 X X

PSMD4 proteasome (prosome, macropain) 26S subunit, non-ATPase, 4 X X

CD86 CD86 molecule X X X

In Tables 3 and 4, transcripts are potential alternatives to TNF-a therapies and have known dependencies on TNF-a or are proteins that could be targeted with a small
molecule and their predicted modulation might be expected to modulate DAS28 or joint health (p,0.05).
doi:10.1371/journal.pcbi.1001105.t003

Table 4. Category 2 Transcripts from the pre-treatment
model.

Gene Symbol Name TJ SJ DAS28

WARS tryptophanyl-tRNA synthetase X X

LASS5 LAG1 homolog, ceramide synthase 5 X X

CTSC Cathepsin C X X

doi:10.1371/journal.pcbi.1001105.t004
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transcripts identified was large enough to infer significant effects

despite the uncertainty in the network ensemble. Furthermore,

when interpreting inferences from the network ensemble it is

important to recognize that there could be hidden common or

intermediate causes that were not part of the measured dataset

that could modify the logic of the causal inferences encoded in the

ensemble.

The transcripts identified using network simulations represent

quantitative hypotheses about control points in untreated and

TNF-a blocker treated RA patients. The promise of this approach

is exemplified by the recognition of the T cell co-stimulatory

molecule CD86 and the B-cell restricted molecule GON4L in the

TNF-a blocker treated samples. The network simulations were

based purely on the data and did not include any up-front

literature information or supervision. The models suggest that

modulation of these molecules would impact disease scores, and

these molecules represent previously validated pathways for

treating patients with insufficient response to TNF-a blockade.

Not every intervention point identified by the models will be as

clear as CD86, and the genes we identify should be considered as

starting points in the investigation of a wider range of pathway and

signaling mechanisms that have not been widely examined for

therapeutic benefit. For example, the therapeutic potential of a

systematic WARS inhibitor is questionable but other molecular

components of IDO signaling might present better therapeutic

potential.

Table 5. Category 3 Transcripts from the post-treatment model.

Gene Symbol Name TJ SJ DAS28

1558906_a_at NA X X

MGST3 microsomal glutathione S-transferase 3 X

FLJ22662 hypothetical protein FLJ22662 X X

LANCL1 LanC lantibiotic synthetase component C-like 1 (bacterial) X

SFRS18 splicing factor, arginine/serine-rich 18 X X

KPNB1 karyopherin (importin) beta 1 X X

EXOSC6 exosome component 6 X

RAD23A RAD23 homolog A (S. cerevisiae) X

DPYD dihydropyrimidine dehydrogenase X X

FUSIP1 FUS interacting protein (serine/arginine-rich) 1 X X

WIPF2 WAS/WASL interacting protein family, member 2 X X

CFLAR CASP8 and FADD-like apoptosis regulator X

HNRPA3P1 heterogeneous nuclear ribonucleoprotein A3 pseudogene 1 X

INHBC inhibin, beta C X X

COX18 COX18 cytochrome c oxidase assembly homolog (S. cerevisiae) X

FGL2 fibrinogen-like 2 X

GSTO1 glutathione S-transferase omega 1 X

FLJ43663 hypothetical protein FLJ43663 X

TNRC6B trinucleotide repeat containing 6B X

EIF3F eukaryotic translation initiation factor 3, subunit F X

MBNL1 muscleblind-like (Drosophila) X

SUB1 SUB1 homolog (S. cerevisiae) X

PRDM2 PR domain containing 2, with ZNF domain X

C10orf46 chromosome 10 open reading frame 46 X

CENTB2 centaurin, beta 2 X

LRRFIP2 leucine rich repeat (in FLII) interacting protein 2 X

DOCK8 dedicator of cytokinesis 8 X

TMEM14C transmembrane protein 14C X

OSGEP O-sialoglycoprotein endopeptidase X

ATP6AP2 ATPase, H+ transporting, lysosomal accessory protein 2 X

LOC727918 hypothetical protein LOC727918 X

RPS2 ribosomal protein S2 X

VAPA VAMP (vesicle-associated membrane protein)-associated protein A, 33kDa X

RNF6 ring finger protein (C3H2C3 type) 6 X

HLA-DPB1 major histocompatibility complex, class II, DP beta 1 X

EXT1 exostoses (multiple) 1 X

In Tables 5 and 6, transcripts are predicted to impact joint health (p,0.05) but not DAS28 (p.0.05).
doi:10.1371/journal.pcbi.1001105.t005
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Rheumatoid Arthritis drugs recommended by The American

College of Rheumatology (ACR) fall into several categories: small

molecule DMARDs including methotrexate, lefluonamide and

others; anti-TNF-a agents; T-cell activation modulators; IL-6

antagonists; IL-1 antagonists; and B-cell directed therapy. The

analysis conducted in this study is relevant for all of these

therapeutic approaches, but ideally suited for identifying new

pathways to target in patients with insufficient response to first-line

DMARDS and biologics such as anti-TNFs. Whereas the

DMARDS have relatively broad mechanisms of action impacting

several inflammatory pathways, the biologics all have very targeted

mechanisms and are generally used only after DMARDS have

failed. While the pleiotropic effects of the biologics overlap, each

class of biologics targets a specific feature of inflammation. The

anti-TNFs are by far the most common, and these target

inflammatory processes driven by macrophages that are close to

the top of the inflammatory cascade. In current practice, other

biologics are used primarily after DMARDS and anti-TNFs fail.

Table 6. Category 3 Transcripts from the pre-treatment model.

Gene Symbol Name TJ SJ DAS28

PITPNA phosphatidylinositol transfer protein, alpha X

N4BP1 Nedd4 binding protein 1 X

XPO6 exportin 6 X

IMPDH1 IMP (inosine monophosphate) dehydrogenase 1 X

HLA-E major histocompatibility complex, class I, E X

DPYSL2 dihydropyrimidinase-like 2 X

LRP10 low density lipoprotein receptor-related protein 10 X

EIF4G2 eukaryotic translation initiation factor 4 gamma, 2 X

RALY RNA binding protein, autoantigenic (hnRNP-associated with lethal yellow
homolog (mouse))

X

NT5C2 59-nucleotidase, cytosolic II X

PSMB9 proteasome (prosome, macropain) subunit, beta type, 9 (large multifunctional
peptidase 2)

X

STAT3 signal transducer and activator of transcription 3 (acute-phase response factor) X

FNBP1 formin binding protein 1 X

IL32 interleukin 32 X

TRBC1 T-cell receptor beta constant 1 X

PCSK7 proprotein convertase subtilisin/kexin type 7 X

SSH2 slingshot homolog 2 (Drosophila) X

MAPKAP1 mitogen-activated protein kinase associated protein 1 X

LAMP2 lysosomal-associated membrane protein 2 X

PCGF3 polycomb group ring finger 3 X

RUNX1 runt-related transcription factor 1 (acute myeloid leukemia 1; aml1 oncogene) X

NFIL3 nuclear factor, interleukin 3 regulated X

CFLAR CASP8 and FADD-like apoptosis regulator X

Transcripts predicted to impact joint health (p,0.05) but not DAS28 (p.0.05)
doi:10.1371/journal.pcbi.1001105.t006

Table 7. Significantly enriched immune response related GO terms for transcripts from untreated model.

GOBPID Pvalue Count Size Term

GO:0045639 0.000201651 2 5 positive regulation of myeloid cell differentiation

GO:0006955 0.002364924 10 778 immune response

GO:0045637 0.002648076 2 17 regulation of myeloid cell differentiation

GO:0030097 0.008668954 3 93 hemopoiesis

GO:0006436 0.009086186 1 2 tryptophanyl-tRNA aminoacylation

GO:0042386 0.035861484 1 8 hemocyte differentiation (sensu Arthropoda)

GO:0000086 0.044627838 1 10 G2/M transition of mitotic cell cycle

GO:0042345 0.048981641 1 11 regulation of NF-kappaB import into nucleus

GO:0043123 0.049036663 2 78 positive regulation of I-kappaB kinase/NF-kappaB cascade

doi:10.1371/journal.pcbi.1001105.t007
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This partly reflects the culture of new drug adoption – anti-TNFs

have a track record and there are several to choose from – but may

also reflect underlying disease heterogeneity. The network analysis

supports the notion that underlying disease heterogeneity is

important. Different biological pathways are active with and

without anti-TNF-a treatment. Furthermore, T-cell and B-cell

pathways targeted by approved RA drugs clearly emerge from the

model as reflected by the impact of modulating CD86, part of the

abatacept (CTLA4-Ig) target, and GON4L, expressed in B cells

that are the target of rituximab (anti-CD20).

Candidate targets identified by network analysis can be put into

specific inflammatory pathways. While the pathways have been

previously identified, some of the specific transcripts have not been

recognized as being associated with RA before. These newly

identified transcripts highlight pathways for small-molecule or

biologic treatments of RA. In addition to the few genes mentioned

above, network analysis predicts additional transcripts such as

STAT3. STAT3 has been identified as a pro-survival molecule for

RA synoviocytes [42], and has also been shown to mediate some of

the pro-inflammatory signaling of IL-6 {Hirano, #88} – yet

another target of approved RA treatments. Additionally,

FLJ43663 is predicted to be a secreted protein and represents a

novel type of molecule identified through network simulation.

Of the eighteen genes significantly affecting counts of Swollen

Joints (SJ), correlative statistical models identified only two

transcripts, CTSC and IL32. REFS identified the importance of

RUNX1, a transcription factor that regulates genes such as BLK,

TCR, CD3 and GM-CSF in lymphoid cells [44] and which may

play a role in autoimmune disease such as rheumatoid arthritis

[45]. REFS ranked RUNX1 as the fifth most important transcript

modulating SJ while correlative statistical models ranked RUNX1

as the 1280th most important transcript (See Figure S4A). Further

investigation of the REFS network model suggests that RUNX1

affects SJ by modulating hypothetical gene FLJ43663. In this

manner, REFS identified a completely novel intervention point

and provided insight into its potential mechanism (See Figure

S4B).

Network models that incorporate genetic, molecular, and

clinical data collected from longitudinal samples represent a

powerful complement to classical statistical models for identifying

genes and pathways important for disease processes. We

developed ensemble models for a small cohort of RA patients

sampled prior to and during treatment with TNF-a blockers.

These ensemble models accurately predict the involvement of

known RA drug targets including T cell co-stimulation and B cell

regulation. These observations suggest that other genes and

pathways identified in the network ensembles represent promising

targets for further investigation.

Methods

Processing and imputation of genotyping data
The Illumina HAP300 chip was used to profile the genotypes of

patients. The most recent genomic coordinates for human SNPs

were downloaded from the Ensembl website. The updated

genomic positions were used together with MACH [46], a

Markov-chain haplotyper to impute missing genotypes from the

data as well as previously identified SNPs associated with RA.

HLA types were mapped to SNP positions based on HLA-SNP

map [47]. All genotypes from the X and Y chromosome were

removed from consideration because the analysis of hemizygous

genotypes produces false positive associations. SNPs that failed

Hardy-Weinberg equilibrium test, or had a minor allele frequency

(MAF) (p,0.05), or had a call-rate,95% were also removed. The

SNP QC process resulted in 279,557 SNPs selected for further

analysis and the process is detailed in Table 2 in Text S1.

EIGENSTRAT was used to detect and correct for population

stratification on a genome-wide scale that was detected in the full

data set using smartPCA. The associated Armitage chi-squared

statistic is computed for each SNP and used to rank SNPs

associated with phenotypes to produce a ranked list of SNPs that

were potentially important in explaining RA treated and untreated

phenotypes. 6,075 SNPs and 6,076 SNPs were chosen from the

ranked lists to model untreated and treated subjects respectively.

Assessment and processing of gene expression data
Simpleaffy was used to assess the quality of microarray

hybridization [48]. The majority of samples lay within the tolerances

suggested by Affymetrix for amplified RNA samples. The entire

microarray data set was normalized using FARMS [49]. This

normalization technique has outperformed previously developed

methods in the Affycomp II competition [50] in detecting differential

gene expression and is used in conjunction with an associated package

called I/NI (Informative/Non-Informative) that uses variance across

the dataset to identify informative genes for further analysis [51].

Assessment and processing of DAS28 data
All subjects in the data had DAS28 scores for all visits and the

components of the DAS28 score were also available. Pair plots of

the components of the DAS28 scores show that the components

themselves are orthogonal to each other and capture different

aspects of RA. Visual analogue scale for overall health assessment

Table 8. Significantly enriched immune response related GO terms for transcripts from anti-TNF-a treated model.

GOBPID Pvalue Count Size Term

GO:0045064 0.010795911 1 2 T-helper 2 cell differentiation

GO:0042097 0.010795911 1 2 interleukin-4 biosynthesis

GO:0042109 0.010795911 1 2 tumor necrosis factor-beta biosynthesis

GO:0045624 0.016150771 1 3 positive regulation of T-helper cell differentiation

GO:0030154 0.025370559 7 537 cell differentiation

GO:0042092 0.02677505 1 5 T-helper 2 type immune response

GO:0042093 0.02677505 1 5 T-helper cell differentiation

GO:0045086 0.032044769 1 6 positive regulation of interleukin-2 biosynthesis

GO:0045621 0.037286403 1 7 positive regulation of lymphocyte differentiation

doi:10.1371/journal.pcbi.1001105.t008
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Figure 3. 10-fold knockdown of IL32 modulates number of swollen joints. Plots of simulated number of tender joints, swollen joints, pain
and C-reactive protein concentrations in response to a 10-fold knockdown in gene expression of cytokine IL32 in A. pretreated subjects and B. TNF-a
blocker treated subjects. The effects are only predicted in pre-treated patients, suggesting a dependence on TNF-a signaling. The largest predicted
effect is to modulate the number of swollen joints.
doi:10.1371/journal.pcbi.1001105.g003
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Figure 4. Swollen joints predicted to be modulated by LASS5 in pre-treated patients only. Plots of simulated number of tender joints,
swollen joints, pain and C-reactive protein concentrations in response to a 10-fold knockdown in gene expression of ceramide synthase, LASS5, in A.
pretreated subjects and B. TNF-a blocker treated subjects. The modulation of swollen joints is only predicted in pre-treated patients, suggesting a
dependence on TNF-a signaling.
doi:10.1371/journal.pcbi.1001105.g004
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Figure 5. Tender joints predicted to be modulated by WARS in pre-treated patients only. Plots of simulated number of tender joints,
swollen joints, pain and C-reactive protein concentrations in response to a 10-fold knockdown in gene expression of tryptophanyl-tRNA synthetase,
WARS, in A. pretreated subjects and B. TNF-a blocker treated subjects. The modulation of tender joints is only predicted in pre-treated patients,
suggesting a dependence on TNF-a signaling.
doi:10.1371/journal.pcbi.1001105.g005
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Figure 6. Modulation CD86 predicted to affect both tender and swollen joint counts in TNF-a treated patients. Plots of simulated
number of tender joints, swollen joints, pain and C-reactive protein concentrations in response to a 10-fold knockdown in gene expression of CD86,
the target of abatacept (CTLA4-Ig), in A. pretreated subjects and B. TNF-a blocker treated subjects. The modulation of tender joints is only predicted
in TNF-a treated patients, suggesting both a mechanism that is independent of TNF-a signaling that could be exploited for subjects that do not
respond well to TNF-a blocker therapies.
doi:10.1371/journal.pcbi.1001105.g006
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Figure 7. RAP2C predicted to modulate both tender and swollen joint counts in TNF-a treated patients. Plots of simulated number of
tender joints, swollen joints, pain and C-reactive protein concentrations in response to a 10-fold knockdown in gene expression of RAP2C, a recently
described ras G-protein, in A. pretreated subjects and B. TNF-a blocker treated subjects. The simulations suggest that this novel gene can modulate
both tender and swollen joint count in TNF-a treated subjects. RAP2C may provide insight into novel TNF-a independent signaling pathways in RA.
doi:10.1371/journal.pcbi.1001105.g007
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Figure 8. GON4L predicted modulate both tender and swollen joint count in TNF-a treated patients. Plots of simulated number of tender
joints, swollen joints, pain and C-reactive protein concentrations in response to a 10-fold knockdown in gene expression of GON4L, recently described
as a novel factor in B-cell differentiation, in A. pretreated subjects and B. TNF-a blocker treated subjects. The simulations suggest that this novel gene
can modulate both tender and swollen joint count in TNF-a treated subjects. GON4L may provide insight into novel TNF-a independent signaling
pathways in RA.
doi:10.1371/journal.pcbi.1001105.g008
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scores and the health assessment questionnaire showed a high

degree of correlation with the pain score component of the DAS28

and were considered redundant.

Tender joint count (TJ), Swollen joint count (SJ) and Pain scores

were logit transformed with an additional discrete to continuous

continuity correction applied prior to REFS modeling. C-reactive

protein concentrations (CRP) were log transformed prior to analysis

to ensure valid, non-zero simulation results in response to

intervention queries and to stabilize the variance across the data set.

Learning probabilistic models from data
A multivariate system with random variables X = (X1, …, Xn)

where each variable may take on values from a discrete (genetic

markers) or continuous domain (gene expression and phenotypic

data) may be characterized probabilistically by a joint multivariate

probability distribution function P(X1, …, Xn; H). However, full

specification of such joint probability distributions requires a large

number of parameters H. Such a global joint probability

distribution admits the following factorization into a product of

local conditional probability distributions:

P(X1,:::,Xn;H)~ P
n

i~1
Pi(XijYj1,:::,YjKi

;Hi) ð1Þ

where each variable Xi is independent of its nondescendants given

its Ki parents Yj1, …, YjKi (local Markov condition) and Hi are

parameters for Pi. The Y variables are simply a subset of the X’s;

we use the Y notation to indicate they are inputs to the conditional

probability. This approach yields a framework where each

particular factorization and choice of parameters is a distinct

probabilistic model M of the structure of the process that created

the observed data [11]. Learning these models M from a data set D

is simply determining which factorizations of P(X1, …, Xn;H) are

most likely given the observation of D, and given a factorization,

what are the likely values for its parameters H = (H1, …, Hn).

Each factorization of P(X1, …, Xn) into model M (as in Eq. 1) is

represented by a unique Directed Acyclic Graph (DAG) G with a

vertex for each Xi and directed edges between vertices to represent

the dependencies between variables embedded in the local

conditional distributions, Pi(Xi|Yj1, …, YjKi). In addition to the

graph G, M also specifies distributions for all Hi the parameters of

local conditional distributions Pi. Subgraphs of G, consisting of a

vertex and a set of all its incoming edges, and associated local

conditional distributions Pi and parameters Hi, are referred to here

as ‘‘network fragments’’. We interpret each of these network

fragments Mi to characterize both the functional variation of its

output variable Xi with respect to its parent input variables Yj1, …,

YjKi and the residual variation in Xi. For integrative genomics we

consider several specific functional forms for network fragments

and used linear regression. First, consider the case where all of the

input variables Yj1, …, YjKi are continuous, then we model the

centroid of Xi by:

X̂Xi~h0zhj1Yj1z:::zhjKi
YjKi

ð2Þ

and Xi by a normal distribution about that value:

XieN(X̂Xi,s
2
i ) ð3Þ

The parameters si, h0, hj1, …, hjKi can be thought of as adjusted to

best fit the data in the Maximum Likelihood Estimation (MLE) sense.

The likelihood function gives the posterior distribution of the

parameter values about the MLE point. Next, consider the case

where one of the Y variables is discrete. To model its influence its

linear term in Eq. 2 is dropped and the discrete value is used to switch

the value of the remaining linear fitting parameters. That is to say, for

each value of the discrete variable a different set h0, hj1, …, hjKi of fitting

parameters is introduced. Finally, if multiple Y’s are discrete all of

their linear terms are dropped from Eq. 2 and their joint discrete state

is used as the switching value. In this study all of the output variables

Xi are continuous: discrete variables are only taken as inputs.

Parallel ensemble sampling
To determine which factorizations are likely given the data we

use a Bayesian framework to compute the posterior probability of

the model P(M|D) from Bayes’ Law

P(MjD)~
P(DjM)P(M)

P(D)
ð4Þ

where P(D) is the probability of D, P(M) is the prior probability of

the model and

P(DjM)~

ð
P(DjM(H))P(HjM)dH ð5Þ

is the integral of the data likelihood over the prior distribution of

parameters H. We assume that data is complete. Assuming that

parameters H are independent, all models are equally likely, and

P(D) is constant, we factor P(M|D) in Eq. 4 into the product of

integrals over the parameters local to each network fragment Mi.

Eq. 4 now becomes

P(DjM)~ P
n

i~1

ð
P(DjMi(Hi))P(HijMi)dHi ð6Þ

where P(Hi |Mi) is the network specific prior for its parameters.

For this work we use Schwartz’s Bayesian Information Criterion

approximation to the above integral (asymptotically exact as the

number of samples increases):

S(Mi)~{ log

ð
P(DjMi(Hi))P(HijMi)dHi&SBIC(Mi)

~SMLE(Mi)z
k(Mi)

2
log N

ð7Þ

where k(Mi) is the number of fitting parameters in model Mi and N

is the number of samples. We refer to S as a ‘‘score’’, but note the

minus sign in the definition (to agree with the simulated annealing

analogy described below) and so lower scores are more likely. SMLE

is the negative logarithm of the MLE value of the likelihood

function.

The total network score is:

{ log (P(DjM))~Stot(M)~
Xn

i~1

S(Mi) ð8Þ

a sum over the scores of each network fragment in the candidate

graph model. In principal the repository of candidate network

fragments can be constructed by exhaustive enumeration over

variables and network fragment forms. We selected models that

provided highest likelihood [52,53] and considering at most 2

edges for a particular vertex. However, even with these

constraints, the space of all possible graphs is still too large to be

sampled by exhaustive enumeration.
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Instead we use the Metropolis method (Markov Chain Monte

Carlo) to generate samples from an equilibrium Boltzmann

distribution of candidate structures [54] from P(M|D). Each step

in a Metropolis Markov Chain corresponds to local transfor-

mations such as adding or deleting network fragments. To

accelerate convergence we used simulating annealing were we

applied the Metropolis method to a sequence of distributions

exp ({Stot(M)=Tj) with decreasing Tj (annealing temperature).

At each stage j the equilibrated samples from Tj initialize the

Metropolis method at Tj+1. Convergence of the random walk is

monitored along the way and the annealing schedule is dynamically

modified to take more Monte Carlo steps when the barriers present

a larger obstacle to diffusion through the space of networks. The

method for doing this was to estimate rate of change with respect to

T of the mean total score SStotT and also its variance

SS2
totT{SStotT2 (the angle brackets denote Monte Carlo averages

over networks at the current T.) From these values the change in

temperature, T ’{T~DT , is selected so that the distribution of Stot

at T ’ will have 80% overlap with the distribution at T. This process

of maintaining overlap helps ensure that the sampling will be correct

when T = 1 is reached. In addition, shorter runs were performed to

confirm that results are consistent with the longer runs.

In the normal usage of simulated annealing to find a global

optimum, the control parameter T is allowed to go below 1; as long

as better solutions are still being found the temperature is allowed to

decrease. In our approach we stop at T = 1 because the sampling

there corresponds directly to the posterior distribution P(M|D) in

Eq. 4; going to lower values of T would lead to over fitting the data.

Model intervention simulations
Stochastic simulation of a probabilistic model M allows

predictions about the distribution of a variable Xi to be made

under different conditions. The conditions can be interventions

with variables in the model and/or different values of inputs to the

model. We used Gibbs sampling in which each variable Xi is

sampled from its conditional Gaussian distribution, such as Eq. 2,

3, whose parameters take on most likely values given data D. For

simulation of subjects not seen in the training data, only roots of

the graph G had values. A simulation routine iteratively sweeps the

network and generates samples of variables whose parents have

already acquired a value in previous iterations until all variables

have values. One full sweep produces one sample (one vector of

values of all variables). Interventions such as a knockdown of gene

transcript expression level variables are done by removal of the

network fragment from M that outputs to the variable and the

network is swept as described previously.

For each subject in the data analysis, the contribution of each

gene simulation was assessed conditioned by the genotype and the

other gene expression measures of the subject.

Supporting Information

Figure S1 Predicted phenotypic values of training data for

untreated model. Plot of simulated data for phenotypes (number of

tender joints, number of swollen joints, pain score, and CRP levels)

based on untreated model vs. observed values. Dashed line

represents the line of unity (y = x) and each circle represents a

patient in the training data. Correlation coefficients (r) for each

phenotype are printed as part of the title.

Found at: doi:10.1371/journal.pcbi.1001105.s001 (0.75 MB EPS)

Figure S2 Predicted phenotypic values of training data for

treated model. Plot of simulated data for phenotypes (number of

tender joints, number of swollen joints, pain score, and CRP levels)

based on treated model vs. observed values. Dashed line represents

the line of unity (y = x) and each circle represents a patient in the

training data. Correlation coefficients (r) for each phenotype are

printed as part of the title.

Found at: doi:10.1371/journal.pcbi.1001105.s002 (0.74 MB EPS)

Figure S3 Predicted phenotypic values of test data. Plot of

simulated data for phenotypes (number of tender joints, number

of swollen joints, pain score, and CRP levels) based on treated

model vs. observed values. Dashed line represents the line of

unity (y = x) and each circle represents a patient in the test data.

Correlation coefficients (r) for each phenotype are printed as part

of the title.

Found at: doi:10.1371/journal.pcbi.1001105.s003 (0.74 MB EPS)

Figure S4 Comparison of REFS with statistical models &

Network topology of example gene. A. Comparison of genes

identified by REFSTM and correlative statistical models for swollen

joint (SJ) counts of untreated data. B. A Schematic representation

of genes upstream of SJ from untreated model.

Found at: doi:10.1371/journal.pcbi.1001105.s004 (3.03 MB EPS)

Table S1 Significant transcripts identified from untreated

network ensemble. Transcripts from the untreated network

ensemble were predicted to significantly modulate any of the

DAS28 component scores (p,0.05).

Found at: doi:10.1371/journal.pcbi.1001105.s005 (0.03 MB XLS)

Table S2 Significant transcripts identified from the TNF-a
blocker treated network ensemble. Transcripts from theTNF-a
blocker treated network ensemble were predicted to significantly

modulate any of the DAS28 component scores (p,0.05).

Found at: doi:10.1371/journal.pcbi.1001105.s006 (0.03 MB XLS)

Text S1 Assessment of the accuracy of the network Ensemble.

Found at: doi:10.1371/journal.pcbi.1001105.s007 (0.06 MB

DOC)
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