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Abstract

Carcinogenesis is a complex process with multiple genetic and environmental factors contributing to the development of
one or more tumors. Understanding the underlying mechanism of this process and identifying related markers to assess the
outcome of this process would lead to more directed treatment and thus significantly reduce the mortality rate of cancers.
Recently, molecular diagnostics and prognostics based on the identification of patterns within gene expression profiles in
the context of protein interaction networks were reported. However, the predictive performances of these approaches were
limited. In this study we propose a novel integrated approach, named CAERUS, for the identification of gene signatures to
predict cancer outcomes based on the domain interaction network in human proteome. We first developed a model to
score each protein by quantifying the domain connections to its interacting partners and the somatic mutations present in
the domain. We then defined proteins as gene signatures if their scores were above a preset threshold. Next, for each gene
signature, we quantified the correlation of the expression levels between this gene signature and its neighboring proteins.
The results of the quantification in each patient were then used to predict cancer outcome by a modified naı̈ve Bayes
classifier. In this study we achieved a favorable accuracy of 88.3%, sensitivity of 87.2%, and specificity of 88.9% on a set of
well-documented gene expression profiles of 253 consecutive breast cancer patients with different outcomes. We also
compiled a list of cancer-associated gene signatures and domains, which provided testable hypotheses for further
experimental investigation. Our approach proved successful on different independent breast cancer data sets as well as an
ovarian cancer data set. This study constitutes the first predictive method to classify cancer outcomes based on the
relationship between the domain organization and protein network.
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Introduction

Cancer development is a complex process driven by multiple

genetic and environmental factors [1,2,3]. Understanding the

underlying mechanism of this process and identifying related

markers to assess the outcome of this process could lead to better

management and treatment of this complex disease. For example,

the majority of breast cancer patients are currently over-treated

[4] due to the lack of accurate assessment of the risk of metastasis.

As a result, a substantial proportion of patients are receiving the

otherwise avoidable aggressive adjuvant therapy in accordance to

the current guidelines [5]. Although the importance of identifying

prognostic signatures that could accurately predict cancer

outcomes is widely appreciated, it has remained a challenging

task. With the emergence of large amounts of DNA microarray-

based tumor gene expression profiles, molecular diagnostics and

prognostics have begun to provide solutions to this challenge [6].

Several predictive tools [7,8,9,10] were reported to classify

different cancer outcomes primarily based on the identification

of gene expression signatures observed in these outcomes.

However, the predictive performance of these approaches was

limited. For instance, in two large-scale expression studies [9,10],

approximately 70 gene markers were identified that could be used

in the prediction of the metastasis in breast cancer, but only with

an accuracy of 60–70%. This relatively low accuracy could be

explained by some intrinsic shortcomings of the microarray data,

as different experiment and analysis designs could yield inconsis-

tent results due to systematic errors [11] and by the heterogeneity

of carcinogenesis resulting from multiple factors such as specific

samples and cancer types [6]. Recently, the prognostic predictive

performance has been improved by integrating the gene

expression profiles and the human interactome data, based on

the notion that disruption of protein interaction network might

affect disease outcomes [12]. Protein-protein interactions (PPIs)
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play an important role in the process of carcinogenesis. At the

molecular level, any genetic alternation such as somatic

mutations, translocations, deletions and insertions that modify

expressed protein-coding genes could cause changes in a PPI-

based regulatory mechanism that governs normal cell function.

This could lead to aberrant or uncontrolled cell growth and

eventually to cancer [1]. For example, mutations in the zinc

finger domain presented in the oncoprotein MDM2 can disrupt

the interaction of MDM2 with ribosomal proteins L5 and L11

and mediate p53 degradation [13]. The recent availability of

large-scale PPI networks has made it possible to identify better

gene signatures by combining the gene expression measurements

with the perturbed protein interaction networks in the cell.

Chuang and colleagues [14] developed a method to find

subnetwork-based signatures by incorporating PPI networks

and gene expression profiles. The resultant subnetworks with

their gene expression profiles were used as markers to predict the

prognosis of breast cancer patients. This study yielded an

accuracy of 70–72% in determining a breast cancer as metastatic

versus non-metastatic. Their study revealed the usefulness of the

PPI network in conjunction with the gene expression profiles

and provided a starting point to future studies. More recently,

Taylor and colleagues [12] proposed a new methodology to

predict breast cancer outcome based on the correlation of gene

expression profiles between hub proteins and their interacting

partners in the PPI network. This approach showed improved

predictive performance at an accuracy of 76% when tested on a

different set of gene expression profiles from breast cancer

patients. These studies demonstrated that the topology of a PPI

network could be a helpful line of biological evidence in

differentiating cancer outcomes. In the meantime, however,

there are other important biological elements that might be

involved in the development of cancer genome and phenotype.

To further strengthen the power of novel predictive tools, these

lines of biological evidence need to be investigated and incor-

porated if proven useful.

In an alternative approach, we focused on the prediction of

cancer outcomes within the context of domain interaction

network. Domains are defined as independent structure and/or

functional blocks of proteins. It is clear that protein-protein

interactions are mediated by the interactions between protein

domains [15]. For example, SH2 domains mediate many critical

protein interactions in signal transduction [16,17]. Disrupted

domain-domain interactions (DDIs) have been shown to stop the

chain reaction of biological pathways at any point [18,19], thus

lead to various diseases [20,21,22]. This fact has motivated us to

investigate the disruptions in a PPI network that are caused by

DDIs, which might be a defining feature of tumor phenotype

and thus could be used to determine patient prognosis. In the

context of DDIs, we can categorize a given interacting protein

into one of the two types based on the relationship of this

protein and its neighboring proteins in the protein interaction

network (Figure 1). We call a protein a ‘singlish-interface’

protein if it interacts with its neighboring proteins through the

same domain-domain interaction; therefore, those domain-

domain interactions are mutually exclusive (Figure 1A). Con-

versely, we call this protein a ‘multiple-interface’ protein if it

interacts with its neighboring proteins through different domain-

domain interactions, as those interactions are simultaneously

possible (Figure 1B). It has been demonstrated that singlish-

interface proteins evolve faster than multiple-interface proteins

and are more likely to interrupt protein interactions and disturb

the protein interaction network [23]. Therefore, we hypothesize

that singlish-interface proteins are also more likely to be involved

Author Summary

It is widely known that cancer is a complex process in
which a large number of genes appear to be involved.
Through experimental approaches, some oncogenes and
tumor suppressors have been identified as playing
important roles in the signaling and the regulatory
pathways. However, we have not fully understood the
complete mechanism of how cancer develops and how it
leads to different disease outcomes (aggressive/dangerous
or non-aggressive/less-dangerous). In order to identify a
list of gene signatures and better predict cancer outcome,
we developed an integrated and systematical approach by
investigating gene expression profiling alternation caused
by disruptions between protein-protein interactions and
domain-domain interactions in the human interactome.
Our approach achieves the favorable predictive perfor-
mance if tested on a set of well-documented breast cancer
patients, which suggests that the disrupted interactome is
important to determine patient prognosis. Our approach is
robust if tested on other independent data sets. This work
provides a promising prognostic tool to classify different
cancer outcomes.

Figure 1. A schematic view of a ‘singlish-interface’ protein and a ‘multiple-interface’ protein. Given a protein (red node) and its
neighboring proteins in the protein interaction network, we can define it as a ‘singlish-interface’ protein or a ‘multiple-interface’ protein. The ‘singlish-
interface’ protein interacts with its neighboring proteins through the same domain (the yellow line); therefore, those domain-domain interactions are
mutually exclusive. Conversely, the ‘multiple-interface’ protein interacts with its neighboring proteins through different domains (blue lines), as those
interactions are simultaneously possible.
doi:10.1371/journal.pcbi.1001114.g001
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in the process of tumor progression than multiple-interface

proteins. Meanwhile, DDIs could be interrupted by genomic

variations located within interacting domains. One type of these

genomic variations is somatic mutation. Somatic mutations are

genetic alternations in DNA that are neither inherited nor

passed to offspring. Some of these are thought to be driving the

cancer process and have been refereed to as ‘‘driver mutations’’,

which can contribute to the development of the cancers or other

diseases [24]. Therefore, we sought to investigate the perturba-

tion of the protein interaction network in cancerous cells caused

by the presence of somatic mutations, and to examine whether

somatic mutation data could provide help in the prediction of

cancer outcome. In summary, in addition to PPI data and gene

expression data, we looked into incorporating two other types of

data that might be functionally associated to the disturbance of

the PPI networks: domain-domain interactions (DDIs) and

somatic mutations.

In this study, we propose an integrated approach, named

CAERUS, to predict the likelihood of cancer outcomes in

unknown cancer patients provided the gene expression profiles

of these patients are available. To implement CAERUS, we first

developed a model to score each protein present in the

expression profiles based on the domain connections to their

interacting partners and the somatic mutations located in the

domains. Next, gene signatures defined as proteins whose scores

are above a preset threshold were identified. Then we computed

the correlation of gene expression profiles of the gene signatures

and their neighboring proteins. A modified naı̈ve Bayes classifier

was used to predict cancer outcome based on this correlation.

Compared to previous studies, our study has several advantages.

First, apart from the PPI network and the gene expression

profiles, the DDI network and the somatic mutations within

domains were integrated into our predictive model, which has

improved the prediction performance to an accuracy of 88.3%,

sensitivity of 87.2% and specificity of 88.9%. Second, our results

compiled a list of cancer-associated gene signatures and

domains, which provided testable hypotheses for further

experimental investigation. Third, our approach is not specific

to a specific cancer dataset and can thus be applied to different

independent cancer data sets.

Results

Parameter tuning and validation on breast cancer data
We tested whether our identified gene signatures are good

indicators to differentiate a set of two groups of sporadic and non-

familial breast cancer patients [25]. We defined patients who were

disease free after extended follow-up as patients with ‘good

outcome’ and those who died of disease as patients with ‘poor

outcome’. The patient data was filtered to remove patients that

were still alive with disease or dead from other reasons, as reported

by Taylor [12]. The resultant dataset contained 179 patients with

‘good outcome’ and 74 patients with ‘poor outcome’. For each

patient, a profile was computed based on the difference of the gene

expression value between the gene signatures and their neighbor-

ing proteins. For the identification of gene signatures, we applied a

scoring procedure to the protein domains present in each gene

products based on the number of mutually exclusive DDIs they

participated in (see methods). Using this approach we found that

only one parameter needed to be tuned: the threshold (c) of

domain index scores (Sd). The threshold (c) was tuned by testing

our approach on the breast cancer data set using different Sd values

(see methods). We then evaluated the performance of our

approach by calculating three performance measurements:

accuracy, sensitivity and specificity. In this study, accura-

cy = (TP+TN)/(TP+FP+TN+FN); sensitivity = TP/(TP+FN); spe-

cificity = TN/(TN+FP). A true positive is defined as the case that a

‘‘poor outcome’’ patient was successfully predicted as having the

‘‘poor outcome’’ and a true negative is defined as the case a ‘‘good

outcome’’ patient was correctly predicted as having the ‘‘good

outcome’’. From the observation of the performance plot based on

different Sd (Figure 2), we concluded that our approach achieved

the best performance with the accuracy of 85.8%, the sensitivity of

87.1% and the specificity of 82.6% when the threshold (c) of

domain index scores (Sd) were set as 50. We also found that with

higher threshold (c), a smaller set of gene signatures were

generated, and consequently lower the performance was. On the

contrary, with lower threshold (c), the gene signature list contained

higher noise and generated more false positives and negatives.

Next, we did survival analysis to prove the ability to predict

survival of our approach under this setting and observed the

significantly different 10-year survival (Mantel-Cox Log Rank test,

nominal P-value = 2.1961028) (Figure 3) between two groups of

patients.

The identified biomarkers might be involved in
carcinogenesis

A total of 171 gene signatures were identified in a breast cancer

data set [25] using our approach at the threshold (c) of 50 as

described in the above section. These gene signatures mainly are

involved in 5 major cancer-related biological processes: transcrip-

tion (P-value = 9.3610210), DNA repair (P-value = 3.861025),

signal transduction (P-value = 7.9610213), cell cycle (P-val-

ue = 1.161029) and protein phosphorylation (P-val-

ue = 2.9610226) if we performed GO Term enrichment analysis

using FuncAssociate [26] (Figure 4A). The complete list of over-

represented GO terms associated with identified gene signatures is

in the supplementary materials (Table S1). In addition, 36 human

biological pathways can be derived when we mapped the gene

signatures to the Reactome database that contains manually

curated human biological pathways [27] (P-value,0.001)

(Figure 4B). For instance, the well-known oncogenic transcription

factors such as FOS, JUN and NFkB were identified as gene

signatures by this study. We also identified some DNA repair genes

including XRCC5, MSH, PCNA and others as gene signatures.

These genes were demonstrated to cause cancer because

mutations in those genes disable the ability of DNA repairing,

which subsequently leads to the accumulation of mutations

[28,29,30]. Genes involved in signal transduction, an important

type of pathways in cancer development, such as MARK14,

VAV1 and PIK3R1 were also identified as gene signatures in this

study. Besides, a group of cyclin-dependent kinases (CDK2,

CDK3, CDK4, CDK6) that control cell proliferation [31] and

genes (SRC, ABL1) related to protein phosphorylation [32] were

also identified by our approach. In summary, there were 38% (65

out of 171) of the identified gene signatures found to be the genes

associated with cancers in Online Mendelian Inheritance in Man

(OMIM; http://www.ncbi.nlm.nih.gov/omim/). This percentage

is significantly greater than what could be found purely by chance

(Adjusted P-value,10212, by Fisher’s Exact Test), indicating the

capability of our approach to identify disease genes. Interestingly,

only 15% (26 out of 171) of the identified gene signatures were

known cancer susceptibility genes compared to a list of 410 genes

downloaded from The Cancer Gene Census (http://www.sanger.

ac.uk/genetics/CGP/Census/), whose mutations had been caus-

ally implicated in cancer, but the small overlap is still statistically

significant at P-value of 7.761026 by Wilcoxon Test. This result

was consistent with those of the previous studies, which yielded

CAERUS: Predicting CAncER oUtcomeS
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21% and 16%, respectively [12,14]. In order to examine the

importance that the cancer susceptibility genes contribute to

cancer prognosis, we employed these 410 known cancer

susceptibility genes as signature genes to predict breast cancer

outcomes, we observed a relatively low accuracy of 72.6%,

sensitivity of 72.9% and specificity of 71.4% if tested on the same

breast cancer set (Figure S1). Taken together, the low percentage

of known cancer susceptibility genes present in our gene signature

list suggests that the mutations in not only these genes, but also

other genes, might collectively affect the process of tumor-

aggressiveness and response to therapy in various ways by

disrupting the modularity of the PPI network. Among other genes

in our gene signature list but not in the list of known cancer

susceptibility genes, 32% (46 out of 145) of genes can be mapped

to the human biological pathways in which known cancer

susceptibility genes anticipate in the Reactome database (P-

value = 2.161028 by Z-test). Therefore, we speculated that the

other genes could be the downstream effectors of the cancer

susceptibility genes and the changes in their expression value could

reflect the disruption of the PPI network caused by the mutations

in the cancer susceptibility genes. In order to investigate what

types of domains tend to exist in ‘singlish-interface’ proteins and

disrupt protein interactions, we calculated the number of involved

domain-domain interactions of each domain in ‘singlish-interface’

proteins against the whole genome and compared it to that

expected by chance (P,0.01, Z-test) (see Figure 1). We identified a

list of 29 over-represented domains within 171 gene signatures

(Table 1). Interestingly, 93% (27 out of 29) of the domains were

annotated as cell signaling domains such as SH2, Pkinase and Ras

according to the SMART database [33] indicating that these

domains were likely to play a critical role in carcinogenesis

through disrupting the protein interactions within signaling

pathways. For example, the SH2 domain of the oncoprotein Src

interacts with 86 domains within 57 proteins. It has been

demonstrated that SH2 domain regulates intracellular signalling

cascades by interacting with high affinity to phosphotyrosine-

Figure 2. The performance of our approach using different thresholds of domain index scores (Sd). Curve of receiver operating
characteristics (ROC) plotted for different thresholds when our approach was tested against the breast cancer data set incorporating somatic
mutation data and without incorporating somatic mutation data. The area under the curve (AUC) plotted for without somatic mutations and with
somatic mutations is 0.854 and 0.892, respectively.
doi:10.1371/journal.pcbi.1001114.g002
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containing target peptides [34,35] and is related to cancer cell

migration and proliferation [36]. Another example is that the

Pkinase domain contains the catalytic function of protein kinases

that are essential in the process of phosphorylation [37,38]. Many

diseases including cancer are caused by dysfunction of phosphor-

ylation [39].

Knowing which somatic mutations are present increases
the accuracy of our approach

It is widely accepted that genetic changes such as somatic

mutations are implicated in cancer development [40]. Also, some

somatic mutations reveal the role of functional domains in

hereditary disorders and complex diseases [41]. For example,

tumors highly sensitive to epidermal growth factor receptor

(EGFR) tyrosine kinase inhibitors often contain dominant

mutations in exons that encode a portion of the tyrosine kinase

(TK) domain of EGFR [42]. To investigate the possibility that

somatic mutations within domains represent another type of

important signal to differentiate two classes of patients, we

incorporated the somatic mutation data compiled from the

COSMIC database to our scoring model (see methods) by

searching for the genes having mutually exclusive domains that

harbor somatic mutations. We hypothesized that these mutations

could disrupt DDIs and PPIs and consequently change the

modularity of the human protein interaction network. By

employing the modified domain index function that incorporates

the somatic mutation data, we tuned again the threshold (c) using

different Sd values. At the threshold of Sd = 80, our approach

identified 126 gene signatures and achieved the accuracy of

88.3%, the sensitivity of 87.2% and the specificity of 88.9% when

tested on the breast cancer outcome data (Figure 2). All of 126

gene signatures belong to a list of 171 gene signatures identified by

the CAERUS approach without integrating the somatic mutation

data, which indicates that 45 gene signatures failed to pass a preset

threshold after the somatic mutation data were used. To test

weather the slight improvement on predictive performance (0.038

difference in the area under the ROC curve) is statistically

significant, we tested CAERUS on randomized 126 genes from

the list of 171 gene signatures and repeated this procedure 100

times (Figure S2). We found that this improvement is indeed

statistically significant at the P-value of 2.861025 by Wilcoxon

Test. Compared to the performance of CAERUS’ that does not

incorporate the somatic mutation data, the improvement on

CAERUS’ performance by integrating the somatic mutation data

suggests that the somatic mutation data can be used to supplement

our accuracy to predict cancer survival outcome. However, the

capability of using the mutation data appears limited due to the

fact that not all mutations are driving the development of the

cancer, the so-called ‘‘driver mutations’’ [43]. Minor performance

improvement could be explained by the incompleteness of

currently available somatic mutation data or the bias introduced

by ‘‘passenger mutations’’. With the help of the numerous Cancer

Genome Projects [44,45], the size of the somatic mutations data in

human will grow in the near-future possibly providing us with even

better indications from mutation data.

Using gene expression, and the comparison with other
approaches

Identifying novel prognostic markers to classify different cancer

outcomes has been widely studied with the increasingly available

gene expression profiles. The approaches described in previous

publications can be categorized into three classes: 1) gene

expression pattern-based method, in which markers are selected

based on whether their expression profiles can differentiate

different groups of patients [9,10]; 2) PPI subnetwork-based

method, in which each marker represented as a subnetwork in the

PPI network was identified by maximizing the mutual information

measuring the association between the expression value of each

Figure 3. The ability of our approach to predict survival between two groups of breast cancer patients. The Kaplan-Meier survival plot
for disease-free survival are shown for two group (‘‘Good outcome’’ vs. ‘‘Poor outcome’’) of breast cancer patients. The difference between two
groups is statistically significant for 10-year survival at the P-value of 2.1961028 by the Mantel-Cox Log Rank test.
doi:10.1371/journal.pcbi.1001114.g003
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Figure 4. The biological functions of identified biomarkers. (A) The biological network of 171 gene signatures identified in the breast cancer data
set using our approach. Each gene is labeled as different colors based on it biological function annotation derived from its gene ontology terms. (B) The
pathway organization of identified gene signatures involved in 36 human biological pathways when they were mapped to the Reactome database [27].
doi:10.1371/journal.pcbi.1001114.g004
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gene in the subnetwork and the types of patients [14]; 3) PPI

modularity-based method in which each gene signature was

identified by comparing the difference of the gene expression value

between a hub gene and their interacting partners in the PPI

network [12]. In this study, we employed a novel approach based

on finding genes in the PPI network with mutually exclusive

domains and somatic mutations located in these domains as the

markers. Wang et al [10] and van de Vijver et al [25] reported

63% and 62% accuracy, respectively, for the prediction of

metastasis using gene expression pattern-based methods. Using

the PPI subnetwork-based method, Chuang et al [14] yielded the

accuracy of 72.2% and 70.1% using the same data set as Wang et

al and van de Vijver et al did. Using the PPI modularity-based

method, Taylor et al [12] reported the accuracy of 76% tested on

the breast cancer patient data set. We first applied our approach

on the same data set as Chuang et al [14] used and adopted the

identical training and testing strategy (five-fold cross-validation)

and observed that our approach achieved the accuracy of 83.2%,

the sensitivity of 84.6% and the specificity of 82.5%. Next, we

applied our approach on the same data set as Taylor et al [12]

used and adopted the identical training and testing strategy (five-

fold cross-validation) and observed that our approach achieved the

accuracy of 87.3%, the sensitivity of 87.2% and the specificity of

88%, which indicates that our method outperforms other

approaches and provides a promising solution to predict cancer

outcome (Figure 5).

The robustness of our approach
To test the robustness of our approach on different

independent data sets or different types of cancer, we first

applied our approach to a data set that included 236 primary

invasive breast tumors [46]. Using five-fold cross-validation, our

approach achieved the accuracy of 92.4%, the sensitivity of 94%

and the specificity of 90.2%. Our approach also revealed

significantly different 10-year survival (Mantel-Cox Log Rank

test, nominal P-value = 1.8610225) (Figure 6A). Another inde-

pendent data set that includes 117 primary breast tumors was

utilized to evaluate the performance of our approach [47]. Using

the leave-one-out cross-validation (LOOCV) strategy due to

insufficient sample size, our approach achieved the accuracy of

89.8%, the sensitivity of 85.7% and the specificity of 91.6% with

the significantly different 10-year survival (Mantel-Cox Log Rank

test, nominal P-value = 761024) (Figure 6B). These results

indicate that our predictive approach has good performance in

predicting breast cancer outcome when tested on different

independent data sets. Next, we compiled a set of 110 patients

Table 1. A list of over-represented domains within gene
signatures.

Domain Name DDIs P-value

PF00017 SH2 86 1.63E-24

PF00018 SH3_1 70 1.39E-23

PF00069 Pkinase 49 1.41E-23

PF00071 Ras 45 2.13E-23

PF00170 bZIP_1 42 2.49E-23

PF07716 bZIP_2 34 2.97E-23

PF00130 C1_1 23 5.56E-23

PF00271 Helicase_C 23 6.34E-23

PF00270 DEAD 23 7.18E-23

PF00169 PH 22 7.21E-23

PF00096 zf-C2H2 22 9.03E-23

PF05739 SNARE 21 9.94E-23

PF00023 Ank 20 9.98E-23

PF01833 TIG 20 1.44E-22

PF00433 Pkinase_C 19 2.17E-22

PF00004 AAA 18 9.83E-22

PF01423 LSM 17 1.04E-21

PF00786 PBD 16 3.90E-21

PF00134 Cyclin_N 14 4.60E-17

PF00022 Actin 14 9.84E-17

PF00804 Syntaxin 13 1.80E-16

PF00595 PDZ 12 2.96E-15

PF00125 Histone 12 3.37E-14

PF00617 RasGEF 11 9.15E-12

PF00618 RasGEF_N 11 5.99E-11

PF05192 MutS_III 11 6.15E-10

PF00621 RhoGEF 10 6.40E-10

PF00515 TPR_1 10 6.73E-06

PF02984 Cyclin_C 10 7.19E-06

The first two columns are Pfam domain ID and name. The third column is the
number of involved domain-domain interactions of each domain within gene
signatures against the whole genome and then compared it to that expected
by chance using Z-test (P-value in the fourth column).
doi:10.1371/journal.pcbi.1001114.t001

Figure 5. Predictive performance comparison between differ-
ent approaches. (A) Our approach was applied on the same data set
as Taylor et al [12]. Compared to the predictive performance of Taylor
et al, our approach achieved better accuracy of 83.2% (with somatic
mutation data) and 81.7% (without somatic mutation data). (B) Our
approach was applied on the same data set as Chuang et al [14], Wang
et al [10] and van de Vijver et al [25] and achieved better accuracy of
83.2% (with somatic mutation data) and 81.7% (without somatic
mutation data) compared to other three approaches (Chuang et al with
accuracy of 72.2%, Wang et al with accuracy of 62% and van de Vijver
et al with accuracy of 63%).
doi:10.1371/journal.pcbi.1001114.g005
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with advanced-stage ovarian cancer that contains the gene

expression profiles of 34 patients without disease recurrence and

76 patients with disease recurrence [48]. We applied our

approach to this data set using the five-fold cross-validation

strategy. We observed that our approach achieved the accuracy

of 90.1%, the sensitivity of 90.4% and the specificity of 88.6%,

further validating the robustness of our predictive approach when

tested on different types of cancer data sets. The good predictive

performance is also demonstrated by the 10-year survival curve

(Mantel-Cox Log Rank test, nominal P-value = 3.12610212)

(Figure 6C).

Discussion

Biological network information has been proven to be a useful

feature to improve prognosis performance [12,14]. In this

context, our study constitutes the first predictive method to

classify cancer outcomes based on the information of protein

interaction interfaces in the protein interaction networks.

Compared to previous predictive approaches, the most outstand-

ing feature of CAERUS is that we investigated biological network

disruptions linked to cancer outcomes at the protein domain

level. The favorable predictive performance of our approach

suggests that association exists between cancer outcome and the

alteration in the protein interaction network, and more

importantly, that the alteration is probably caused by the genetic

variations within interacting domains. These genetic variations

are capable of interrupting the physical interactions between

proteins and thus causing abnormal biological functions associ-

ated with cancer progression. In this study, we applied CAERUS

primarily on breast cancer data sets and achieved favorable

predictive performance. However, the strength of CAERUS is

not restricted to a certain type of cancer; other types of cancer

such as ovarian cancer can be analyzed in a similar manner. It is

worth noting that the potential of the approach described in this

study is restrained by the limitations of currently available data

sources, as these data sources, such as the protein interaction

data, the domain interaction data, the gene expression data are

incomplete and also contain biases. The currently available

somatic mutation data is also limited and not individual-based.

With the growth in the size and better quality of these data sets,

our study would lead to a more reliable and robust prognosis tool

to access cancer outcome. Furthermore, this study could be

optimized with the integration of additional types of data. For

instance, we could achieve better predictive performance by

integrating the patients’ transcriptome data obtained via the

RNA-seq technology which measures gene expression levels more

accurately compared to the microarray approach [49]. With

patient-specific somatic data, it will become possible to fine-tune

the CAERUS approach and we would be able to achieve better

performance. In addition, the effects of protein post-translation

modifications such as phosphorylation, methylation and acetyla-

tion could also be potentially integrated into our model to reflect

the influence of these types of modifications on the organization

of the protein-protein interaction network during cancer

development. In conclusion, we presented a novel and integrated

approach to predict different cancer outcomes, which could be of

significant clinical application.

Materials and Methods

Data set collection
We downloaded 108,307 unique PPIs in human from the

iRefIndex database (ftp://ftp.no.embnet.org/irefindex/data) ver-

sion of June 4, 2009. The iRefIndex database [50] provides a non-

Figure 6. The ability of our approach to predict survival between two groups of breast cancer patients using different independent
data sets. (A) The Kaplan-Meier survival plot for disease-free survival is shown for good or poor prognostic groups derived from an independent
breast cancer date set from Miller et al. [46]. The difference between two groups is statistically significant for 10-year survival at the P-value of
1.8610225 by the Mantel-Cox Log Rank test. (B) The Kaplan-Meier survival plot for disease-free survival is shown for good or poor prognostic groups
derived from another breast cancer independent date set from Chin et al. [47]. The difference between two groups is statistically significant for 10-
year survival at the P-value of 761024 by the Mantel-Cox Log Rank test. (C) The Kaplan-Meier survival plot for disease-free survival is shown for good
or poor prognostic groups derived from an ovarian cancer data set from Yoshihara et al. [48]. The difference between two groups is statistically
significant for 10-year survival at the P-value of 3.12610212 by the Mantel-Cox Log Rank test.
doi:10.1371/journal.pcbi.1001114.g006
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redundant list of protein interactions derived from several major

protein interaction databases including BIND, BioGRID,

CORUM, DIP, HPRD, IntAct, MINT, MPact, MPPI and

OPHID. We also used a set of DDIs downloaded from the iPfam

database [51], a DDI database based on RCSB Protein Data Back

(PDB) crystal structures (http://www.pdb.org), which consists of

3,020 DDIs and 914 domains. For somatic mutations involved in

cancer, a list of 88,641 somatic mutations was retrieved from the

COSMIC database (version 43) that contains the mutation data

and associated information extracted from the primary literature

[52].

A set of gene expression profiles of 295 breast cancer patients

and clinical results was collected from the work of van de Vijver

and colleagues [25]. This data set was applied to test the

performance of CAERUS. We defined patients who were

disease free after extended follow-up as patients with ‘good

outcome’ and those who died of disease as patients with ‘poor

outcome’. The data was filtered to remove patients that were

still alive with disease or dead from other reasons, as reported by

Taylor [12]. The resultant dataset contained 179 patients with

‘good outcome’ and 74 patients with ‘poor outcome’. The mean

duration of follow-up was 7.5 years for ‘good outcome’ patients

and 2.8 years for ‘poor outcome’ patients. Two independent

breast cancer data sets were employed for the validation

purpose. The first data set consists of gene expression profiles

of 236 patients with primary invasive breast tumors that derived

from oligonucleotide arrays and the corresponding survival data

of these patients were collected based on the patient records

accompanying with the paper [46]. In this data set, 134 patients

were classified as ‘good outcomes’ and 102 patients with ‘bad

outcomes’ using the same abovementioned criteria. The mean

duration of follow-up was 10.9 years for ‘good outcome’ patients

and 4.9 years for ‘poor outcome’ patients. The second data set

was obtained from the gene expression profiles of a cohort of

117 patients with breast tumors, of which 83 patients had ‘good

outcomes’ and 34 patients had ‘bad outcomes’ derived from

each patient’s survival duration and disease recurrence infor-

mation included in the paper [47]. The mean duration of

follow-up was 7.2 years for ‘good outcome’ patients and 2.1

years for ‘poor outcome’ patients. In addition, we compiled the

data from a set of 110 Japanese patients who were diagnosed

with advanced-stage serous ovarian cancers [48]. The gene

expression profiles and the clinical characteristics of each patient

were extracted from the supporting materials of the paper, in

which 34 patients were labeled as ‘good outcomes’ and 76

patients as ‘bad outcomes’ using the same criteria described in

previous data sets. The mean duration of follow-up was 3.3

years for ‘good outcome’ patients and 1.2 years for ‘poor

outcome’ patients.

Gene signature finding algorithm
Step A. We have a query network X comprised of proteins

{x1, …, xn} and known PPIs between xi and xj from the iRefIndex

database. For each protein xi in the query PPI network, we have a

mapping function D(xi) = {d1, …, dn} that returns the set of

annotated domains of this protein according to the Pfam database.

Here, di are the individual domains.

Step B. For each domain di in the domain set D(xi), we

counted the number of domain pairs on aggregate between di and

a set of domains of neighboring/interacting proteins neighbor[xi]

represented in the interacting domain-domain pairs previously

established in the iPfam database.

Step C. A domain index score was assigned to each protein in

the query PPI network by the following equation:

Sxi
~

PjD(xi )j

n~1

W NumDDIs(di )

jD(xi)j if jD(xi)j=0,

0 otherwise:

8>><
>>:

9>>=
>>;

where NumDDIs(di) is the number of DDIs of between di and a set

of domains of neighboring/interacting proteins as calculated by

the Step B. Here, W is an exponential function at the base of 2,

which meant that we add weights exponentially to a domain if it

has multiple DDIs. In order to take it into account that somatic

mutations occur within domains, we used to a modified domain

index function to calculate scores to each protein:

Sxi
~

PjD(xi )j

n~1

NumSMs(di)|W NumDDIs(di )

jD(xi)j if jD(xi)j=0,

0 otherwise:

8>><
>>:

9>>=
>>;

where NumSMs(di) is the number of somatic mutations of di.

Step D. For each protein xi, if the domain index score was

over the preset threshold c, this protein was regarded as a gene

signature and was utilized for the neighboring gene expression

analysis. The threshold c was tuned by performing a modified five-

fold cross-validation strategy in which we firstly adopted the leave-

one-out cross-validation (LOOCV) strategy for different Sxi
using

80% of the original data set (expression profiles), and then used the

discovered value c to validate against the remaining data set (20%).

This procedure was repeated 5 times in a manner that each data

point (a gene expression profile) in the dataset was used once as the

validation data.

Calculation of neighboring gene expression profiling
score

Given a gene expression data set and a gene signature x, we

computed a score to measure the difference in co-expression of the

gene signature and its neighboring proteins P = {p1, …., pn) in the

PPI network between two types of cancer outcomes (‘‘good/

disease-free’’ vs. ‘‘poor/recurrent disease’’) using the following

equation:

sx,Pdiff
~

Pn
i~1

rx,pi ,good{rx,pi ,poor

n{1

where n is the number of interactors of the gene signature x; rx,pi,good

and rx,pi,poor is the Pearson correlation coefficient of expression

values of protein x and its interactors P = {p1, …., pn} in different

groups of patients (good or poor). The Pearson correlation

coefficient of expression values of protein x and its interactors in

the different groups is calculated by the following equation:

rx,pi ,group~

P
(Ex,group{Ex,group)(Ep

i ,group{Ep
i ,group)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

(Ex,group{Ex,group)2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

(Ep
i ,group{Ep

i ,group)2
q

Construction of the naı̈ve Bayes classifier
As a probabilistic model based on the Bayes’ theorem, the naı̈ve

Bayes classifier has been widely applied to the classification

problem in different fields of the biological sciences such as
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inferring cellular networks [53], modeling protein signaling

pathways [54] and the prediction of protein-protein interaction

interfaces [55]. Given the training dataset and testing dataset in

which each data sample is represented as an n-dimensional vector

(dx1, dx2 …, dxn), 2 classes (Cgood, Cpoor). Here, n is the number of

gene signatures; dxi is the difference in co-expression of the gene

signature i and its neighboring proteins in the PPI network in

patient x. The prediction procedure follows as:

According to the Bayes theorem, we can get the highest

posterior probability of each cancer patient sample x based on the

following equation:

P(Cgood jx)~
( P

n

i~1
P(dxijCgood ))P(Cgood )

P(x)

where the class prior probabilities P(Cgood) is calculated by Xgood/

X, the value of the number of training samples of class Cgood

divided by the total number of training sample. P(dx1|Cgood),

P(dx2|Cgood), …, P(dxn|Cgood) can be easily calculated by

X
good xið Þ

.
Xgood, where X

good xið Þ is the number of training

samples of class Cgood having the gene expression difference score

dxi falling into one certain bin/category, and Xgood the number of

training samples belonging to Cgood. In this study, we divided the

gene expression difference score into 20 bins as it ranges from 0 to

1.

In order to classify cancer patient samples in the testing dataset,

we calculated the P(x|Ci)P(Ci) for each class Ci. Sample/patient x

was then predicted as belonging to class Cgood if and only if

P(xjCgood )P(Cgood )wP(xjCpoor)P(Cpoor)

In other words, it is assigned to the class Cgood for which

P(x|Cgood)P(Cgood) is the maximum.

Availability
The method has been implemented in Perl and is available for

downloading from http://www.oicr.on.ca/research/ouellette/

caerus. It is distributed under the terms of GPL (http://

opensource.org/licenses/gpl-2.0.php)

Supporting Information

Figure S1 The performance of our approach using 410 known

cancer susceptibility genes as gene signatures. Curve of receiver

operating characteristic (ROC) plotted for different thresholds

when our approach was tested against the breast cancer data set

incorporating somatic mutation. The area under the curve (AUC)

is 0.726.

Found at: doi:10.1371/journal.pcbi.1001114.s001 (0.44 MB TIF)

Figure S2 The distribution of the predictive performance of our

approach using different random gene signature sets. CAERUS was

tested on randomized 126 genes from the list of 171 gene signatures

and this procedure was repeated 100 times. Histogram of the area

under the curve (AUC) values was plotted for 100 runs. Red vertical

bar represents the AUC value of using 126 gene signatures

identified by incorporating the somatic mutation data set.

Found at: doi:10.1371/journal.pcbi.1001114.s002 (0.65 MB TIF)

Table S1 A list of 222 over-represented GO terms associated

with identified gene signatures.

Found at: doi:10.1371/journal.pcbi.1001114.s003 (0.09 MB XLS)
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