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Abstract

Human polymorphonuclear leucocytes, PMN, are highly motile cells with average 12-15 mm diameters and prominent,
loboid nuclei. They are produced in the bone marrow, are essential for host defense, and are the most populous of white
blood cell types. PMN also participate in acute and chronic inflammatory processes, in the regulation of the immune
response, in angiogenesis, and interact with tumors. To accommodate these varied functions, their behavior is adaptive, but
still definable in terms of a set of behavioral states. PMN morphodynamics have generally involved a non-equilibrium
stationary, spheroid Idling state that transitions to an activated, ellipsoid translocating state in response to chemical signals.
These two behavioral shape-states, spheroid and ellipsoid, are generally recognized as making up the vocabulary of a
healthy PMN. A third, ‘‘random’’ state has occasionally been reported as associated with disease states. I have observed this
third, Treadmilling state, in PMN from healthy subjects, the cells demonstrating metastable dynamical behaviors known to
anticipate phase transitions in mathematical, physical, and biological systems. For this study, human PMN were
microscopically imaged and analyzed as single living cells. I used a microscope with a novel high aperture, cardioid annular
condenser with better than 100 nanometer resolution of simultaneous, mixed dark field and intrinsic fluorescent images to
record shape changes in 189 living PMNs. Relative radial roundness, R(t), served as a computable order parameter.
Comparison of R(t) series of 10 cells in the Idling and 10 in the Treadmilling state reveals the robustness of the ‘‘random’’
appearing Treadmilling state, and the emergence of behaviors observed in the neighborhood of global state transitions,
including increased correlation length and variance (divergence), sudden jumps, mixed phases, bimodality, power spectral
scaling and temporal slowing. Wavelet transformation of an R(t) series of an Idling to Treadmilling state change,
demonstrated behaviors concomitant with the observed transition.
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Introduction

Polymorphonuclear neutrophil granulocytes (PMNs) are the body’s

most abundant class of white blood cells. At circulating cell levels of

,1011, PMNs make up about 62% of all human white cells [1]. An

idling, non-activated neutrophil circulates in the blood for 8 to

12 hours before undergoing apoptosis. When stimulated by inflam-

matory cytokine signals released by endothelial, mast cells and/or

macrophages, PMNs can survive for 24 to 48 hours [2–4].

Once activated, idling PMNs exploit shape change dynamics as

they tether to the endothelium of post-capillary venules, making

and breaking bonds while rolling along the venule’s endothelial

bed of selectins. Following concentration gradients of inflamma-

tory ligands, they wriggle through the vessel wall and migrate to

the site of the initiating inflammation. The motions accompanying

this migration exploit the PMN’s cytoskeletal, actin polymeriza-

tion-depolymerization cycle that configures the dynamics of shape

change and translation [5,6].

The behavioral dynamics of two of the shape changing

metastable states and their associated translational motions are

well established. PMNs manifest these metastable shape-motional

states in vivo and in vitro. They are: (1) The circular-spherical, Idling

state manifesting standing waves and fast and fine random

fluctuations in the leucocyte’s apron edge; (2) The activated,

ellipsoid, polarized migrating state, with almost exclusively positive

gradient-directed lamelopodia and filopodia formation [7,8].

The complexity of the scenario described above and the

necessity of as many as 100 distinct protein/protein interactions to

coordinate the actin cytoskeletal apparatus alone, prompts both a

phenomenological approach and the consideration of a potentially

larger set of shape-motional states which may be transitional, non-

stationary and not easily quantified.

In addition to the metastable spherical-round, Idling and

elliptical-migratory state, I have found a statistically prominent,

third, measure metastable state in the PMNs from the fresh blood

of healthy human subjects. This non-translating, high amplitude,

shape changing state has been previously observed and interpreted

as a functionally disordered manifestation of immunological and

hematological pathology [9–14]. The goals of these studies are to

identify, quantitatively characterize and discriminate this third
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shape-motional PMN state from the other two. I call this third

dynamical state, Treadmilling, the word used to also describe a key

part of the underlying F,G-actin dynamics [15]. I have observed

the Treadmilling state in 12 of the 18 healthy, adult volunteers

contributing blood for this study.

A Statistical Concern
We remind ourselves that there are neurobiological limits on the

both the resolution afforded by empirically meaningful partitions

[16], and the minimal length of a neurobiologically defensible time

series [17]. In these studies I must be concerned with how long the

cells being observed maintain their anatomical and functional

integrity and within that viability limit, how many observations I

can make without the vacuous artifice of over-sampling.

The issue more generally is the selection of an appropriate

sample size of an intrinsically non-stationary system. Counter-

intuitively, it has been shown that under certain conditions of

limited information, repeated too-short sample lengths come to be

computationally superior globally [18].

In the past I have dealt with this problem by studying repeated

time series derived measures yielding populations of not

necessarily convergent estimates [19] with, nonetheless, distribu-

tional properties of the measures, such that I can estimate each

measure’s central and higher moments, range of variation and

statistical differences between measures in comparisons of varying

observed system state [20]. This is the approach to be taken here.

Methods

Relative Radial Roundness, R(t), as an Order Parameter
It is difficult to find a global quantitative measure on the

dynamics of emergent phenomenon with the nice properties of

additivity, continuity and differentiability [21,22]. Such a measure

has been called an order parameter, named for its use in tracking a

system’s dynamics through transitions in the system’s degree of

order. In gas-liquid transitions, the order parameter is density [23],

while in ferromagnet transitions, for instance, it is net magneti-

zation [23,24]. Perhaps the best known example of an order

parameter is relative phase, the Landau-Ginsberg order parameter

[23,24], used in the phenomenological description of thermody-

namic and superconducting transitions [25].

I have examined the autonomous, time-dependent shape

changes of individual Idling and Treadmilling human white cells as

real, spatially extended dynamical systems. I use a global measure

on the PMN’s relative radial roundness, R(t), as the order parameter.

R(t) = r1/r2 is computed as the ratio of the radius of the cell

assumed to be an ideal circle, r1 = p/2p in which p is the sum of the

pixels outlining the cell’s perimeter and r2 = (A/p)0.5 using the sum of

the pixels within the cell’s silhouette as the cell’s area, A. R(t) = r1(t)/

r2(t) = {p/2p/(A/p)0.50}(t) computed at each time step. If both r1
and r2 were derived from an abstract, idealized circle, R(t) = r1/

r2 = 1.0, such that log{R(t) = r1/r2} = 0, the characteristic lower

limit of a generic order parameter. Deviations from this reference

characterize changes in state [21–23,25]. My use of the global

order parameter, R(t), contrasts with a previous use of an averaged

local measure, the power spectral transformation of a sequence of

angles resulting from the piece wise linear segmentation of the

cell’s circumference [26]. The use of R(t) more closely resembles a

differential geometric pattern map [27].

Experimental Procedures
One hundred and eighty-nine PMNs from fifty-three peripheral

blood samples were collected from 18 healthy adult volunteers, aged

26 to 72. The blood samples were allowed to sediment

gravitationally for 40 minutes at room temperature. A population

of PMNs (and other white cells and platelets) were removed from

the buffy coat by micropipette and, along with associated plasma,

placed within a 12 mm ring painted on a glass slide, forming a

,20–25 mm deep well, compared to the average 5.7 mm vertical

space between a plain slide and its cover slip [28]. The 5.7 mm gap

of standard slides and coverslips is considerably smaller than the

average diameter of PMNs, leading to some mechanical compres-

sion of the cell contributing to their activation, and allowing the cell

to move along the slide substrate and cover slip simultaneously [28].

The slides used in this study do not suffer from these deficits.

PMN autonomous motions were observed using an Olympus

BX41 microscope fitted with CytoViva dark field and fluorescent

optical illumination systems, which includes a unique, high-

aperture, cardioid annular condenser (www.scitech.com.au). The

CytoViva condenser makes it possible to visualize objects of below

100 nm in diameter in real time, and with the cellular samples in

an unfixed, living, active state [29,30]. Because PMNs were

treated gently, avoiding perturbations of column separation and

elution, it became possible to reliably study a PMN continuously

for 30 to 60 minutes before the onset of granular clumping,

membrane blebbing and other signs of nascent apoptosis [31].

Data collection continued until ten each Idling and Treadmilling cells

met the conditions for inclusion in the study. Specifically, only cells

that maintained healthy, one state behavior, and did not have

contact with any extracellular objects for the entire 30 min

recording period were retained for analysis.

Idling PMNs are characterized by their near spheroid shape

(quasi-circular in two dimensions). In this state, the microscopically

visible autonomous motions are limited to standing waves on the

cell surface and low amplitude fluctuations of the cell’s microvillus

border. In contrast, Treadmilling PMNs demonstrate large and

irregular changes in cell shape. Multiple transient, often

simultaneously appearing, pseudopodia and lamelopodia emerge

from the cell surface, oriented apparently randomly and without

significant movement of the PMNs center of mass. The cell’s

movement was less than 1.5 times the maximum diameter of the

cell over the typical ,30 minute recording sessions. Figure 1

Author Summary

Human white blood cells, polymorphonuclear leucocytes
(PMN), were microscopically imaged and analyzed as
single living cells. PMN are generally observed in a
spheroid Idling state transitioning to an activated, egg-
shaped, translocating state when triggered by the body’s
signals of infection or inflammation. Occasionally, PMN are
observed in a third behavioral state that looks like dancing
in place, with protrusions thrown out and retracted,
sometimes several simultaneously, in apparently random
directions. This behavior previously had been thought to
be associated with disease. Here this third state, that I call
Treadmilling, is a relatively common way that PMN from
healthy people get ‘‘stuck’’ in an intermediate phase.
Relative radial roundness, R(t), served as a computable
order parameter, and time series of R(t) were derived from
microscopic image series of each of 189 PMN. Only R(t)
series from cells that stayed healthy, maintained a single
behavioral state and did not have contact with other
bodies for the 30 min recording period were analyzed
further. Comparison of measures made on the R(t) series of
cells in the Idling versus Treadmilling states quantitatively
distinguish states and suggest behavior in the vicinity of
global state transitions. Wavelet transformation of an R(t)
series of a captured state change supports this finding.

PMN Morphodynamics
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portrays binary color coded, characteristic silhouettes of the round

Idling, Treadmilling and elliptically polarized/translocating shape-

states of PMNs. Only videos micrographs of mature, segmented

neutrophils that did not have contact with any cells or extracellular

entities and remained visibly healthy over the thirty minutes of

observation, in addition to manifesting stable state behavior were

retained for further analysis.

Images were collected every 2 sec for 30 min using an

Optronics Microfire 120061600 CCD array camera [30] resulting

in a 900 point R(t) series of high resolution images per PMN. The

slowness of the cell shape changing motions led to the finding that

more frequent sampling within the time limit of cellular integrity

was obviously redundant. In the geometric computations, each

primary image was used to produce two binary, 0,1, digital

daughter images: an area map of A, and perimeter map of p. The

0,1 coding of the pixels of the two daughter images were converted

into binary arrays and used compute the R(t) time series.

Computation of the Measures on R(t)
In light of the above discussion of biological constraints on sample

length and the intrinsic non-stationarity of the PMNs shape motion

series, statistical distributions of often individually non-convergent

measures made on each of the cells, serve as the basis for comparisons

of Idling and Treadmilling states. Statistical evaluations are then made

on populations of possibly incomplete measures, not on the raw

observations. Rules of thumb concerning sample length requirements

for any particular measure [32] though easily attainable in physical

and computational systems, often ignore the intrinsic series limits and

non-stationarity of real, behaving, biological systems. In addition to

the use of the distribution of each particular kind of measure, I study

an aggregate of several, often incomplete measures, each reflecting

different aspects of the shape-motional dynamics of PMNs.

On the R(t) of each cell, I study: (1) The central moments of the

R(t) distribution, the mean S1 and standard deviation, S2, as well as

Figure 1. Representative binary color coded silhouettes of PMNs in round Idling, Treadmilling and elliptically polarized/translocating
shape-states.
doi:10.1371/journal.pcbi.1001117.g001

Table 1. Measure averages for cells in each state group.

Idling (n = 10) Treadmilling (n = 10) t(df); r

Mean = 2.935 Mean = 2.932 t(18) = 0.004; r,0.4983

SD = 0.1023 SD = 0.3882 t(18) = 4.816; r,0.0001

Skew = 0.2993 Skew = 0.7273 t(18) = 2.419; r,0.0132

Kurtosis = 0.7229 Kurtosis = 1.165 t(18) = 0.652; r= 0.2612

l1 = 0.6242 l1 = 0.5066 t(18) = 2.592; r,0.0090

a= 20.4561 a= 21.0290 t(18) = 10.600; r,0.0001

Table 1 reports the results of measures made on the R(t) series of ten Idling
PMN and ten Treadmilling PMN, all of which had remained healthy and in a
single behavioral state for the 30 min recording period and made no contact
with extracellular bodies during that time.
doi:10.1371/journal.pcbi.1001117.t001

PMN Morphodynamics
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the skewness, S3, indicating the asymmetry of the density

distribution of R(t), estimated using the third moment, m3, divided

by the cubed root of the variance squared, S3 = m3/var3/2. The

kurtosis, S4, of R(t) is computed using the relation, S4 =

m4/variance2 -3 [33]; (2) An estimate of the R(t)’s orbital divergence,

its sensitivity to initial conditions, in a three dimensional embedding

space, was computed using a generic algorithm for the leading

Lyapounov exponent, L1 [34]; (3) Differences in a hierarchical

scaling property of R(t), by computing the scaling exponent a
derived from its power (frequency)spectrum, as the slope of the

middle third of the linear best fit of the log power-log frequency

relation [35]; (4) An example of the time dependence of the scaling

of R(t) was estimated from a Morlet continuous wavelet transfor-

mation using standard algorithms [36–38].

Visualizing Phase Space Behavior of R(t)
To visualize the phase space behavior I used relatively denoised,

three dimensional Broomhead-King, B/K, eigenfunction, Yi

embedding of the R(t)s. To do this, I computed and plotted Y1,

Y2, and Y3 with respect to each other [39,40]. Each R(t) series

Figure 2. Shows the eigenfunction space embedding (see text) for four representative Idling cells (left column) and four Treadmilling
cells (right column).
doi:10.1371/journal.pcbi.1001117.g002

PMN Morphodynamics
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generated an M-lagged data matrix on which an MxM Hermitean

autocovariance, CM, matrix was computed, with M = 8, a typical

correlation decay interval. CM was then decomposed into its

eigenvalue-ordered eigenvectors. The eigenvectors associated with

the three largest eigenvalues were each composed with the original

R(t) series to form B/K eigenfunctions Y1, Y2, and Y3. These

formed the axes of the B/K eigenspace reconstruction. Because

R(t) behavior attributable to the lower, excluded, eigenvectors

accounts for the trivial, ‘‘noise’’ component of the variance, the

resulting eigenfunction space embedding (each successive point being a

triple) is relatively denoised compared with the more commonly

used phase delay space construction [41].

Another graphical representation of the orbital behavior of R(t)

is its two dimensional, i = t1, j = t2, Recurrence Plot, RP[R(t)]i,j,

introduced by Eckmann [42]. Graphical representations of

RP[R(t)]i,j are two dimensional lattices, each point computed as

RPi,j =H(e ~xxi{k ~xxj

�
�), i,j = 1…N, where ~xxi in R2 represents the

location of the orbit in phase space at time i. e is the static distance

defining the ‘‘closeness’’ threshold, and H is the Heavyside

function. The resulting binary series, each point e- close or not to

the previous value, is coded in black and white. Here, a standard

time delay three dimensional embedding was used, with delay

t= 1 [43]. If~xxj falls within the distance e of~xxi,~xxj is considered to

be a recurrence of ~xxi, otherwise not. Clustering in RPi,j has been

used to discriminate among three characteristic patterns of

intermittency [44].

Results

There were highly significant differences between the measures

S2, S3, L1, and a that were made on the R(t) series of the PMNs in

the Idling versus the Treadmilling state, see Table 1. No significant

differences were found between the two distributions of S1 or S4.

The qualitative differences in the shape-motional patterns

implied by the statistically significant differences in the measures

in Table 1 are consistent with behavior that was observed

microscopically in the two pre-polarized states: (1) The small,

stochastically wavy border fluctuations in cell shape of the generic

Idling PMNs; (2) A range of large, simultaneously multiscale

motions in cell shape variations of R(t) in the Treadmilling state. For

examples, compared with Idling, the increase in asymmetric

amplitude in Treadmilling is reflected in increases in S2 and S3,

and the increase in shape-motional order in Treadmilling is seen in

the statistically significant decrease in L1, the leading Lyapounov

index of expansive, orbital mixing [45]. The larger, smoother,

more correlated shape motions of the Treadmilling state are seen in

statistically significant increases in a in the Treadmilling versus Idling

states. Without a significant difference in the means of R(t), the

variational measures make the discrimination between Idling and

Treadmilling states.

Consistent with the differences in behavior described by direct

observation and the aggregate of measures (see Table 1),

Figure 2 portrays the previously described {Y1, Y2, Y3}1…900

B/K eigenfunctions embedding of four representative Idling cells

(left column) and four Treadmilling cells (right column). The phase

portraits of the Idling cells reflect symmetric, small, random

fluctuations around a near stationary state. Treadmilling cells

manifest larger, more irregular, asymmetric phase space motions

which occupy almost an order of magnitude larger volume than

that by the Idling state.

Another geometric, graphical treatment of the cell’s shape

motional behavior is displayed in Figure 3. We see the recurrence

Figure 3. Contains recurrence plots, RPi,j, of four representative PMNs in the Idling state (top row) and four in the Treadmilling state
(bottom row). e= 1 for all plots.
doi:10.1371/journal.pcbi.1001117.g003

PMN Morphodynamics
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plots, RP[R(t)]i,j of the four representative PMNs in the Idling state

(top row) and four in the Treadmilling state (bottom row), in which

e= 1 for all plots. The RP[R(t)]i,j of the Idling cells demonstrate

more homogeneous temporal distributions of returns typical of

more random data with shorter correlation lengths/relaxation

times. The square patches of only lightly increased density overlaid

on the more uniform surround are consistent with both the

visualized small amplitude oscillations in R(t) in the Idling state and

with the statistical results reported in Table 1. The RP[R(t)]i,j of

cells in the Treadmilling state are, as expected, less homogenously

distributed, manifesting clustering in the return times across

multiple times scales, as well as apparent discontinuous changes in

their phase space patterns. For example, short interval ‘‘bursting’’

interleaved with low amplitude, long interval behavior is seen in

the Treadmilling cells’ RP[R(t)]i,j. Treadmilling PMNs RP[R(t)]i,j

portraits are consistent with recurrence patterns of intermittency

[44,46].

Four of the seven order parameter measures demonstrated

statistically significant differences between the Idling and Tread-

milling PMNs, Table 1. While observing and recording the real-

time behavior of 189 PMNs, I witnessed many cells transitioning

from one state to another among my three defined behavioral

regimes. Data series including such transitions were plagued by the

same complications as were the single state series (e.g., cell-cell

interactions, apoptotic behavior) in addition to too short times in

one or more behavioral state to allow any analysis. I was finally

Figure 4. Shows a ‘‘close-up’’ of a PMN during a phase transition. The upper panel shows the R(t) series, while the lower panel depicts the
continuous 1D Morlet wavelet moduli for that time interval (x-axis). Scale of the basis function increases up the y-axis. The colormap passes through
the visible spectrum; blues representing low Morlet moduli amplitudes to high valued reds. The cell is initially Idling, and begins Treadmilling at data
point t = 283. Note that anticipatory slow high amplitude fluctuations begin to appear at about point t = 198.
doi:10.1371/journal.pcbi.1001117.g004

PMN Morphodynamics
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able to make sufficient observations portraying a single PMN

shape motion transformation in real time. Figure 4 is a Morlet

wavelet graph, in continuous time along the x-axis, and scale

(,wavelength) along the Y axis. Figure 4 contributes evidence for

a continuous transition in shape motion state, here from Idling to

Treadmilling. Table 2 lists measures before and after this single cell

transition. Note that the direction and approximate magnitude of

change resemble those of the population of statistically significant

values in Table 1.

Discussion

There are established physiological mechanisms and behavior

that are consistent with both our qualitative microscopic

observations and quantitative aggregate measure descriptions.

PMNs are known to oscillate on multiple time and space scales,

from 7 sec, 70 sec, and 260 sec membrane potential fluctuations

[47] and 25 sec calcium flux oscillations [48], to the ,8 sec

bound/unbound actin oscillations [49], to 21.6 sec and 230 sec

glycolytic cycles producing NAD(P)H oscillations [47], and 10 sec

and 20 sec pericellular proteolysis fluctuations [48], among many

others. The R(t) series in this study evidenced scaling, board band

power spectra with multiple resonances [50]. It is likely some

reported modes contribute to the cell shape fluctuations directly

and others contribute to the emergence of other dynamical

patterns.

The slowest Fourier mode in Sv [R(t)] of the Idling state had

an average 8.457 minutes oscillation, whereas that of the slowest

Sv [R(t)] of the Treadmilling state averaged a 4.201 minutes

oscillation. It is interesting that these characteristic times

correspond roughly to the results of studies of the characteristic

remodeling times composed of actin filament diffusion, polymer-

ization and then turnover coordinated with cellular migratory

motions [51,52]. It appears that the transition from Idling into the

intermittent Treadmilling regime occurs as the Idling state loses

some of its dynamical structural stability, and its shape motion

scenario becomes driven by several quasiperiodic, multi-periodic

metabolic and physiological cellular oscillator mechanisms

[53,54].

As listed in Table 1 and Table 2, a comparison of Idling

with Treadmilling PMNs reveals significantly different R(t) order

parameter dynamics. Projected to a two dimensional plane

(Figure 1), one sees an associated difference in the underlying

planar geometry, with the Idling PMNs manifesting one centroids

in their circularity, and the Treadmilling PMNs with two point

defined, barycentric ellipses.

Many characteristics of the changes in measures in the distinct

single state observations and in the computable, real-time transition

from Idling to Treadmilling suggest the typical signs of a phase transition

[21–23,25]. These included: (1) Increasing amplitude of R(t)

variability seen in the S2 and S3 of the cell shape fluctuations; (2)

Decreased leading L1 becoming less positive in the direction of zero,

shadowing the leading eigenvalue of the unknown underlying partial

differential equation; (3) An increase in the log-log power spectral

scaling index, a, reflecting a ‘‘less white’’ spectral pattern of R(t)

fluctuations, also consistent with slowing; (4) The Morlet wavelet

transformation of a continuous time R(t), evidenced anticipatory, high

amplitude slowing and a mixed phase regimes in the neighborhood of

a real-time PMN shape fluctuation transition. The eigenfunction space

embedding of the sequence of triples, {Y1, Y2, Y3}i demonstrated

directly the space-time morphogenic transformation undergone by

R(t) in the Treadmilling state with reference to that of the Idling cell state.

Recurrence plots, RPi,j depicted increased phase space clustering

consistent with the more hierarchical, intermittent dynamics of the

Treadmilling PMNs in contrast with the more randomly distributed

and metrically transitive space of the Idling RPi,j. It should be noted

that the action spaces of less uniform intermittency and those of more

uniform transitivity reflect common metastable alternatives in the

dynamics of some biological sciences [48].

Finally, I have spent hundreds of hours microscopically tracking

189 individual PMN cells in the hopes of answering these questions

about state and state transitions. While only one such transition was

recorded with sufficient observations in both the Idling and

Treadmilling states to allow statistical analyses, many transitions were

observed. I have seen Idling cells transition to Treadmilling, and

Treadmilling cells ball up and Idle (although with slightly ragged

aprons). I have also observed numerous instances of Idling cells

polarizing and Translocating until they reach some point at which

point they Idle again. The only transitions that were not observed

were from the Treadmilling to the polarized, single lamelopod,

Translocating state or vice versa. In either case the cells ball-up briefly

into an Idling appearance before changing again. See Table 3.
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Table 2. Measures made on a nutrophil before and after
idling to treadmilling state change.

Idling Treadmilling

Mean = 2.0969 Mean = 2.1614

SD = 0.0348 SD = 0.1620

Skew = 20.1942 Skew = 2.0076

Kurtosis = 2.8552 Kurtosis = 8.0831

l1 = 0.6520 l1 = 0.498

a= 20.5681 a= 21.0486

Table 2 reports the results of the same measures listed in Table 1, this time
made on the R(t) series of a single PMN first in an Idling state and then in a
Treadmilling state. This PMN also remained healthy for the 30 min recording
period and made no contact with extracellular bodies during that time.
doi:10.1371/journal.pcbi.1001117.t002

Table 3. Observed cell state transitions.

From
To Idling Treadmilling Translocating

Idling X X X

Treadmilling X X

Translocating X X

doi:10.1371/journal.pcbi.1001117.t003
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