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Abstract

This paper proposes a new method to identify communities in generally weighted complex networks and apply it to
phylogenetic analysis. In this case, weights correspond to the similarity indexes among protein sequences, which can be
used for network construction so that the network structure can be analyzed to recover phylogenetically useful information
from its properties. The analyses discussed here are mainly based on the modular character of protein similarity networks,
explored through the Newman-Girvan algorithm, with the help of the neighborhood matrix M̂. The most relevant networks
are found when the network topology changes abruptly revealing distinct modules related to the sets of organisms to
which the proteins belong. Sound biological information can be retrieved by the computational routines used in the
network approach, without using biological assumptions other than those incorporated by BLAST. Usually, all the main
bacterial phyla and, in some cases, also some bacterial classes corresponded totally (100%) or to a great extent (.70%) to
the modules. We checked for internal consistency in the obtained results, and we scored close to 84% of matches for
community pertinence when comparisons between the results were performed. To illustrate how to use the network-based
method, we employed data for enzymes involved in the chitin metabolic pathway that are present in more than 100
organisms from an original data set containing 1,695 organisms, downloaded from GenBank on May 19, 2007. A preliminary
comparison between the outcomes of the network-based method and the results of methods based on Bayesian, distance,
likelihood, and parsimony criteria suggests that the former is as reliable as these commonly used methods. We conclude
that the network-based method can be used as a powerful tool for retrieving modularity information from weighted
networks, which is useful for phylogenetic analysis.
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Introduction

In networks, module or community structure plays a central role

when it comes to understand network topology and dynamics. To

advance solutions to many problems related to biological

networks, we need to identify, thus, the community structure in

datasets. Consequently, the introduction of new efficient and

robust methods that are able to perform such a task in a variety of

situations is of utmost importance.

We are interested, here, in giving a contribution to the complex

issue of phylogenetic inference by appealing to the complex

network approach, which has been successfully applied to uncover

organizing principles that govern the constitution and evolution of

various complex biological, technological, and social systems [1–

4]. Recent studies using complex network approaches in the fields

of both genomics and proteomics have contributed to a better

knowledge of the structure and dynamics of the complex webs of

interactions of a living cell [5–12]. Several kinds of biologically

relevant networks have been studied in the last years, mainly

protein interaction, transcriptional, and metabolic networks [1]. In

this study, we work with another set of relationships, namely, the

evolutionary relationships between proteins throughout phyloge-

ny, and introduce a new method to identify communities in

generally weighted complex networks.
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The reliability and overall applicability of a new proposed

method is the subject of a long term research program, which

necessarily starts with a clear formulation of the key steps of the

method, alongside with the analysis of a non trivial problem that

has been analyzed before, such as, for instance, phylogenetic

inference.

There are four families of methods of phylogenetic analysis that

are commonly used, namely: maximum parsimony, distance,

maximum likelihood, and Bayesian [13]. Promising prospects of

developing new trustful methods to infer phylogenetic relation-

ships are offered by the possibility of using primary information

about protein sequences contained in open access databases and

the derived protein similarity measures. We introduce here a

methodology to identify community structure in such primary data

sets, based on the concept of distance between complex networks,

and apply it to the specific problem of retrieving useful information

that can be used to infer phylogenetic relationships. In this process,

we avoid as much as possible the use of any qualitative pre-existing

biological information. We show here that a method based on

complex network theory can recover information about the

evolutionary relationships between organisms, as expressed in

the similarities and differences between their protein or DNA

sequences.

Depending on the way the nodes are connected within a

network, it may be possible to identify one or more subsets of

nodes such that the average number of connections among nodes

within any of these subsets is distinctly larger than the average

number of connections with nodes outside this subset. The

identification of such subsets (usually called communities, modules,

components, clusters, etc.), a key issue that has not been

completely solved within complex network theory, is of utmost

importance for biological applications. Indeed, modular properties

are found to be very common features in any branch or level of

biological network investigations.

Over the past years, the amount of research in identifying

communities in networks is really astonishing. There are several

review articles discussing this subject, based on mathematical and

computational approaches [14–16]. Furthermore, comparative

analyses of the available methods are also found in the literature

[17,18].

Computationally efficient approaches based on similarity

matrices and cluster analyses for the exploration of protein

databases with little or no prior knowledge are important tools for

phylogenetic analysis. A number of approaches are currently being

used to infer evolutionary relationships between proteins. For

instance, the Markov Cluster (MCL) Algorithm [19,20] is an

unsupervised cluster algorithm that has been applied to the

analysis of graphs in several different domains, mostly in

bioinformatics. The MCL Algorithm was used, for instance, for

the detection of protein families [21], a major research goal in

structural and functional genomics. MCL was also extended to the

identification of orthologous groups by OrthoMCL [22]. It was

also used to develop phylogenomic analyses of specific taxa, such

as the Ascomycota [23]. A hybrid approach to sequence-based

clustering of proteins was developed, combining Markov with

single-linkage clustering, with the intention of obtaining both

specificity (as allowed by MCL) and the preservation of topological

information as a function of threshold information about protein

families (as in single-linkage clustering) [24]. Another recently

developed method for automatic and unsupervised detection of

protein families and genome annotation is the Global Super

Paramagnetic Clustering (SPC) Algorithm, which showed higher

accuracy, specificity and sensitivity of clustering than MCL [25].

Finally, Kóvacs et al. [18] introduced ModuLand, an integrative

network module determination method family, which can

determine overlapping network modules as hills of an influence

function-based, centrality-type community landscape. The new

method to identify communities in generally weighted complex

networks proposed here is quite powerful and innovative in the use

of a distance d (to be defined in the next section) to determine an

optimal value of the threshold on similarity.

Two main tasks are crucial to derive an objective, mathemat-

ically based community identification: First, to define a measure

suitable to distinguish non-modular from modular character, and,

second, to identify the communities, when this is the case. The

distance d used herein is able to help the identification of the

modular character in a very clear way. Therefore, our major

contribution, based on complex network theory, is to use this

measure together with the protein similarity matrix (in fact, the

weight matrix of any weighted network) to identify the minimal set

of links that are included in the network in order to preserve the

relevant biological information necessary to unveil the modular

character within the data set at stake.

Once such optimally chosen network is found, any proposed

community detection method may be used to retrieve the existing

communities. We use here the Newman Girvan algorithm (NGA) [26],

which, although time consuming, also allows to identify the sequence of

branching events, leading to useful and well defined dendrograms.

Since several organic biomolecules are required for basic

metabolic purposes, they can be found in large number of

organisms, making it possible to use techniques derived from

complex network theory to explore information that is useful for

phylogenetic inferences. Enzymes that are involved in the synthesis

of ubiquitous and metabolically important molecules seem

particularly promising for such complex network approach. They

are likely to be found in many distinct organisms and, if they are

involved in ancient metabolic pathways, they can be found in the

three life domains, Archaea, Bacteria, and Eukarya. Even though

distinct organisms use their own enzyme variants to produce a

given molecule, these variants will tend to look more similar in

their amino acid sequences the closer the species are in

Author Summary

Complex weighted networks have been applied to
uncover organizing principles of complex biological,
technological, and social systems. We propose herein a
new method to identify communities in such structures
and apply it to phylogenetic analysis. Recent studies using
this theory in genomics and proteomics contributed to the
understanding of the structure and dynamics of cellular
complex interaction webs. Three main distinct molecular
networks have been investigated based on transcriptional
and metabolic activity, and on protein interaction. Here we
consider the evolutionary relationship between proteins
throughout phylogeny, employing the complex network
approach to perform a comparative study of the enzymes
related to the chitin metabolic pathway. We show how the
similarity index of protein sequences can be used for
network construction, and how the underlying structure is
analyzed by the computational routines of our method to
recover useful and sound information for phylogenetic
studies. By focusing on the modular character of protein
similarity networks, we were successful in matching the
identified networks modules to main bacterial phyla, and
even some bacterial classes. The network-based method
reported here can be used as a new powerful tool for
identifying communities in complex networks, retrieving
useful information for phylogenetic studies.

Network Communities and Phylogenetic Analysis
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phylogenetic terms. Thus, species can be gathered in phylogenet-

ically meaningful groups by analyzing the degree of similarity of

enzymes involved in some basic metabolic pathway. We show here

how the similarity of the amino acid sequences of enzymes derived

from completely sequenced genomes of extant organisms can be

used for network construction and, subsequently, the network

structure can be analyzed so as to recover phylogenetically useful

information from its properties and statistics.

The methods described here can be used for any set of proteins

involved in basic metabolic pathways. We will work in this paper

with data from enzymes involved in chitin synthesis. Chitin, the b-

1,4-linked linear homopolymer of N-acetylglucosamine, is a

structural endogenous carbohydrate, which is a major component

of fungal cell walls [27], cephalopod beaks [28], integuments of

larvae and young nematodes [29], and arthropod exoskeletons

[30]. Chitin is the second most abundant polysaccharide in nature

after cellulose. It occurs only in eukaryotic organisms of the

Metazoa-Fungal clade. This suggests that chitin may have evolved

before the crown eukaryotic radiation.

Chitin is synthesized by a sequence of six successive reactions: (i)

conversion of Glu-6P into Fru-6-P by phosphoglucoisomerases

(E.C. 5.3.1.9); (ii) conversion of Fru-6-P into GlcN-6-P by

glucosaminephosphate isomerases (E.C. 2.6.1.16); (iii) acetylation

of GlcN-6-P generating GlcNAc-6-P by phosphoglucosamine

acetylases (E.C. 2.3.1.4), (iv) interconversion of GlcNAc-6-P into

GlcNAc-1-P by acetylglucosamine phosphomutases (E.C. 5.4.2.3)

or, alternatively, by acetylglucosamine phosphate deacetylases (E.C.

3.5.1.25); (v) uridilation of GlcNAc-1-P by UDP-acetylglucosamine

pyrophosphorylases (E.C. 2.7.7.23); and (vi) conversion of UDP-

GlcNAc into chitin by chitin synthases (E.C. 2.1.4.16) [31,32].

Chitin degradation is achieved by chitinases (E.C. 3.2.1.14),

either by exochitinases, which convert chitin into N-acetylgluco-

samine residues, or by endochitinases, which convert chitin into

chitobiose, which, in turn, may be converted into N-acetylgluco-

samine residues by hexoaminidases (E.C. 3.2.1.52). N-acetylglu-

cosamine residues may be activated by acetylglucosamine kinases

(E.C. 2.7.1.59) to form N-acetylglucosamine-6-P, restoring the

precursor of the short feedback cycle of chitin metabolism. Chitin

may also be deacetylated by chitin deacetylases (E.C. 3.5.1.41),

converted into chitosan, which is degraded by chitosanases (E.C.

3.2.1.132) into glucosaminide, which, when converted into

glucosamine, may be activated by hexokinase type IV glucokinases

(E.C. 2.7.7.1), which restore the precursor of N-acetylglucosamine-

6-P, Glucosamine-6-P, configuring a longer feedback cycle [33].

Even though chitin itself is found only in the Metazoa-Fungal clade,

we can find proteins which are homologous to enzymes involved in

chitin synthesis in other clades, including bacterial and archaeobacter-

ial ones. Therefore, the chitin metabolic pathway can be used to

recover phylogenetically relevant information in the three life domains.

In this paper, we use the complex network approach as a

theoretical and methodological tool to perform a comparative

study of the enzymes related to the chitin metabolic pathway in

extant organisms of the three life domains, Archaea, Bacteria, and

Eukarya. We will show how the information derived from the

network structure and statistics can be used to uncover

phylogenetically useful modules, retrieving sound biological

information by computational routines, without using biological

assumptions other than those incorporated by BLAST.

Methods

Database and comparative analysis
Our primary database consists of protein sequences of

completely sequenced genomes of extant organisms that can be

freely accessed at the GenBank - NCBI [34] (http://www.ncbi.

nlm.nih.gov/Genbank/). Protein data provide essential informa-

tion to the identification of any given organism, as well as to

comparative studies on evolutionary paths followed by different

organisms. Our data set, downloaded from GenBank at May 19th,

2007, contains information from 1695 organisms. We used

completely sequenced genomes to assure that all putative proteins

and their isoforms, if any, could be adequately retrieved [35].

We developed automatic procedures to filter the protein related

data in the complete downloaded database. In the first step of the

process, we extracted from the primary database the relevant

information for the current work, namely, the molecular source of

protein sequences, their structural and functional information, and

the taxonomic classification of the organisms in which the proteins

are found. Next, we scrutinized the secondary database obtained

in this manner, in order to identify which proteins (i.e., the

organism-specific protein variants that play the same biological

function) are present in a large number of organisms. One way to

optimize this search, in the sense of finding many organisms with

the same protein, is to pre-select a basic biomolecule, such as

chitin, and look for the enzymes involved in its metabolism.

Indeed, our search revealed that some of the proteins with the

largest number of entries in the database are enzymes that take

part in the metabolic synthesis or degradation of chitin. In Table 1,

we indicate five such enzymes, satisfying the condition of being

present in more than 100 organisms from the 1695 original set

[33]. The remarkably large number of bacterial records in the

database reflects the fact that there are much more completely

sequenced organisms of the Bacteria domain than of the Archaea

and Eukarya domains.

After identifying the sets of organisms that possessed each of the

proteins listed in Table 1, we used BLAST 2.2.15 [36], with a

pairwise alignment, to perform quantitative comparisons among

the protein sequences pertaining to each set. From the BLAST

outputs, we used in our study the similarity index.

Then, a similarity matrix S was constructed based on the

similarity level between protein sequences, where any element of

the similarity matrix SijM[0,100] is the similarity index associated

with the protein sequences i and j. Since S is not necessarily

symmetric (Sij?Sji), it is important to consider a symmetric version

S, where the elements are defined by Sij = min(Sij,Sji).

The programs were executed both on LINUX- and WIN-

DOWS-running computers. Databases were managed through

MySQL. Scripts and auxiliary programs were written in PERL,

Table 1. Enzymes associated with the chitin metabolic
pathway that satisfy the condition of being present in more
than 100 organisms from the 1695 original data set,
downloaded from GeneBank at May 19th, 2007.

Protein E.C. number Domain (#)

Acetylglucosamine phosphate
deacetylase

3.5.1.25 B(170), A(6)

Glucosaminephosphate isomerase 2.6.1.16 E(23), B(285), A(5)

Hexosaminidase 3.2.1.52 E(3), B(235)

Phosphoglucoisomerase 5.3.1.9 E(16), B(472), A(12)

UDP-acetylglucosamine
pyrophosphorylase

2.7.7.23 E(2), B(324), A(2)

Abbreviations: E = Eukarya; B = Bacteria; A = Archaea; E. C. = Enzyme
commission. Number in parentheses after the letters shows the total of
organismic individual sequences per domain for each protein.
doi:10.1371/journal.pcbi.1001131.t001

Network Communities and Phylogenetic Analysis
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BASH, C, C++ and FORTRAN 77. PAJEK [37] was used to

generate network images.

In the sub-section Network construction, we describe how

we used S to generate complex networks depending on a similarity

threshold for each one of the five proteins shown in Table 1.

Networks were analyzed by the methods described in the sub-

section Network analysis, while the modular patterns generated

by complex network approach were biologically interpreted in the

light of the phylogenetic relationships of organisms.

Network construction
Before defining the networks used in this study, let us recall that

the most used characterization of network properties is based on a

series of measures [38], including: the number of nodes, N; the

shortest path d(i,j) between nodes i and j; the average minimal

distance Ædæ taken over all pairs of nodes; the network diameter D,

defined by the largest value of d(i,j); the node clustering coefficient

ci, which measures how strongly connected the neighbors of node i

are; the network clustering coefficient C, corresponding to the

average value over the ci; the node degree, ki, defined by the

number of links of a node i and its average value over all nodes Ækæ;
the functional relationships p(k), the probability distribution of

nodes with k links, and C(k), the distribution of node clustering

coefficients with respect to the node degree k.

In general, the key step in the construction of a system

interaction network is to define a meaningful criterion to place an

edge between two nodes, which should be able to identify the

presence and strength of the interaction between them. In the

current study, the concept of interaction corresponds to protein

similarity, which is related, in turn, to the evolutionary

relationships between the organisms possessing the proteins at

stake [35]. Therefore, the similarity matrix S constitutes the

starting point to obtain the protein similarity networks (PSN).

In a PSN, the nodes correspond to the protein sequences, and

the presence of edges between two nodes depends on how similar

the related proteins are. Each network can be defined by its

adjacency matrix (AM) M, for which any matrix element mi,j is set

to 1, if the nodes i and j are connected, or to 0, if not. Note that it is

straightforward to switch from the AM network description to the

list description, in which the network is characterized by a list of L

pairs of nodes connected by a link. To be more precise, let us

define a network family depending on a threshold value s, where

the elements of its adjacency matrix M(s) satisfy:

mi,j(s)~
1, if Sij§s

0, if Sijvs

�
: ð1Þ

This strategy makes it possible to replace one single weighted

network defined in terms of S by a family of unweighted networks,

which can be analyzed by a large number of recently developed

methods and measures [38–41].

Depending on the value of s, the interaction network may be

completely distinct: for small values of s it is highly connected,

while for large values of s it is poorly connected. As we will show

in the next section, we have performed a detailed investigation of

the dependence of the network properties on the value of s. We

are able to establish a well defined criterion for optimal choices of

s, in the sense that the networks generated within a relatively

narrow range of values of s display a modular pattern that can be

interpreted in phylogenetic terms, as addressed in the section of

results and discussion of the present paper.

To fine tune the value of s that makes it possible to unveil the

modular character, we use the concept of higher order

neighborhoods of a node [42]. Two nodes i and j are neighbors

of order , when the shortest path between them consists of ,
edges. In this manner, it is possible to define a ,-th order

neighborhood of a given network represented by M if we connect

all pairs of nodes that are , steps apart. Such networks can be

defined in terms of M(,), the corresponding AM of order ,. The

elements of this matrix are defined as:

m(‘)i,j~
1, if d i,jð Þ~‘

0, if d i,jð Þ=‘

�
: ð2Þ

The knowledge of the set {M(,)}, where ,M[1,D], allows us to

define the following neighborhood matrix

M̂M~
XD

‘~1

‘M(‘): ð3Þ

The matrix elements of M̂, denoted as m̂i,j, indicate the shortest

path between the nodes i and j. If the network is assembled by two

or more disjoint clusters, the distance d(i,j) between two nodes, say

i and j, belonging to two distinct clusters is ill-defined. In order to

sidestep this indeterminacy and continues operating with M̂, we set

m̂i,j = 0 whenever this occurs. The importance of M̂ for a deeper

analysis of the neighborhood structure of a network has been

indicated in a series of previous studies [43–45]. The utility of M̂

ranges from providing an insightful visualization of the neighbor-

hood structure by means of color plots to defining a distance

between pairs of networks [45]. This last measure can be used to

identify how similar two networks are. For this purpose we define

the distance d(a,b) between any two networks with the same

number of nodes (a and b) by:

d(a,b)~
1

N2

XN

i~1

XN

j~1

m̂mi,j(a)

D(a)
{

m̂mi,j(b)

D(b)

� �2

, ð4Þ

where D(a) represents the diameter of the network a.

In a general comparison process, the obtained value of d(a,b)

depends on the adopted node enumeration for both networks,

although the network topology does not depend on it. Therefore,

for the purpose of providing a useful measure, the definition (4)

can be made more precise by restricting the value of d(a,b) to the

minimal value assumed when all possible node enumerations are

taken into account (see [45]). In the current study, a and b are

two distinct protein networks, generated by one same dataset,

but where the edges are inserted according to Eq. (1) when we

consider a = s1 = s and b = s2 = s+Ds. In this definition, we

suppose that s1 and s2 are two nearby values of s. Since the

nodes represent the same proteins, it is not necessary to consider

different enumerations, but just to use the same enumeration to

generate both networks. If we plot d(s,s+Ds) as function of s, it

turns out that the graph is characterized by the presence of sharp

peaks. Such series of consecutive values of d(s,s+Ds) marks the

points where the obtained networks are about to suffer important

topological changes [43], i.e., to be split into separate

communities.

The value of s plays a key role in the network definition, which

is similar to the probability p to establish an edge in a random

Erdös-Rényi network. By varying the value of p, the network

Network Communities and Phylogenetic Analysis
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changes to an assembly of disconnected edges at p = 0 to a

complete graph when p = 1. The most interesting situation,

however, occurs in the neighborhood of one critical value

pcr<1/N, which is related to the emergence of a giant cluster that

contains the overwhelming majority of nodes.

Network analysis
The investigation reported in this paper is based on the

measures defined in the previous subsection, and also in other

measures that allow for the identification of modularity properties

of the network, if any. Loosely speaking, a module in a network is

composed of a sub-set of nodes that are overwhelmingly more

connected among themselves than with other network nodes.

The link betweeness degree bij between nodes i and j is the basic

concept within the NGA to identify network communities. bij

counts the fraction of all shortest paths connecting the N(N21)/2

pairs of nodes that pass through the (i,j) link, providing a

quantitative measure of the relevance of each link for the

optimized network information traffic. NGA proceeds by sequen-

tially eliminating the edges with largest value of bij [26]. As a result,

it is possible to obtain a network dendrogram where the number of

branches increases with the number r of eliminated links. In this

way, the dendrogram has one single branch when r = 0 – in the

case of a connected network – and N single-node communities

when r = L. Each value of r informs the set of nodes that are still

connected in a given cluster. Since this is a time consuming

program, faster tracks have been proposed to analyze very large

networks [38–41,46]. In the current case, however, we are able to

work with this method, given that our networks are not too large.

In our analyses, we used the NGA to identify existing

communities for any value of s. As the detected communities

may be quite distinct from one value of s to another, the NGA

results corroborate our claim that the identification of the optimal

value of s using the distance d is the crucial step of the whole

procedure.

To reveal the modular structure of the network, NGA requires a

node re-enumeration, a step that is also included in our procedure.

Therefore, it is possible to use the re-enumerated form of M̂ to

visualize the modularity of the protein similarity networks with

color plots. The modularity structure becomes quite clear when we

draw color plots for the elements of M̂ using the same node

labeling obtained at the final step of the dendrogram evaluation.

We want to comment further that the concept of distance d(a,b)

can also be used to follow the process of link elimination within

NGA. In this particular case, a and b identify two networks

characterized by having m and m+1 eliminated links within NGA

(see [26]). A graph of d(m,m+1) as a function of m indicates, by high

peaks, those events of link eliminations that correspond to

branching points in the dendrogram. As it was shown in [45],

the distance d(m,m+1) is able to indicate the branching points in a

much clearer way when compared to, e.g., the modularity function

Q introduced by Newman and Girvan [26].

As shown in Table 1, we constructed networks for five enzymes

of the chitin metabolic pathway, which provided, in turn, different

classifications for the organisms included in the database. In order

to quantitatively assess the possible differences between the

classification provided by the networks based on different

enzymes, say Q and y, we evaluated a congruence index G(Q,y)

according to the following prescription: i) we count the number

R(Q,y) of common organisms that are present simultaneously in

both networks; ii) we look for the correspondence between the

different communities from Q and y that maximizes the number of

matching organisms Q(Q,y), i.e., organisms that are placed in the

same communities in the two networks. In doing this, we must

observe that, if the number of communities in Q and y are

different, it is necessary to make a correspondence of two or more

communities of network Q to the same community in networky.

The value G(Q,y) is defined as the ratio Q(Q,y)/R(Q,y).

To conclude, the methodology that is applied to generate the

results presented in the next section can be summarized in terms of

the following steps:

A) Select the protein sequences with the relevant information to

set up the similarity level between the sequences.

B) Compare the protein sequences using BLAST and set up the

n6n similarity matrix, being n the number of protein

sequences.

C) Generate a set of networks associated with the chosen values

of the similarity threshold (s): the nodes correspond to the

protein sequences and a link is inserted between a pair of

nodes if the similarity between the proteins is larger or equal

to s. In the current case we considered all integer values of s
in the interval [0,100].

D) Set up the neighborhood matrix M̂ associated with each

adjacency matrix.

E) Calculate the distance between the networks d(s,s+Ds), and

select for analysis the critical networks, for which the

d(s,s+Ds) assumed the local maximal value.

F) For the critical networks, apply the Newman Girvan

algorithm (NGA), removing the edges with the maximal

value of edge betweenness until there is no link at all.

G) In order to detect the modular structure of the network, set

up the dendrogram for the critical network as well as the

color representation of the neighborhood matrix.

H) Calculate the congruence index G(Q,y) to quantitatively

assess the differences between the classification provided by

the distinct networks.

Results/Discussion

Here, we present and discuss results concerning the modular

structure of protein similarity networks provided by our method

that are useful for phylogenetic inferences. To be concise, we

provide a detailed discussion of the results obtained for two

proteins in Table 1: UDP-acetylglucosamine pyrophosphorylase

(to which we will refer below as UDP) and acetylglucosamine

phosphate deacetylase (Acetyl). Then, we will provide a compar-

ative analysis of the results for the networks of all the five proteins

investigated in this study, in order to provide evidence for the

classification consistency of the method.

Community detection
Let us now illustrate how the behavior of d(s,s+Ds) provides a

precise way of characterizing the dependence of the networks on s
(step (E) in the summary of the methodology presented in the

previous section). This behavior is illustrated in Figure 1a for the

Acetyl network. The results were obtained by making the values of

s differ in Ds = 1%. The graph shows three well defined maxima

of d(s,s+Ds) for s in the interval [30%,50%], the largest of which

occur at s = smax = 42%. These results should be interpreted as

follows: if s = 0, the network consists of a completely connected

single cluster. By increasing the value of s, we restrict the number

of bonds in the network, so that Ædæ increases together with the

values of the matrix elements m̂mi,j~d(i,j). Since the distance

d(s,s+Ds) makes a comparison of the influence of changing s on

d(i,j), a sharp increase in its value indicates that the bond removal

Network Communities and Phylogenetic Analysis
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is leading to large changes in the values of some of d(i,j). This

suggests also that important network topological changes are about

to occur. The most drastic events, expressed by the first sharp

peaks, are usually related to the disassembling of one large set of

nodes (module) from the original, completely connected cluster.

This network, which we will call the critical network, is selected to

be analyzed. Later on, smaller peaks indicate the splitting of larger

modules into smaller ones. This occurs when the last bonds linking

these modules to the network are removed. The very high peak at

s = smax = 42% indicates that a large topological change occurred

at this particular value.

The same scenario is observed in Figure 1b for the d(s,s+Ds)

results obtained from the UDP network. Note that the peaks occur

at higher values of s, in comparison to the Acetyl network, and a

richer structure of peaks of comparable sizes is found. Despite

these quantitative changes, the two graphs show similar features,

representing the kinds of structural changes in the network due to

the variation of the threshold similarity value.

The presented interpretation of the influence of s on d(s,s+Ds)

is corroborated by other network measures. Let us consider how

Nc, the size of the largest connected component in the network,

depends on s. This is illustrated in Figures 2a and 2b for the Acetyl

and UDP networks, respectively (see also [35]). In both figures we

notice a rapid decrease of Nc in a relatively narrow interval of

values of s. This effect is related to the detachment of large groups

of nodes from the main cluster as the restriction on establishing

links between nodes is increased. As anticipated in the previous

section, the curves follow the same qualitative features as those for

the Erdös-Rényi networks as a function of the attachment

probability p close to pc. Figures S1 and S2 illustrates how d and

Nc depend on p for networks with the average size of the analyzed

PSN’s (N = 256) and also in the limit of large N (see also Text S1).

Hereafter, we will consider the dendrograms, the neighborhood

matrices, and the usual representation of the network associated

with the proteins listed in Table 1 for the values of s such that the

distance shown in Figures 1a and 1b assumes a maximum value.

Concerning UDP, the figures are not shown, since they were

already presented in a previous paper [35], in which the criterion

for setting up the range of s that reveals the modular structure of

network was based on the region of transition associated with C

and Ædæ. It is important to call the attention to the fact that the

criterion based on the distance d(s,s+Ds) reveals in a much more

precise way, in comparison to C and Ædæ, the value of s in which

the modular structure is observed.

The influence of s on the network structure can be better

appreciated by comparing two dendrograms in Figure 3 for the

Acetyl networks at s = 30% and s = smax = 42%. In the first

situation (Figure 3a), the very large number of edges does not allow

one to perceive the system modular structure. Accordingly, the

NGA based on bij is characterized by a progressive detachment of

small groups of nodes from the original giant cluster. In turn, the

dendrogram for s = smax (Figure 3b) reveals a lot of structure. It

Figure 1. The size of the largest connected component (Nc) versus the threshold similarity s: a) Acetyl; b) UDP.
doi:10.1371/journal.pcbi.1001131.g001

Figure 2. The distance d(s,s+Ds) between networks for successive similarities at the maximal value, with Ds = 1, in the case of: a)
Acetyl at s = smax = 42%; b) UDP at s = sma = 51%.
doi:10.1371/journal.pcbi.1001131.g002
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starts, at r = 0, with some already isolated clusters, corresponding

to the modules that were detached at s = smax, s = 45%, and

s = 48%. Then, we note the separation of a large cluster at a low

value of r, which is caused by the elimination of the few bonds with

very large betweenness degree connecting nodes of the different

modules. Such cluster detachment is exactly the same one

produced by increasing the value of s to 42%, causing the

absolute d(s,s+Ds) maximum in Figure 2a. The subsequent

elimination of bonds leads to further branching in the dendro-

gram, some of which can be related to local maxima in the s.smax

region of the d(s,s+Ds)6s plot.

Dendrograms evaluated at intermediate s values, e.g., s = 40%,

are able to clearly identify network modules corresponding to

those clusters detached from the giant cluster by selecting s close

to this peak value at smax. However, the picture that emerges for

those clusters that detach at larger values is still rather blurred.

As anticipated in the previous section, let us put together

supplementary results in the dendrogram construction to display

the network modular structure with the help of the neighborhood

matrix M̂. To avoid line crossings in the dendrogram, the order at

which the isolated nodes are drawn for the largest value of r does

not necessarily follow the original numbering. This ordering

defines a new node labeling which leaves untouched the network

topology. If we now use a color code to represent M̂ with relabeled

nodes, the modularity structure becomes quite clear, as shown in

Figure 4. Running from blue (immediate neighbors) to red

(farthest apart nodes), the colors clearly indicate how the nodes are

grouped into modules, as well as the existence of sub-clusters

within the modules and the average distance between nodes in

distinct modules. Note that we use gray to indicate the value

d(i,j) = 0, so that the communities that have been detached from

the main cluster at lower values of s appear isolated from one

another in the color diagram. We identify 11 modules (C1–C11),

the biological significance of which will be discussed below. We

note also a number of isolated nodes or small sub-graphs that do

not constitute a module on its own. Figure 4 shows the color plot

for the neighborhood structure for the Acetyl network at s = smax.

It is relatively easy to infer the structure of the dendrograms from

the position of the modules. It is important to stress that both

graphs not only show the modular structure of the network, but

also clearly depict how the retrieved communities are related to

each other.

The information obtained from the described procedure can be

also used for the usual network representation formed by nodes and

links. In Figure 5, we draw such representation for the Acetyl network

at s = smax. Here, the colors used to draw the nodes represent the

different communities they belong to. The set of isolated nodes and

small sub-graphs is characterized by the C12 label.

This discussion shows that the proposed method allows us to

find the most relevant networks, namely those at critical values of

scr. These values, where the network topology changes abruptly,

correspond to optimal choices between inter-community edge

elimination (noise effect) and intra-modules bond preservation

(valuable information). They allow us to identify distinct

communities, which can be related, then, to the sets of organisms

to which the proteins belong (see also Figures S3, S4, S5, S6 and

S7). We observe that smax corresponds to the particular scr, where

d(scr,scr+Ds) reaches the largest value.

We show in Table 2 the values of smax, the number of nodes,

and the number of communities obtained for each of the five

enzyme networks. In the case of UDP, we observe the highest smax

value, indicating that, in the case of this protein, the disassembling

of the original, completely connected cluster happen at higher

values of similarity. This is a protein with a central role in the

chitin synthesis, and, consequently, it is not surprising that it shows

Figure 3. The dendrogram produced by the successive elimination of links with largest value of betweeness in the case of Acetyl: a)
for s = 30%,42%; b) for s = smax = 42% that reveals the modular structure of the network.
doi:10.1371/journal.pcbi.1001131.g003

Figure 4. The neighborhood matrix with the 11 modules for
Acetyl at s = smax = 42%.
doi:10.1371/journal.pcbi.1001131.g004

Network Communities and Phylogenetic Analysis

PLoS Computational Biology | www.ploscompbiol.org 7 May 2011 | Volume 7 | Issue 5 | e1001131



the greatest degree of sequence conservation throughout evolution,

among the proteins studied in this work. This suggests additional

features of the method discussed here, in that there is a

relationship between the smax value, the degree of sequence

conservation of proteins (a structural feature), and their centrality

in metabolic networks (a functional feature).

Biological interpretation
It is relevant to notice that, up to this point, all discussed results

have been obtained without any previous knowledge of phyloge-

netic classification. We only constructed computer routines to

proceed with the data analysis, network construction, and network

analysis, leading to community identification.

Figure 5. The standard network representation of Acetyl at s = smax = 42% (using Pajek package) with the communities that were
indicated in Figure 4. We label as C12 the small sub-graphs and isolated nodes that do not constitute a biologically meaningful community.
doi:10.1371/journal.pcbi.1001131.g005

Table 2. Summary of the results for each of the five enzyme networks: values of smax corresponding to the largest peaks in the
graphs d6s; number of nodes; number of distinct organisms; and the number of distinct communities.

Protein smax # nodes # organisms # communities

Acetylglucosamine phosphate deacetylase 42 176 88 12

Glucosaminephosphate isomerase 40 313 209 5

Hexosaminidase 37 238 67 10

Phosphoglucoisomerase 37 501 332 6

UDP-acetylglucosamine pyrophosphorylase 51 327 245 7

doi:10.1371/journal.pcbi.1001131.t002
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If we now interconnect the results discussed above with

taxonomic and phylogenetic data, sound biological information

can be promptly retrieved by these computational routines,

without using biological assumptions other than those incorporat-

ed by BLAST in the production of its outputs.

The Acetyl modules that can be identified at s = smax (Figure 4)

correspond, in a clear and rather precise manner, to bacterial

phyla and/or classes (and even orders, in some communities). As

already discussed, we restricted our analysis to those phyla due to

the fact that most of the protein sequences in the database were

derived from this biological domain. All cyanobacterial represen-

tatives formed only one and exclusive group retrieved in the

module C8(a). Furthermore, there are six communities [C3(a),

C4(a), C5(a), C6(a), C7(a), C10(a), C11(a)] that are formed

exclusively by representatives of one single bacterial phyla or class

and, in some cases, order: community C3(a) is exclusively formed

by species of the same bacterial order (Mollicutes); community

C4(a) are all composed of representatives of Actinobacteria, high

G+C Gram-positive monoderm bacteria, of the same class

(Actinomycetales); community C5(a) exclusively includes alpha-

proteobacteria of the class Rhodobacterales; and community

C11(a) contains only species of Firmicutes, low G+C Gram-

positive monoderm bacteria, belonging to the very closely related

orders Bacillales and Lactobacillales. Although not entirely

composed of representatives of the same phyla, 18 out of 20

nodes (90%) of community C2(a) are from the same bacterial

phyla (Proteobacteria) and 16 (80%) are from the most

phylogenetically related classes of beta- and gamma-proteobac-

teria [47].

Four modules are retrieved in the Glucosaminephosphate

isomerase (gluco) network at s = smax = 40%, and, as in the case

of UDP and Acetyl, most of them correspond to single bacterial

phyla and/or classes (and even orders): community C2(g) is

exclusively composed by bacterial representatives of phyla

Firmicutes of only two classes: Bacillales and Lactobacillales;

community C4(g) is entirely formed by sequences of the order

Alteromonadales of the class gamma-proteobacteria; and 21 out of

23 sequences (91.3%) of community C3(g) are representatives of

the phyla Proteobacteria (Figures S5a, S6a, and S7a).

A total of 9 modules occur in the Hexosaminidase (hexo)

network at s = smax = 37% and three of them, which contain the

greatest number of nodes, are almost exclusively formed by only

one bacterial phyla or class: Community C1(h) is composed of 97

nodes, of which 95 (98%) are representatives of phyla Proteo-

bacteria; community C2 is almost exclusively formed by species of

the class alpha-proteobacteria; and community C4(h) contains

only members of the most phylogenetically related classes of beta-

and gamma-proteobacteria [47]. The other communities are all

composed by few nodes corresponding to species of distinct phyla

(Figures S5b, S6b, and S7b).

Five modules occur in the Phosphoglucoisomerase (phospho)

network at s = smax = 37% and, similarly to the other enzymes of

the chitin metabolic pathway, there is a rather strict correspon-

dence between these modules and bacterial phyla. Community

C1(p) is mainly composed by cyanobacterial representatives (71%),

community C2(p) is almost exclusively formed by species of

Firmicutes (96.4%), and the very large community C5(p), with 328

nodes, is mainly represented by sequences of Proteobacteria (76%)

(Figures S5c, S6c, and S7c).

Finally, UDP can be decomposed into 6 clearly identified

modules C1(u)–C6(u), as has been shown previously [35]. C1(u) is

composed by 16 nodes, 14 (87.5%) of which are protein

sequences from representatives of the phylum Cyanobacteria.

One of the nodes corresponds to a sequence from a species of

Deinococcus-Thermus, a Gram-negative diderm bacterial group

of extremophiles that is closely related to Cyanobacteria [48].

C2(u) contains 135 nodes and, among them, 132 (97.8%) are

sequences from species of both beta- and gamma-proteobacteria,

which are considered to be more closely related to each other

than to any other proteobacterial class [47]. C3(u) is entirely

constituted by 80 sequences from Firmicutes species, of three

phylogenetically related orders: Bacillales, Lactobacillales, and

Clostridiales. C4(u) contains 33 vertices, of which 31 (93.4%) are

sequences from the presumed monophyletic group of alpha-

proteobacteria [47]. C5(u) is entirely formed by sequences from

Actinobacteria, all from the same order: Actinomycetales. Finally,

C6(u) comprises only nine nodes from the putative monophyletic

group of epsilon-proteobacteria [47], all from the same order:

Campylobacterales.

Usually, all the main bacterial phyla (Actinobacteria, Cyano-

bacteria, Firmicutes, Proteobacteria) and, in some cases, also some

bacterial classes (alpha-, beta- and gamma-Proteobacteria),

corresponded totally (100%), or with a substantial number of

representatives (.70%), to the modules formed as a result of the

complex network analysis of the proteins of the chitin metabolic

pathway. Even when there were few completely sequenced

genomes exhibiting one of the studied proteins, all the represen-

tatives of the same phyla were generally grouped together in the

same community.

In each of the protein networks, the nodes with the highest

degree numbers, or hubs, occurred inside the same community.

Although these hubs were not the same in the five different protein

networks, many of them were from the same bacterial species for

distinct proteins, e.g. Yersinia pestis for gluco, hexo, and UDP;

Escherichia coli for acetyl, hexo, and UDP. In contrast to all other

proteins, the hubs in the gluco network were mainly archeal

representatives.

Internal consistency and comparison with phylogenetic
methods

The results for a phylogenetic analysis provided by several

distinct methods do not necessarily agree with each other, as one

can verify by a direct comparison of the outputs produced by each

of them. Although we will not make here a detailed comparison

between our method and other procedures used to recover

phylogenetically useful information, but limit ourselves to take into

account the classification obtained for the original dataset, we are

in a position to discuss the internal consistency of our method.

The modules defined by the five different enzymes do not

necessarily agree with each other for two distinct reasons: first,

because not all organisms possess all the enzymes involved in the

chitin pathway. This is already clear by the different number of

nodes in each of the five networks. Second, because during the

course of evolution some enzymes may have suffered more

changes than the corresponding enzyme in other organisms, so

that the similarity index Sij between organisms i and j may take

distinct values for two different enzymes. Such quantitative

changes may alter the way the organisms are arranged into

communities in the corresponding networks. In particular, it may

happen that different networks produce distinct number of

communities because different enzymes may have changed to a

different extent in the organisms, so that one organism may belong

to different communities in the networks obtained for different

enzymes. Since the same protein may have been independently

inserted more than once into the database during the process of

uploading the recordings available in Genbank, we have found

that the number of distinct organisms in each of the 5 networks is

always smaller than the number of nodes (Table 2). We avoided,
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then, to advance biological hypotheses before the elimination of

the isoforms.

The congruence of the classification provided by the distinct

networks obtained for the five enzymes of the chitin metabolic

pathway was evaluated by means of the congruence index G(Q,y),

defined in the previous section as the ratio Q(Q,y)/R(Q,y). For

instance, if we take into account the classifications provided by

acetyl and UDP we notice that they consist, respectively, of 176

and 327 nodes, which actually correspond to 88 and 245

organisms, distributed into 12 and 7 communities (Table 2). The

number of common organisms and correct matches are

R(Q,y) = 44 and Q(Q,y) = 40, so that G(Q,y) = 0.91. The results

for the other pairs of networks are shown in Table 3.

In Figure 6 we display the results obtained from the community

identification for all 5 networks (In Figure S8, one can see the same

figure with the horizontal axis expanded for better visualization).

In this representation we take into account only the number of 382

distinct organisms represented by the original 1695 entries. The

used association (number, organism) is available in the Supple-

mentary Information. Each of the five networks is represented by a

horizontal sequence of spikes, which identify which organisms are

present in each network. Within a given network, the color of the

spikes identifies to which community the organism belongs. Since

different networks have different numbers of communities, there is

no color correspondence between distinct network classifications.

Congruence can be measured by the same color criterion: if the

spikes corresponding to organisms i and j have the same color in

network Q and network y, the classification provided by Q and y is

congruent, even if the common color in Q is different from the

common color in y.

The subsequent steps of our research program comprise a

detailed comparison between the results obtained with the

complex network approach reported in this paper and the

outcomes of other methods used to analyze phylogenetic

relationships based on molecular data. Although this is a

computationally complex task [49,50], the results of which need

to be discussed in another work, it is possible to advance that

preliminary results for a much smaller data set than that used

herein are promising – namely, data about chitin synthase,

another protein of the chitin metabolic pathway. Using the PAUP

4.0 program [51] to perform distance, likelihood, and parsimony

analyses, and Mr. Bayes 3.02 [52] to perform Bayesian analysis,

we provided a comparison between the proposed phylogenetic

classification with those based on the Bayesian, distance,

likelihood, and parsimony criteria. The results shown in Table 4

are based on the same congruence criterion we used to compare

the data in Table 3. In particular, the average congruence of our

method with the four other methods reaches 69%, while the

average taken over the six pair-wise comparisons among the four

methods (B, D, L. P) reaches only 60%. These results allow us to

conclude that the methodology reported in this paper is as reliable

as those commonly used methods.

Conclusions
This work reports a method based on complex network theory

that can recover information about the evolutionary relationships

between organisms, as expressed in the similarities and differences

between their protein sequences, which is useful for phylogenetic

inference. The system interaction network constructed is based on

protein similarity as the meaningful criterion to place an edge

between two nodes. Each node in the network is a specific protein

sequence and the placement of edges depends on a threshold value

s, related to the protein similarity required to such a placement.

We performed a comparative study of the enzymes related to

the chitin metabolic pathway in completely sequenced genomes of

extant organisms of the three life domains, Archaea, Bacteria, and

Eukarya, in order to show how the information derived from the

network structure and statistics can uncover phylogenetic patterns.

The results concerning phylogenetic classification discussed in this

paper are mainly based on the modular character of protein

similarity networks. Once the critical value of s (scr) using the

distance measure d(a,b) is found, we can choose the optimal

network for community detection, namely, that in which the

network topology changes abruptly, corresponding to optimal

choices between inter-community edge elimination (noise effect)

and intra-modules bond preservation (valuable information).

Although the NGA can be used to identify communities for any

value of s, it is in this optimal network that the best results can be

achieved with regard to the identification of distinct communities,

which can be related, in turn, to the sets of organisms to which the

proteins belong.

With this method, sound biological information can be

promptly retrieved by computational routines, without using

biological assumptions other than those incorporated by BLAST.

Usually, all the main bacterial phyla and, in some cases, also some

bacterial classes corresponded to a great extent (70%–100%) to the

modules obtained by means of the complex network analysis of the

proteins of the chitin metabolic pathway. Therefore, the method

reported here can be used as a powerful tool to reveal relationship

patterns among both organisms we have knowledge about and

organisms about which we do not have much information

available.

We provided results showing the internal consistency of the

results obtained through our method for the data corresponding to

five different enzymes. Despite the different rates of changes

suffered by these enzymes during evolution, we found 84% of

matches for community pertinence when comparisons between

the results were performed. Moreover, a preliminary comparison

between the results obtained with the complex network approach

reported here and the outcomes of methods based on Bayesian,

distance, likelihood, and parsimony criteria suggests that the

methodology reported in this paper is as reliable as these

commonly used methods.

There are, however, some possible advantages of the complex

network method when compared to these other methods. One of

them concerns the fact that we can determine the value of s in

which the complex network retrieve most of the phylogenetic

information available in the data set. Second, even though all these

methods use substitution matrices – including ours –, the complex

network method is not dependent upon patterns inferred from the

detailed study of any organisms.

Table 3. Values of congruence obtained after pair-wise
comparison of the phylogenetic analysis provided by two
different networks.

A G H P U

A 0.79 0.73 0.93 0.91

G 0.79 0.69 0.83 0.87

H 0.73 0.69 0.90 0.79

P 0.93 0.83 0.90 0.95

U 0.91 0.87 0.79 0.95

The average value of the entries in the table is 84%. Abbreviations: A, acetyl; G,
gluco; H, hexo; P, phosphor; U, UDP.
doi:10.1371/journal.pcbi.1001131.t003
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The next steps in our research program will be the application

of the method presented here to new sets of protein sequences, a

more thorough comparison of the results obtained through our

complex network approach with the outcome of other methods

employed to retrieve information from molecular data that is

useful for phylogenetic inference, and the application of our

method to address relevant research questions within different

fields of biology.

Supporting Information

Figure S1 Graphs of d(p,p+Dp) as function of p for N-nodes ER

networks (G(N,p)), where p indicates the probability of introducing

an edge between any pair of nodes. For the sake of a better

comparison, p is restricted to the interval [0,5pc = 5/N] for any

value of N. The solid line indicates the average behavior (10

samples when N = 256 (a), and 3 samples when N = 4096 (b)),

while dashed lines illustrate the typical behavior of a single sample.

The values of p where peaks are present are much smaller than the

corresponding values of s in PSN. When N = 256, the typical

order of magnitude of the protein networks, distinct modules of

comparatively large size are individually formed. The several

peaks indicate the values of p at which different modules merges,

producing a similar landscape to that observed in the PSN

networks. The maximum of the averaged curve occurs at values of

p.pc. When N increases (b), the fluctuations in the values of

d(p,p+Dp) decrease and the maximum is displaced to the left,

becoming closer and closer to pc. The peak is much sharper, and

the slope of the curve in its neighborhood is much larger. This

indicates that the number of components of relatively large size is

reduced, and that all smaller clusters start to merge with the largest

component in very narrow interval of values of p.

Found at: doi:10.1371/journal.pcbi.1001131.s001 (0.11 MB TIF)

Figure S2 Behavior of the size of the largest connected

component Nc as function of p for ER networks G(N,p). As in

Fig. S7, for any value of N, p is restricted to the interval

Figure 6. Series of spikes representing the 382 organisms present in each one of the 5 selected enzymes associated with the chitin
metabolic route. Along each series of spikes, color identifies the group the organisms belong to. There is no color correspondence between two
network classifications.
doi:10.1371/journal.pcbi.1001131.g006

Table 4. Values of congruence obtained after pair-wise
comparison of the phylogenetic analysis based on chitin
synthase sequences provided by five different methods:
Bayesian (B), distance (D), likelihood (L), parsimony (P), and
the network method introduced herein (N).

B D L P N

B 0.74 0.82 0.51 0.82

D 0.74 0.69 0.54 0.54

L 0.82 0.69 0.59 0.82

P 0.51 0.54 0.59 0.59

N 0.82 0.54 0.82 0.59

Average congruence of N with the four other methods = 69%. Average taken
over the six pair-wise comparisons among the four methods (B, D, L, P) = 60%.
doi:10.1371/journal.pcbi.1001131.t004
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[0,5pc = 5/N], while solid and dashed lines indicate average and

single sample behavior. For both values of N, the values of Nc at

pc are close to the expected value (Nc(pc)<N2/3). However, the

slope of the curve is much larger when N = 4096, what can be

related to the exponential increase in Nc(p.pc) in the limit NR‘

and the sharpness of the peak of d(p,p+Dp).

Found at: doi:10.1371/journal.pcbi.1001131.s002 (0.08 MB TIF)

Figure S3 The size of the largest cluster (Nc) versus the threshold

similarity s: a) Gluco; b) Hexo; c) Phospho.

Found at: doi:10.1371/journal.pcbi.1001131.s003 (0.16 MB TIF)

Figure S4 The distance d(s,s+D s) between networks for

successive similarities at the maximal value in the case of: a) Gluco

at s=smax = 40%; b) Hexo at s=smax = 37%; c) Phospho at

s=smax = 37%.

Found at: doi:10.1371/journal.pcbi.1001131.s004 (0.25 MB TIF)

Figure S5 The dendrogram associated with the elimination of

links with largest value of betweeness in the case of: a) Gluco at

s=smax = 40%; b) Hexo at s=smax = 37%; c) Phospho at

s=smax = 37%.

Found at: doi:10.1371/journal.pcbi.1001131.s005 (0.38 MB TIF)

Figure S6 The neighborhood matrix with the communities for:

a) Gluco at s=smax = 40%; b) Hexo at s=smax = 37%; c)

Phospho at s=smax = 37%. The presence of other high peaks for

the Gluco network shown in Fig.S2a indicates that the complete

separation of communities C1 and C2, and C3 and C4 is achieved

only at s= 50%.

Found at: doi:10.1371/journal.pcbi.1001131.s006 (2.18 MB TIF)

Figure S7 The standard representation of each enzyme network

(using the Pajek package) displaying the communities that were

indicated in Fig. 4a, 4b and 4c respectively: a) Gluco at

s=smax = 40%; b) Hexo at s=smax = 37%; c) Phospho at

s=smax = 37%. One extra label has been added in each panel to

denote the set of isolated nodes and small sub-graphs. Note that

figures were drawn for the value smax and module separation

occurs only at smax+1, so that these set is about to be separated

from the main cluster.

Found at: doi:10.1371/journal.pcbi.1001131.s007 (3.61 MB TIF)

Figure S8 Same as in Fig. 6 of the published material, but the

horizontal axis has been expanded for the sake of a better

visualization. Color codes and network order is the same as in the

published material.

Found at: doi:10.1371/journal.pcbi.1001131.s008 (1.76 MB TIF)

Text S1 Supplementary material for the paper ‘‘Detecting

Network Communities: An Application to Phylogenetic Analysis.’’

Found at: doi:10.1371/journal.pcbi.1001131.s009 (0.03 MB

DOC)
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E-Papers Serviços Editoriais LTDA. v. 1. pp 122–139.

Network Communities and Phylogenetic Analysis

PLoS Computational Biology | www.ploscompbiol.org 12 May 2011 | Volume 7 | Issue 5 | e1001131



34. Benson DA, Boguski MS, Lipman DJ, Ostell J, Ouellette BF, et al. (1999)

Genbank. Nucleic Acids Res 27: 12–17.
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